Relevance of gray mold disease on grapes in different regions of Al-Jabal Al-Akhdar, Libya.
DOI:
https://doi.org/10.54172/7pgt3861Keywords:
Gray mold disease, Botrytis cinerea fungus, Grape, Al-Jabal Al-khdar regions.Abstract
The current study was conducted from May to September 2023, and aimed to survey the grape gray mold disease in several regions of Al-Jabal Al-khdar including Al-Wesita, Masa, Al-Faidia, Al-Aoilia and Batta. Leaf samples were collected and examined. The results of isolation and identification after preparing slides of fungal growth, describing the pathogen Botrytis cinerea and taking its measurements under a light microscope, showed that the recorded thickness of old mycelium was 5-12.5 µm thickness of young myce-lium 3-7.5 µm, spore length 7.5-12.5 µm, spore width 5-7.5 µm and Conidiophore length 15-25 µm. The results of the statistical analysis indicated significant differences between the regions, where, the Al-aoilia region had the highest infection rate, 54%, in May. Whereas in Masa region had the lowest infection rate in September 0.22%. The density of infection ranged from 0.06 to 13.67 % at the same condi-tions.
References
Chen, Y., Grimplet, J., David, K., Castellarin, S. D., Terol, J., Wong, D. C., and Chervin, C.
(2018). Ethylene receptors and related proteins in climacteric and non-climacteric fruits.
Plant science, 276, 63-72. doi: 10.1016/j.plantsci.2018.07.012. Epub 2018 Aug 10.
Chiang, K. S., Bock, C. H., & El Jarroudi, M. (2017). A discussion on disease severity index
values. Part I: Warning on inappropriate calculation and use of the index. European Journal
of Plant Pathology, 148:(3), 453–460. https://doi.org/10.1007/s10658-016-1107-1
Ciliberti, N., Fermaud, M., Languasco, L., and Rossi, V. (2015). Influence of fungal strain,
temperature, and wetness duration on infection of grapevine inflorescences and young berry
clusters by Botrytis cinerea. Phytopathology, 105(3), 325-333. doi: 10.1094/ PHYTO-05-
14-0152-R
Elad, Y., Vivier, M., and Fillinger, S. (2016). “Botrytis, the good, the bad and the ugly,” in Botrytis – the fungus, the pathogen and its management in agricultural systems. Eds. S. Fillinger and Y. Elad (Cham: Springer), 1–15. doi: 10.1007/978-3-319-23371-0_1
Elad, Y., Williamson, B., Tudzynski, P., and Delen, N. (Eds.). (2004). Botrytis: Biology, Pathology and Control. Kluwer Academic Publishers. 428 pp
Elad, Y., Williamson, B., Tudzynski, P., and Delen, N. (2007). Botrytis spp. and diseases they
cause in agricultural systems-an introduction. Pages 1-8 in: Botrytis: Biology, Pathology,
and Control. Y. Elad, B. Williamson, P. Tudzynski, and N. Delen, eds. Springer, Dordrecht,
The Netherlands.
Elmer, P. A., and Michailides, T. J. (2007). Epidemiology of Botrytis cinerea in orchard and
vine crops. In Botrytis: biology, pathology and control (pp. 243-272). Dordrecht: Springer
Netherlands.
Elsayed, M. I., Al-Qurashi, A. D., Almasaudi, N. M., and Abo-Elyousr, K. A. (2022). Efficacy
of essential oils against gray mold and effect on fruit quality during cold storage in table
grapes. South African Journal of Botany, 146, 481-490. DOI: 10.1016/j.sajb.2021.11.046
FAO (Food and Agriculture Organization). (2024). Available at: https://www. fao.org/faostat
/en /#home (Accessed on May 05, 2024).
Farr, D. F., Bills, G. F., Chamuris, G. P., and Rossman, A. Y. (1989). Fungi on plants and plant
products in the United States. American Phytopathological Society, St. Paul, MN.
González-Domínguez, E., Caffi, T., Ciliberti, N., and Rossi, V. (2015). A mechanistic model
of Botrytis cinerea on grapevines that includes weather, vine growth stage, and the main infection pathways. PloS one, 10(10), e0140444. https://doi.org/ 10.1371/journal. pone.
0140444
Hennebert, G. L. (1973). Botrytis and Botrytis-like genera. Persoonia-Molecular Phylogeny and
Evolution of Fungi, 7(2), 183-204.
Jarvis, W. R. (1977). Botryotinia and Botrytis species: taxonomy, physiology and pathogenicityA guide to the literature.
Jarvis, W. R. (1980). Taxonomy. Pages 1-18 in: The Biology of Botrytis. J. R. Coley-Smith, K.
Verhoeff, and W. R. Jarvis, eds. Academic Press, San Diego, CA. 318 pp
Jayawardena, R. S., Zhang, W., Li, X. H., Liu, M., Hao, Y. Y., Zhao, W. S., Hyde, K. D., Liu, J.
H. and Yan, J. Y. (2018). Characterization of Botrytis cinerea causing grape bunch rot in
Chinese vineyards, Asian Journal of Mycology 1(1), 74–87. Doi 10.5943/ajom/1/1/6
Khazaeli, P., Zamanizadeh, H., Morid, B., and Bayat, H. (2010). Morphological and molecular
identification of Botrytis cinerea causal agent of gray mold in rose greenhouses in central
regions of Iran. International J. of Agricultural Science and Research.1:19- 24.
