Systematic Review of Food Processing by Ohmic Heating and Re-cent Developments
DOI:
https://doi.org/10.54172/zg18r718الملخص
The present review aimed to investigate the applications of ohmic heating in food processing and its effect on the microorganisms, bioactive compounds and enzymatic inhibition. It includes fundamental information on the principles of ohmic heating and its operational mechanism. It also discusses its advantages and disadvantages, in addition to its effect on the quality properties of food (microbial and enzymatic inhibition). It also examines its effect on antioxidant compounds and the processing of some foods such as pasteurization and extraction. Ohmic heating (OH) is an advanced thermal process in which food is placed between the electrodes and turns into electrical resistance when alternating electric current passes through it as a result heats the food. Ohmic heating directly depends on the electrical conductivity that increases with increasing temperature, as well as the distance between the electrodes, the area of the electrodes, the potential difference, salts present in the food and the moisture content. Ohmic heating increases the inhibition of enzymes and microorganisms, increases the extraction rate and increases the speed of the fermentation temperature more (the heating rate is high) compared to conventional heating. It also improves organoleptic properties, including color, relative to conventional heating.
Keywords: food processing, microbial inhibition, electrical conductivity
المراجع
الحلفي، اسعد رحمان سعيد، علي، حيدر ابراهيم ومحسن، غسان فيصل (2012). تصميم وتصنيع جهاز لبسترة الحليب بالتسخين الأومي ودراسة كفاءته. مجلة ابحاث البصرة ،30(4):1-18.
عثمان، معاذ بدر، الفيفي، بندر عباس، الحلفي، أسعد رحمان وحوباني، علي ابراهيم (2021). التسخين الأومي وتطبيقاته في التصنيع الغذائي. مجلة الغذاء والتغذية. 21 (51): 66-93.
Abedelmaksoud, T.; Mohsen, S. M.; Duedahl-Olesen, L.; Elnikeety, M. M., and Feyissa, A. H. (2018a). Effect of ohmic heating parameters on inactivation of enzymes and quality of not-from-concentrate mango juice. Asian Journal of Scientific Research, 11(3), 383-392. https://doi.org/10.3923/ajsr.2018.383.392
Abedelmaksoud, T.G.; Mohsen, S.M.; Duedahl-Olesen, L.; Elnikeety, M.M., and Feyissa, A.H. 2018)b). Optimization of ohmic heating parameters for polyphenoloxidase inactivation in not-from-concentrate elstar apple juice using RSM. Journal of Food Science and Technol-ogy, 55(7): 2420–2428. https://doi.org/10. 10.1007/s13197-018-3159-1.
Al-Hilphy, A. R. S. (2014). A practical study for new design of essential oils extraction apparatus using ohmic heating. International Journal of Agricultural Science, 4(12): 351-366.
Al-Hilphy, A.R.S. (. (2018 Engineering intervention for extraction of essential oils from plants. In: Engineering Interventions in Foods and Plants. Vermaz, D.K., and Goyal, M.R. (Eds.), Apple Academic Press: Cambridge, MA, USA, 298p. ISBN 978-1-77188-596-6.
Al-Hilphy, A. R., and Khaneghah, A.M. (2024). Ohmic heating design, thermal performance, and applications in food processing. In: Smart Food Industry: The Blockchain for Sustainable Engineering. Jacob- Lopes, E. ; Zepka, L. Q. and Depra, M. C.(Eds.) ,1st Edition, CRC Press. pp: 273-289. http://dx.doi.org/10.1201/9781003231059-19
Al-Hilphy, A. R.; Al-Rikabi, A. K., and Al-Salim, A. M. (2015). Extraction of phenolic com-pounds from wheat bran using ohmic heating. Food Science and Quality Manage-ment, 43:21-28.
Al-Hilphy, A. R.; Al-Musafer, A. M., and Gavahian, M. (2020). Pilot-scale ohmic heating-assisted extraction of wheat bran bioactive compounds: Effects of the extract on corn oil stabil-ity. Food Research International, 137, 109649.
