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 Abstract 

The main contribution of the current paper is to provide symbolic 
regression-based correlations for the wall correction factor of a 
sphere settling in a static fluid confined in an infinitely long circular 
cylinder.  The first correlation will be valid for the entire spectrum of 
the flow regimes that range from the creeping flow regime up to the 
turbulent flow regime. While the second correlation is compact and 
only valid in the creeping flow regime, it accurately reassembles 
Haberman and Sayre's complicated analytical formula (David Taylor 
Model Basin Report No. 1143, Washington, D. C, US Navy Dept, 
1958). A review of the available data and correlations is made to 
justify the selection of the data used in generating the correlation. 
This is followed by feeding a representative data to a symbolic 
regression software, selecting a dependency of the parameter of 
interest, running the software and selecting a correlation that has a 
relatively small length with good accuracy among the resulting 
suggested formulas. We used a small volume of training data from 
experiments to feed the symbolic regression machine-learning 
algorithm. The developed formula compared reasonably well with the 
available data and can extrapolate beyond its training data range. For 
the correlation limited for the creeping flow regime, the training data 
was obtained by solving a set of equations that constitute the 
Haberman and Sayre analytical formula. The obtained expression 
compared well when compared to the exact solution. 

Keywords: Wall effect; Machine learning; Symbolic regression; 
Sphere settling in a circular cylinder. 

INTRODUCTION 

Analytical and experimental investigation of the motion of a moving sphere through otherwise 
quiescent fluid has been the subject of intensive research (Stokes 1851, Oseen 1910, Jones 1957, 
Satapathi 1960). Due to the sizable containers and tubes used, the experimental measurements 
are inevitably affected with the presence of a confining wall in many cases in which unbound 
fluid is assumed. When studying the drag on sphere in the presence of a confining wall it is 
found that the recirculatory wake formation is retarded along with the onset of separation (Clift, 
Grace et al. 1978). The fall velocity of a rigid sphere is retarded by the presence of confining 
walls as compared to the fall velocity at identical conditions in an unbound fluid (Chhabra 2006). 
The former observation is a consequence of the increase in the drag force felt by the falling 
sphere. Brown and Lawler (Brown and Lawler 2003) performed a detailed review of existing 
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experimental data on the drag force on rigid spheres, excluding data with large uncertainty. They 
applied a wall correction factor to some of the data and were able to confirm the theoretical 
solution of Stokes drag in the creeping flow regime.  

There are three different definitions of the wall correction  factor (Clift, Grace et al. 1978) the 
least common one of them is the ratio of a hypothetical viscosity to the actual viscosity of the 
fluid. The hypothetical viscosity assumes Stokes flow and uses the observed terminal viscosity. 
The former definition is found convenient to use in falling ball viscometry (Clift, Grace et al. 
1978, Singh, Sharma et al. 2012). The second definition is the ratio of the drag coefficient of a 
single settling sphere in bounded fluid to the drag coefficient in infinite medium at identical 
conditions. The third wall correction factor definition is the ratio of the terminal velocity at 
bounded fluid to the terminal velocity of the same particle at unbounded fluid. The three wall 
correction coefficients are the same at low Reynolds numbers (creeping flow)(Clift, Grace et al. 
1978). As compared to the other two definitions, the velocity ratio is more extensively studied 
because it is a simpler and more convenient parameter to look at [12]. Most of the experimental 
literature is focused towards the velocity correction factor (e.g. (Fidleris and Whitmore 1961, 
Uhlherr and Chhabra 1995, Kehlenbeck and Felice 1999)). So the current paper considers 
seeking a correlation for the velocity correction factor. Theoretically derived formulas for wall 
correction factor at the creeping regime are only a function of the ratio of the diameter of the 
sphere to the diameter of the cylinder (λ=d/D).  

