On Menger Spaces in Generalized Topology

Authors

  • Assakta K. Bashier Department of Mathematics, Faculty of Science, Bani Waleed University, Bani Walid, Libya Author

DOI:

https://doi.org/10.54172/1cg6wn36

Keywords:

Generalized topological space, λ-Menger space, λ-uniform space

Abstract

We introduce new types of covering properties in generalized topology, namely; -Menger and -uniformly Menger spaces, and investigate their fundamental properties. To achieve this, we replace open sets in the definition of the standard Manger spaces with -open sets of generalized topological spaces. The results show that the -Menger property is stronger than the Menger property. Additionally, -Menger spaces are preserved when forming subspaces and countable unions. We also characterize -uniformly Menger spaces and study their relationship with -Menger spaces. Examples are given to further illustrate our results.

References

Abd El-Monsef, M. E., El-Deeb , S. N., & Mahmoud, R. A. (1983). β-open sets and β-continuous mappings. Bull. Fac. Sci. Assiut Univ., 12(1), 77-90.

Bashier, A. K. (2022). Generalized homotopy in generalized topological spaces. The Libyan Journal of Science, 25(1), 25-28.

Csàszàr, A. (2002). Generalized topology, generalized continuity. Acta Math. Hungar., 96(4), 351-357.

Csàszàr, A. (2007). Normal generalized topologies. Acta Math. Hungar., 115(4), 309-313.

Dey, D., Mandal, D., & Mukherjee, M. N. (2022). Uniformity on generalized topological spaces. Arab J. Math. Sci., 28(2), 184-190.

Engelking, R. (1989). General Topology (2nd ed.). Berlin: Heldermann Verlag.

Gupta, A., & Sarma, R. D. (2015). Function space topologies for generalized topological spaces. Journal of Advanced Research in Pure Mathematics, 7(4), 103-112.

Kočinac, L. D. (2003). Selection principles in uniform spaces. Note Mat., 22(2), 127-139.

Kočinac, L. D. (2019). Generalized open sets and selection properties. Filomat, 33(5), 1485-1493.

Kočinac, L. D. (2020). Variations of classical selection principles: An overview. Quaest. Math., 43(8), 1121–1153.

Kule, M. (2022). β-Menger and β-Hurewicz spaces. Hacet. J. Math. Stat., 51(1), 1-7.

Levine, N. (1963). Semi-open sets and semi-continuity in topological spaces. Amer. Math. Monthly, 70(1), 36-41.

Makai, E., Peyghan , E., & Samadi, B. (2016). Weak and strong structures and the T 3.5 property for generalized topological spaces. Acta Math. Hungar., 150(1), 1-35.

Mashhour, A. S., Abd El-Monsef, M. E., & El-Deeb, S. N. (1982). On precontinuous and week precontinuous mappings. Proc. Math. Phys. Soc. Egypt, 53, 47-53.

Menger, K. (1924). Einige überdeckungssätze der punktmengenlehre‏. Stzungsberischte Abt. 3a, Mathematik, Astronomie,Physik, Meteorologie und Mechanik (Wiener Akademie, Wien), 133(1), 421-444.

Njȧstad, O. (1965). On some classes of nearly open sets. Pacific J. Math., 15(3), 961-970.

Sabah, A., Khan, M. u., & Kočinac, L. D. (2016). Covering properties defined by semi-open sets. J. Nonlinear Sci. Appl., 9(6), 4388-4398.

Sarsak, M. S. (2013). On μ-compact sets in μ-spaces. Quest. Ans. Gen. Topol, 31(1), 49-57.

Scheepers, M. (1996). Combinatorics of open covers I: Ramsey theory. Topology Appl., 69(1), 31-62.

Thomas , J., & John, S. J. (2012). μ-compactness in generalized topological spaces. J. Adv. Stud. Topol., 3(3), 18-22.

Tyagi , B. K., Singh, S., & Bhardwaj, M. (2021). Covering properties defined by preopen sets. Asian-Eur. J. Math., 14(3), 2150035.

Downloads

Published

2025-05-28

Issue

Section

Articles

How to Cite

On Menger Spaces in Generalized Topology. (2025). Al-Mukhtar Journal of Basic Sciences, 22(1), 85-91. https://doi.org/10.54172/1cg6wn36