Al-Hilphy, A. R.; Al-Mtury, A. A. A.; Al-Shatty, S. M.; Hussain, Q. N., and Gavahian, M. (2022). Ohmic heating as a by-product valorization platform to extract oil from carp (Cyprinus carpio) viscera. Food and Bioprocess Technology, 15(11): 2515-2530.
Al-Hilphy, A. R.; Altemimi, A. B.; Alkanan, Z. T.; Eweys, A. S.; Haoujar, I.; Cacciola, F., and Abedelmaksoud, T. G. (2023a). Vacuum ohmic heating: A promising technology for the improvement of tomato paste processing, safety, quality and storage stability. Basrah Journal of Agricultural Sciences, 36(1):214–237. https://doi.org/10.37077/25200860.2023.36.1.18
Al-Hilphy, A. R.; Al-Behadli, T. K.; Al-Mtury, A. A.; Abd Al-Razzaq, A. A.; Shaish, A. S.; Liao, L.; Zeng, X.A., and Manzoor, M. F. (2023b). Innovative date syrup processing with ohmic heating technology: Physiochemical characteristics, yield optimization, and sensory at-tributes. Heliyon. 9 ((9, e19583 https://doi.org/10.1016/j.heliyon.2023.e19583
Bender, D.; Gratz, M.; Vogt, S.; Fauster, T.; Wicki, B.; Pichler, S.; Kinner, M.; Jäger, H., and Schoenlechner, R. (2019). Ohmic heating-A novel approach for gluten-free bread baking. Food Bioprocess Technol., 12:1603–1613.
Coelho, M.; Pereira, R.; Rodrigues, A.S.; Teixeira, J.A., and Pintado, M.E. (2019) Extraction of tomato by-products’ bioactive compounds using ohmic technology. Food and Bioproducts Processing, 117:329–339.
Cohen, M. L. (2000). Changing patterns of infectious disease. Nature, 406(6797): 762–767.
Fellows, P.J. (2017). Food processing technology. Wood Head Publishing. pp: 831–838. ISBN 978-0-08-101907-8.
Funcia, E.S.; Gut, J.A.W., and Sastry, S.K. (.(2020 Effect of electric field on pectin esterase inac-tivation during orange juice pasteurization by ohmic heating. Food Bioprocess Technol., 13: 1206–1214.
Fung, F., Wang, H. S., and Menon, S. (2018). Food safety in the 21st century. Biomedical Journal, 41(2): 88–95.
Guo, W.; Llave, Y.; Jin, Y.; Fukuoka, M., and Sakai, N. (2017). Mathematical modeling of ohmic heating of two-component foods with non-uniform electric properties at high frequencies. Innov. Food Sci. Emerg. Technol., 39: 63–78.
Han, Y.; Cheng, J. H., and Sun, D. W. (2019). Activities and conformation changes of food en-zymes induced by cold plasma: A review. Critical Reviews in Food Science and Nutrition, 59: 794–811.
Icier, F., and Ilicali, C. (2005). Temperature dependent electrical conductivities of fruit purees during ohmic heating. Food Research International,38:1135–1142. https://doi.org/10.1016/j.foodres.2005.04.003
Indiarto, R., and Rezaharsamto, B. A. (2020). Review on ohmic heating and its use in food. Int. J. Sci. Technol. Res., 9: 485–490.
Jaeger, H.; Roth, A.; Toepfl, S.; Holzhauser, T.; Engel, K.H.; Knorr, D.; Vogel, R.F.; Bandick, N.;Kulling, S.; Heinz, V., and Steinberg, P. (2016). Opinion on the use of ohmic heating for the treatment of foods. Trends Food Sci. Technol., 55: 84–97.
Jakób, A.; Bryjak, J.; Wójtowicz, H.; Illeová, V.; Annus, J., and Polakoviˇc, M. (2010). Inactiva-tion kinetics of food enzymes during ohmic heating. Food Chem., 123: 369–376
Jatau, S.H.; Sokoto, M.A.; Almustapha, M.N.; Muhammad, C.; Dabai, M.U., and Zubairu, A.Y. (2018). Effect of heat on lycopene content of hot peppers (Capsicum annum) using vari-ous processing temperature. Int. J. Sci. Eng., 14:32–39.
