On Menger Spaces in Generalized Topology
DOI:
https://doi.org/10.54172/1cg6wn36Keywords:
Generalized topological space, λ-Menger space, λ-uniform spaceAbstract
We introduce new types of covering properties in generalized topology, namely; -Menger and -uniformly Menger spaces, and investigate their fundamental properties. To achieve this, we replace open sets in the definition of the standard Manger spaces with -open sets of generalized topological spaces. The results show that the -Menger property is stronger than the Menger property. Additionally, -Menger spaces are preserved when forming subspaces and countable unions. We also characterize -uniformly Menger spaces and study their relationship with -Menger spaces. Examples are given to further illustrate our results.
References
Abd El-Monsef, M. E., El-Deeb , S. N., & Mahmoud, R. A. (1983). β-open sets and β-continuous mappings. Bull. Fac. Sci. Assiut Univ., 12(1), 77-90.
Bashier, A. K. (2022). Generalized homotopy in generalized topological spaces. The Libyan Journal of Science, 25(1), 25-28.
Csàszàr, A. (2002). Generalized topology, generalized continuity. Acta Math. Hungar., 96(4), 351-357.
Csàszàr, A. (2007). Normal generalized topologies. Acta Math. Hungar., 115(4), 309-313.
Dey, D., Mandal, D., & Mukherjee, M. N. (2022). Uniformity on generalized topological spaces. Arab J. Math. Sci., 28(2), 184-190.
Engelking, R. (1989). General Topology (2nd ed.). Berlin: Heldermann Verlag.
Gupta, A., & Sarma, R. D. (2015). Function space topologies for generalized topological spaces. Journal of Advanced Research in Pure Mathematics, 7(4), 103-112.
Kočinac, L. D. (2003). Selection principles in uniform spaces. Note Mat., 22(2), 127-139.
Kočinac, L. D. (2019). Generalized open sets and selection properties. Filomat, 33(5), 1485-1493.
Kočinac, L. D. (2020). Variations of classical selection principles: An overview. Quaest. Math., 43(8), 1121–1153.
Kule, M. (2022). β-Menger and β-Hurewicz spaces. Hacet. J. Math. Stat., 51(1), 1-7.
Levine, N. (1963). Semi-open sets and semi-continuity in topological spaces. Amer. Math. Monthly, 70(1), 36-41.
Makai, E., Peyghan , E., & Samadi, B. (2016). Weak and strong structures and the T 3.5 property for generalized topological spaces. Acta Math. Hungar., 150(1), 1-35.
Mashhour, A. S., Abd El-Monsef, M. E., & El-Deeb, S. N. (1982). On precontinuous and week precontinuous mappings. Proc. Math. Phys. Soc. Egypt, 53, 47-53.
Menger, K. (1924). Einige überdeckungssätze der punktmengenlehre. Stzungsberischte Abt. 3a, Mathematik, Astronomie,Physik, Meteorologie und Mechanik (Wiener Akademie, Wien), 133(1), 421-444.
Njȧstad, O. (1965). On some classes of nearly open sets. Pacific J. Math., 15(3), 961-970.
Sabah, A., Khan, M. u., & Kočinac, L. D. (2016). Covering properties defined by semi-open sets. J. Nonlinear Sci. Appl., 9(6), 4388-4398.
Sarsak, M. S. (2013). On μ-compact sets in μ-spaces. Quest. Ans. Gen. Topol, 31(1), 49-57.
Scheepers, M. (1996). Combinatorics of open covers I: Ramsey theory. Topology Appl., 69(1), 31-62.
Thomas , J., & John, S. J. (2012). μ-compactness in generalized topological spaces. J. Adv. Stud. Topol., 3(3), 18-22.
Tyagi , B. K., Singh, S., & Bhardwaj, M. (2021). Covering properties defined by preopen sets. Asian-Eur. J. Math., 14(3), 2150035.
Downloads
Published
Issue
Section
License
Copyright (c) 2024 Assakta K. Bashier (Author)

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Copyright of the articles Published by Al-Mukhtar Journal of Basic Sciences (MJBS) is retained by the author(s), who grant MJBS a license to publish the article. Authors also grant any third party the right to use the article freely as long as its integrity is maintained and its original authors and cite MJSc as the original publisher. Also, they accept the article remains published by the MJBS website (except in the occasion of a retraction of the article).