Kosuge, T., and Hewitt, W. (1964). Exudates of grape berries and their effect on germination of
conidia of Botrytis cinerea. Phytopathology. 54, 167–172.
Leroch M, Plesken C, Weber RWS, Kauff F et al. 2012 – Grey mold population in German
strawberry fields show multiple fungicide resistance and are dominated by a novel clade close to
Botrytis cinerea. Applications in Environmental Microbiology 79, 159–167.
DOI: 10.1128/AEM.02655-12
Liu, X. Q., Ickert-Bond, S. M., Nie, Z. L., Zhou, Z., Chen, L. Q., and Wen, J. (2016). Phylogeny
of the Ampelocissus–Vitis clade in Vitaceae supports the New World origin of the grape genus. Molecular Phylogenetics and Evolution, 95, 217-228. doi: 10.1016/j.ympev.2015.10.013
Lorenz, D. H., Eichhorn, K. W., Bleiholder, H., Klose, R., Meier, U., and Weber, E. (1995).
Phenological growth stages of the grapevine (Vitis vinifera l. ssp. vinifera) codes and descriptions according to the extended BBCH scale. Aust. J. Grape Wine Res. 1, 100–103. doi:
10.1111/j.1755-0238.1995.tb00085.x
Macfarlane, H. H. (1968). Review of Applied Mycology. Plant Host-Pathogen Index to Volumes 1-40 (1922-1961).
McKinney, H. H. (1923). Influence of soil temperature and moisture on infection of wheat
seedlings by Helminthosporium sativum. Journal of Agricultural Research, 26:(5), 195–217.
Mohamed, N., Lherminier, J., Farmer, M.-J., Fromentin, J., Béno, N.,Houot, V., Milat,
M.-L., and Blein, J.-P. 2007. Defense responses in grapevine leaves against Botrytis cinerea induced by application of a Pythium oligandrum strain or its elicitin, oligandrin, to roots. Phytopathology97:611-620. doi: 10.1094/PHYTO-97-5-0611.
Muñoz, G., Campos, F., Salgado, D., Galdames, R., Gilchrist, L., Chahin, G., and Andrade,
O. (2016). Molecular identification of Botrytis cinerea, Botrytis paeoniae and Botrytis pseudocinerea associated with gray mould disease in peonies (Paeonia lactiflora Pall.) in Southern Chile. Revista iberoamericana de micologia, 33(1), 43-47. DOI: 10.1016/j.riam.2015.02.002
Riaz, S., De Lorenzis, G., Velasco, D., Koehmstedt, A., Maghradze, D., Bobokashvili, Z., ...
and Arroyo-Garcia, R. (2018). Genetic diversity analysis of cultivated and wild grapevine
(Vitis vinifera L.) accessions around the Mediterranean basin and Central Asia. BMC plant
biology, 18(1), 137. Doi 10.1186/s12870-018-1351-0
Sargolzaei, M., Rustioni, L., Cola, G., Ricciardi, V., Bianco, P. A., Maghradze, D., ... and De
Lorenzis, G. (2021). Georgian grapevine cultivars: ancient biodiversity for future viticulture.
Frontiers in Plant Science, 12, 630122. Doi 10.3389/fpls.2021.630122.
Staats, M., van Baarlen, P., and van Kan, J. A. (2005). Molecular phylogeny of the plant
pathogenic genus Botrytis and the evolution of host specificity. Molecular biology and Evolution, 22(2), 333-346. DOI: 10.1093/molbev/msi020
Tyson, J. L., Middleditch, C. L., and Fullerton, R. A. (2022). The effect of grape berry growth
stage on germination of Botrytis cinerea in New Zealand. Australasian Plant Pathology,
51(1), 79-90. doi: 10.1007/s13313-021-00839-4
USDA. (2023). Fresh Apples, Grapes, and Pears: World Markets and Trade; United States Department of Agriculture Foreign Agricultural Service: Washington, DC, USA, pp. 1–13.
Available online: https://apps.fas.usda.gov/psdonline/circulars/fruit.pdf (accessed on 18 January 2024)
Vasilica, M. R., Suciu, L. A., and Puia, C. E. (2012). In Vitro Studies Regarding the Morphology of Botrytis cinerea Pers. Isolated from Geranium Plants. 5, 60 - 66.
Wang, X., Tu, M., Wang, D., Liu, J., Li, Y., Li, Z., Wang, Y.; and Wang, X. (2018).
CRISPR/Cas9‐ mediated efficient targeted mutagenesis in grape in the first generation.
Plant biotechnology journal, 16(4), 844-855. DOI: 10.1111/pbi.12832
Wilcox, W. (2005). Grape Disease Control. Dept. of Plant Pathology, Cornell University, NY
State Agric. Expt. Station, Geneva, NY.
Yohalem, D. S., Nielsen, K., and Nicolaisen, M. (2003). Taxonomic and nomenclatural clarification of the onion neck rotting Botrytis species. Mycotaxon 85, 175 - 182.
Youssef, K., Roberto, S. R., Chiarotti, F., Koyama, R., Hussain, I., and de Souza, R. T. (2015).
Control of Botrytis mold of the new seedless grape ‘BRS Vitoria’ during cold storage. Scientia Horticulturae, 193, 316-321.http://dx.doi.org/10.1016/j.scienta.2015.07.026
Downloads
Published
Issue
Section
License

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.