Kadem, Z. A.; Al-Hilphy, A. R.; Alasadi, M. H., and Gavahian, M. (2023a). Combination of ohmic heating and subcritical water to recover amino acids from poultry slaughterhouse waste at a pilot-scale: New valorization technique. Journal of Food Science and Technology, 60(1): 24-34.
Kaur, N., and Singh, A. K. (2016). Ohmic heating: Concept and applications-A review. Critical Reviews in Food Science and Nutrition, 56(14):2338–2351. https://doi.org/10.1080/10408398.2013.835303
Kim, N. H.; Cho, T. J., and Rhee, M. S. (2017). Sodium chloride does not ensure microbiological safety of foods: Cases and solutions. Advance in Applied Microbiology, 101: 1–47.
Kim, S. S., and Kang, D. H. (2015). Comparative effects of ohmic and conventional heating for inactivation of Escherichia coli O157:H7, Salmonella enterica serovar Typhimurium,and Listeria monocytogenes in skim milk and cream. Journal of Food Protection, 78: 1208–1214.
Kostelac, D.; Putnik, P.; Markov, K.; Frece, J., and Kovaˇcevi´c, D.B. (2020). Effects of electro-technologies on enzymes in foods and food model systems. Curr. Opin. Food Sci., 31: 47–56.
Kumar, J.P.; Ramanathan, M., and Ranganathan, T.V. (2014). Ohmic heating technology in food processing- A review. Int. J. Food Eng. Res. Technol., 3:1236–1241.
Kumar, T.; Smith, D. D.; Kumar, S., and Vimla, B. (2018). Effect of voltage gradient and temper-ature on electrical conductivity of grape (Vitis vinifera L.) juice during ohmic heating. Int. J. Curr. Microbiol. Appl. Sci.,7: 1914-1921.
Kumari, K.; Mudgal, V.D.; Viswasrao, G., and Srivastava, H. (2016). Studies on the effect of ohm-ic heating on oil recovery and quality of sesame seeds. J. Food Sci. Technol., 53:2009–2016.
Lee, S. Y.; Ryu, S., and Kang, D. H. (2013) Effect of frequency and waveform on inactivation of Escherichia coli O157: H7 and Salmonella enterica Serovar Typhimurium in Salsa by ohmic heating. Appl. Environ. Microbiol., 79: 10–17.
Leizerson, S., and Shimoni, E. (2005). Effect of ultrahigh-temperature continuous ohmic heating treatment on fresh orange juice. J. Agric. Food Chem., 53: 3519–3524.
Li, X.; Xu, X.; Wang, L., and Regenstein, J.M. (2019). Effect of ohmic heating on physicochemi-cal properties and the key enzymes of water chestnut juice. J. Food Process. Preserv., 43(4): e13919.
Li, F.D.; Chen, C.; Ren, J.; Wang, R. and Wu, P. 2015)) Effect of ohmic heating of soymilk on urease inactivation and kinetic analysis in holding time. J. Food Sci., 80: 307–315.
Loypimai, P.; Moongngarm, A.; Chottanom, P., and Moontree, T. (2015). Ohmic heating assisted extraction of anthocyanins from black rice bran to prepare a natural food colourant. Innov. Food Sci. Emerg. Technol., 27: 102–110.
Makroo, H.A.; Srivastava, B.; Sit, N.; Badwaik, L.S., and Das, A.B. (2017). Effects of ohmic heat-ing on different liquid food materials. Trends Innov. Food Process. Technol., 3: 95–115.
Mäntsälä, P., and Jarmo, N. (2009). Enzymes: The biological catalysts of life. Physiol. Maintan-ance, 2: 1–22.
