In-vitro Antimalarial Activity of Plicosepalus acaciae Extracts Against Plasmodium falciparum

Authors

  • Ahmed. S. Kabbashi Department of Biomedical Science, Faculty of Pharma-cy, Omar Al-Mukhtar Uni-versity, Libya Author https://orcid.org/0000-0003-3439-096X
  • Amel M. Abdrabo Department of Microbiology and Parasitology, Medicinal and Aromatic Plants and Traditional Medicine Research Institute, National Center for Research, Khartoum, Sudan Author
  • Hind A. Farah Department of Biochemistry, Medicinal and Aromatic Plants and Traditional Medi-cine Research Institute, Na-tional Center for Research, Khartoum, Sudan Author

DOI:

https://doi.org/10.54172/yf5wpb96

Keywords:

Plicosepalus Acaciae, Antimalarial, Plasmodium Falciparum, Artemisinin, In Vitro Assay

Abstract

The emergence of drug-resistant Plasmodium strains necessitates the continuous search for novel antimalarial agents. Plicosepalus acaciae (P. acaciae), a semi-parasitic mistletoe, is used in traditional medicine, but its antimalarial potential is underexplored. This study aimed to evaluate the in vitro antimalarial activity of P. acaciae leaf and stem extracts. Methanol and chloroform extracts of P. acaciae leaves and stems were prepared. Their antimalarial activity against the chloroquine-resistant K1 strain of Plasmodium falciparum (P. falciparum) was assessed using a SYBR Green I-based assay at concentrations of 500, 250, and 125 µg/mL. Artemisinin (51.20 nM/L) was used as a standard drug. The 50% inhibitory concentration (IC50) was determined for active extracts. The methanolic stem extract exhibited the highest antimalarial activity with an IC50 of 3.26±0.10 µg/mL and achieved 91% parasite growth inhibition at 500 µg/mL, comparable to the 90% inhibition observed with artemisinin. The methanolic leaf extract and chloroform extracts showed lower activity, with IC50 values of 12.57 ± 0.03 µg/mL and 13.93 ± 0.07 µg/mL (leaves), and 7.61 ± 0.01 µg/mL (stems), respectively. Plicosepalus acaciae extracts, particularly the methanolic stem extract, possess promising in vitro antimalarial activity against P. falciparum. These findings justify further investigation to isolate the active compounds and evaluate their efficacy in vivo.

References

Abajue, M. C., & Wogu, M. N. (2024). Medicinal Plants in the Tropics Used in the Treatment and Management of Parasitic Diseases Transmitted by Mosquitoes: Administration, Challenges, and Strategic Options for Management. In Herbal Medicine Phytochemistry: Applications and Trends (pp. 417-450). Springer.

Balikagala, B., Fukuda, N., Ikeda, M., Katuro, O. T., Tachibana, S.-I., Yamauchi, M., Opio, W., Emoto, S., Anywar, D. A., & Kimura, E. (2021). Evidence of artemisinin-resistant malaria in Africa. New England Journal of Medicine, 385(13), 1163-1171.

Belete, T. M. (2020). Recent progress in the development of new antimalarial drugs with novel targets. Drug design, development and therapy, 3875-3889.

Ceravolo, I. P., Aguiar, A. C., Adebayo, J. O., & Krettli, A. U. (2021). Studies on activities and chemical characterization of medicinal plants in search for new Antimalarials: a ten year review on Ethnopharmacology. Frontiers in Pharmacology, 12, 734263.

Cragg, G. M., & Newman, D. J. (2013). Natural products: a continuing source of novel drug leads. Biochimica et Biophysica Acta (BBA)-General Subjects, 1830(6), 3670-3695.

D’Almeida, S. A., Gbomor, S. E., Osaio-Kamara, B., Olagunju, M. T., Abodunrin, O. R., & Foláyan, M. n. O. (2024). A scoping review of the use of traditional medicine for the management of ailments in West Africa. PloS one, 19(7), e0306594.

Eltamany, E. E., Goda, M. S., Nafie, M. S., Abu-Elsaoud, A. M., Hareeri, R. H., Aldurdunji, M. M., Elhady, S. S., Badr, J. M., & Eltahawy, N. A. (2022). Comparative assessment of the antioxidant and anticancer activities of Plicosepalus acacia and Plicosepalus curviflorus: metabolomic profiling and in silico studies. Antioxidants, 11(7), 1249.