Mercali, G.D.; Gurak, P.D.; Schmitz, F., and Marczak, L.D.F. (2015). Evaluation of non-thermal effects of electricity on anthocyanin degradation during ohmic heating of Jaboticaba (Myrciaria cauliflora) juice. Food Chem., 171:200–205.
Mesías, M.; Wagner, M.; George, S., and Morales, F.J. (2016). Impact of conventional steriliza-tion and ohmic heating on the amino acid profile in vegetable baby foods. Innov. Food Sci. Emerg. Technol., 34: 24–28.
Moongngarm, A.; Sriharboot, N.; Loypimai, P., and Moontree, T. (2022). Ohmic heating-assisted water extraction of steviol glycosides and phytochemicals from Stevia rebaudiana leaves. LWT, 154: 112798.
Müller, W.A.; Marczak, L.D.F., and Sarkis, J.R. (2020). Microbial inactivation by ohmic heating: Literature review and influence of different process variables. Trends Food Sci. Technol., 99:650–659.
Palaniappan, S., and Sastry, S.K. (1991) Electrical conductivities of selected solid foods during ohmic heating. Journal of Food Process Engineering, 14: 221-236.https://doi.org/10.1111/j.1745-4530.1991.tb00093.x
Park, I. K.; Ha, J. W., and Kang, D. H. (2017). Investigation of optimum ohmic heating conditions for inactivation of Escherichia coli O157: H7, Salmonella enterica serovar Typhimurium, and Listeria monocytogenes in apple juice. BMC Microbiology, 17(1): 1-8.
Patel, A., and Singh, M. (2018). Ohmic heating for food products- A review. Curr. J. Appl. Sci. Technol., 27: 1–7.
Pereira, R. N.; Rodrigues, R. M.; Genisheva, Z.; Oliveira, H.; de Freitas, V.; Teixeira, J. A., and Vicente, A. A. (2016). Effects of ohmic heating on extraction of food-grade phytochemi-cals from colored potato. LWT, 74: 493-503.
Pereira, R.N.; Costa, J.; Rodrigues, R.M.; Villa, C.; Machado, L.; Mafra, I., and Vicente, A. ((2020. Effects of ohmic heating on the immunoreactivity of lactoglobulin-A relationship towards structural aspects. Food Funct., 11: 4002–4013.
Poojary, M.; Roohinejad, S.; Koubaa, M.; Barba, F.; Passamonti, P.; Jambrak, A.R., and Greiner, R. (2016). Impact of pulsed electric fields on enzymes. In: Handbook of Electroporation. Miklavbcic. D. (Ed.) , Springer: Cham, Switzerland.
Rocha, R.S.; Silva, R.; Guimarães, J.T.; Balthazar, C.F.; Pimentel, T.C.; Neto, R.P.; Tavares, M.I.B.; Esmerino, E.A.; Freitas, M.Q. and Cappato, L.P (2020). Possibilities for using ohmic heating in Minas Frescal cheese production. Food Res. Int., 131: 109027.
Rebezov, M.; Farhan Jahangir Chughtai, M.; Mehmood, T.; Khaliq, A.; Tanweer, S.; Semenova, A.; Khayrullin, M.; Dydykin, A.; Burlankov, S.; Thiruvengadam, M.; Shariati, M. A., and Lorenzo, J. M. (2022). Novel techniques for microbiological safety in meat and fish indus-tries. Applied Sciences, 12(1), 319. https://doi.org/10.3390/app12010319
Rosello-Soto, E.; Poojary, M. M.; Barba, F. J.; Koubaa, M.; Lorenzo, J. M.; Manes, J., and Moltó, J. C. (2018). Thermal and non-thermal preservation techniques of tiger nuts' beverage “horchata de chufa”. Implications for food safety, nutritional and quality properties. Food Research International, 105: 945–951.
Sakr, M., and Liu, S. A. (2014). Comprehensive review on applications of ohmic heating (OH). Renew. Sustain. Energy Rev., 39: 262–269.
Sakulchuthathip, V.; Yasurin, P.; Tangduangdee, C., and Asavasanti, S. (2017). Extraction of bio-active compounds from Chinese chives using ohmic assisted hydrodistillation. Extraction, 15: 17.
Salari, S., and Jafari, S.M. (2020). The influence of ohmic heating on degradation of food bioac-tive ingredients. Food Eng. Rev., 12: 191-208.
Saxena, J.; Makroo, H.A., and Srivastava, B. (2016). Effect of ohmic heating on Polyphenol Oxi-dase (PPO) inactivation and color change in sugarcane juice. J. Food Process. Eng., 40: 1–11.
Sengun, I. Y.; Icier, F., and Kor, G. (2017). Effects of combined ohmic–infrared cooking treatment on microbiological inactivation of meatballs. Journal of Food Process Engineering, 40(1): e12309.
Shirsat, N.; Lyng, J. G.; Brunton, N. P., and Mckenna, B. M. (2004). Conductivities and ohmic heating of meat emulsion batters. Journal of Muscle Foods, 15(2):121–137. https:// doi:10.1111/j.1745-4573.2004.tb00716.x
Somavat, R. (2011). Applications and effects of ohmic heating: Sterilization, influence on bacteri-al spores, enzymes, bioactive components and quality factors in food. Ph.D. Thesis, The Ohio State University, Columbus, OH, USA.
Suebsiri, N.; Kokilakanistha, P.; Laojaruwat, T.; Tumpanuvat, T., and Jittanit, W. (2019). The pas-teurization of milk applying ohmic heating in comparison with conventional method and the quality attributes of lactose-free milk. Res. J. Phranakhon Rajabhat Sci. Technol., 14: 25–35.
Sun, H.; Kawamura, S.; Himoto, J. I.; Itoh, K.;Wada, T., and Kimura, T. (2008). Effects of ohmic heating on microbial counts and denaturation of proteins in milk. Food Science and Tech-nology Research, 14(2): 117-123.
Supratomo, S.: Laga, A.; Tahir, M.; Mochtar, A. A., and Salengke, S. (2019). Design and perfor-mance test of ohmic-assisted cocoa fermentation apparatus. Journal of Engineering and Applied Sciences, 14(8):1515-1523.
Tappi, S.; Ragni, L.; Tylewicz, U.; Romani, S.; Ramazzina, I., and Rocculi, P. (2019). Browning response of fresh-cut apples of different cultivars to cold gas plasma treatment. Innov. Food Sci. Emerg. Technol., 53: 56–62.
Terefe, N.S.; Buckow, R., and Versteeg, C. (2014). Quality-related enzymes in fruit and vegetable Products: Effects of novel food processing technologies, Part 1: High-Pressure Processing. Crit. Rev. Food Sci. Nutr., 54: 24–63.
Tola, Y. B., and Ramaswamy, H. S. (2018). Novel processing methods: Updates on acidified vege-tables thermal processing. Current Opinion in Food Science, 23: 64-69.
Tsong, T.Y. (1990). Reviews on electroporation of cell membranes and some related phenomena. Bioelectrochem. Bioenerg., 24(3): 271-295.
Varghese, K. S.; Pandey, M.; Radhakrishna, K., and Bawa, A. (2014). Technology, applications and modelling of ohmic heating: A review. J. Food Sci. Technol., 51(10):2304–2317.
Vicente, A.A.; Pereira, R.N.; Penna, T.C.V., and Knirsch, M. (2014). Electricity effects on micro-organisms and enzymes. In: Ohmic Heating in Food Processing. CRC Press: Boca Raton, FL, USA. pp:115–126.
Yildiz-Turp, G.; Sengun, I.; Kendirci, P.; Icier, F., and Yıldız-Turp, G. (2013). Effect of ohmic treatment on quality characteristic of meat: A review. Meat Sci., 93: 441–448.
Zell, M.; Lyng, J.G.; Cronin, D.A., and Morgan, D.J. (2010). Ohmic cooking of whole beef mus-cle-Evaluation of the impact of a novel rapid ohmic cooking method on product quality. Meat Sci., 86: 258–263.