Harbone, B. (1984). Phytochemical methods. 2nd. New York, Champan Hall, 4, 4-7.

Kacholi, D. S. (2024). A comprehensive review of antimalarial medicinal plants used by Tanzanians. Pharmaceutical Biology, 62(1), 133-152.

Kaur, K., Jain, M., Kaur, T., & Jain, R. (2009). Antimalarials from nature. Bioorganic & medicinal chemistry, 17(9), 3229-3256.

Kolawole, E. O., Ayeni, E. T., Abolade, S. A., Ugwu, S. E., Awoyinka, T. B., Ofeh, A. S., & Okolo, B. O. (2023). Malaria endemicity in Sub-Saharan Africa: Past and present issues in public health. Microbes and Infectious Diseases, 4(1), 242-251.

Kotb El-Sayed, M.-I., Al-Massarani, S., El Gamal, A., El-Shaibany, A., & Al-Mahbashi, H. M. (2020). Mechanism of antidiabetic effects of Plicosepalus Acaciae flower in streptozotocin-induced type 2 diabetic rats, as complementary and alternative therapy. BMC complementary medicine and therapies, 20(1), 290.

Mithöfer, A., & Boland, W. (2012). Plant defense against herbivores: chemical aspects. Annual Review of Plant Biology, 63(1), 431-450.

Muthaura, C., Rukunga, G., Chhabra, S., Omar, S., Guantai, A., Gathirwa, J., Tolo, F., Mwitari, P., Keter, L., & Kirira, P. (2007). Antimalarial activity of some plants traditionally used in treatment of malaria in Kwale district of Kenya. Journal of Ethnopharmacology, 112(3), 545-551.

Ogbeide, O. K., Dickson, V. O., Jebba, R. D., Owhiroro, D. A., Olaoluwa, M. O., Imieje, V. O., Erharuyi, O., Owolabi, B. J., Fasinu, P., & Falodun, A. (2018). Antiplasmodial and acute toxicity studies of fractions and cassane-type diterpenoids from the stem bark of Caesalpinia pulcherrima (L.) Sw. Trop J Nat Prod Res, 2(4), 179-184.

Organization, W. H. (2022). WHO Malaria Policy Advisory Group (MPAG) meeting, October 2022. World Health Organization.

Shibeshi, M. A., Kifle, Z. D., & Atnafie, S. A. (2020). Antimalarial drug resistance and novel targets for antimalarial drug discovery. Infection and drug resistance, 4047-4060.

Tu, Y. (2016). Artemisinin-A gift from traditional chinese medicine to the world (Nobel Lecture). Angewandte Chemie International Edition, 55(35).

Uchôa, V. T., de Paula, R. C., Krettli, L. G., Santana, A. E. G., & Krettli, A. U. (2010). Antimalarial activity of compounds and mixed fractions of Cecropia pachystachya. Drug Development Research, 71(1), 82-91.

Vishakha, K., Das, S., Banerjee, S., Mondal, S., & Ganguli, A. (2020). Allelochemical catechol comprehensively impedes bacterial blight of rice caused by Xanthomonas oryzae pv. oryzae. Microbial Pathogenesis, 149, 104559.

WHO. (2022). World malaria report 2022. World Health Organization.

Yang, L., Wen, K.-S., Ruan, X., Zhao, Y.-X., Wei, F., & Wang, Q. (2018). Response of plant secondary metabolites to environmental factors. Molecules, 23(4), 762.

Zhang, Y., Cai, P., Cheng, G., & Zhang, Y. (2022). A brief review of phenolic compounds identified from plants: Their extraction, analysis, and biological activity. Natural Product Communications, 17(1), 1934578X211069721.

Downloads

Published

2025-11-13

Issue

Section

Articles

How to Cite

In-vitro Antimalarial Activity of Plicosepalus acaciae Extracts Against Plasmodium falciparum. (2025). Al-Mukhtar Journal of Basic Sciences, 01-08. https://doi.org/10.54172/yf5wpb96