In the creeping flow regime there exist a number of experimentally and theoretically developed 
formulas which vary significantly as the diameter ratio increases as indicated by Iwaoka and Ishii 
(IWAOKA and ISHII 1979). Nevertheless, the limit at which the viscous regime ends is not 
quite obvious (Haberman and Sayre 1958, Clift, Grace et al. 1978, Chhabra, Agarwal et al. 2003) 
and may not extend to measureable/practical values. It is accepted that there will be dependency 
on Reynolds number beyond the creeping flow regime (Oseen 1910). It worth noting that 
Reynolds number used in the formulas is based on the diameter of the sphere and the terminal 
velocity of the sphere at unbound fluid conditions rather than the existing terminal velocity when 
bounding wall exists. Fidleris and Whitmore (Fidleris and Whitmore 1961) and later Uhleherr 
and Chhabra (Uhlherr and Chhabra 1995) presented their correction factor in graphical format 
which is not practical to use. Based on computational experiments Wham et al. (Wham, Basaran 
et al. 1996) developed a drag correction factor formula that is applicable for Re ≤ 200 and 
diameter ratios of λ ≤ 0.7. The suggested model recovers the theoretical solution of Heaberman 
and Sayre as Re gets smaller. Chhabra et al. (Chhabra, Agarwal et al. 2003) rewrote the Wham’s 
formula in terms of a velocity coefficient formula, but the resulting formulation is implicit and 
not practical to use. Di Felice (Di Felice, Gibilaro et al. 1995) and later Kehlenbeck and De Flice 
(Kehlenbeck and Felice 1999) proposed alternative empirical correlations for the intermediate 
regime, with the latter being more complex and more accurate (Chhabra, Agarwal et al. 2003).  

At the fully turbulent regime many researchers suggest that the correction factor becomes again 
independent of Reynolds number. Uhleherr and Chbbrah suggest that the wall correction factor 
becomes independent of Re as Re exceeds 1000 (Uhlherr and Chhabra 1995). Similar to the 
creeping flow regime, Many formulas are derived for the high Reynolds number regime and they 
show notable differences (Uhlherr and Chhabra 1995). In fact some of the correlations are based 
on very limited data points (<10 data points) (Uhlherr and Chhabra 1995).  
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In general the wall correction factor is higher in the viscous regime than at higher Reynolds 
numbers. Chhabra et al. (Chhabra, Agarwal et al. 2003) suggests that “It is generally agreed that 
the wall factor is independent of the Reynolds number both at very low and at very high values of 
the Reynolds number, while in between these two limiting behaviors, the wall factor is a function 
of both λ and Re in the intermediate transition regime”.  

There are various correlations describing the wall effect, but they are scattered and inconsistent 
(IWAOKA and ISHII 1979, Chhabra, Agarwal et al. 2003). There is an opportunity to develop a 
new correlation using symbolic regression machine learning method. We propose that a generic 
function should depend on the diameter to wall ratio and the Reynolds number. This function can 
be developed in a similar way to the methods described in (Barati, Neyshabouri et al. 2014, El 
Hasadi and Padding 2019, El Hasadi and Padding 2023).  Barati et al. (Barati, Neyshabouri et al. 
2014) used symbolic regression to closely match almost all experimental data for the drag 
coefficient of a sphere for case of unbounded sphere. While, El Hasadi and Padding (El Hasadi 
and Padding 2023) used symbolic regression to investigate the underlying physics of the same 
problem. Li et al. (Li, Zhang et al. 2014), generated a generic formula of the wall correction 
factor for particles with different shapes settling in a cylindrical container filled with different 
medias (Newtonian and various non-Newtonian fluids) using artificial intelligence. The total 
number of experiments used to generate the generic formula was 513. Li et al. also worked on 
generating a wall correction factor of a sphere settling in a Newtonian fluid using a subset of 
their collected data. The generic model had only 55.5% of the data within 5% of uncertainty and 
86% within 15% of uncertainty. The sphere in Newtonian fluid wall correction formula was 
found to have 99.4 % of the data within 5% of uncertainty. Although the sphere in a Newtonian 
fluid wall correction correlation is -thus- quite promising, no explicit formula is provided in the 
paper possibly because of the complicated form.  

The main objectives of this paper are as follows: 
• We aim to develop a generic correlation that depends on both λ and Reynolds number and 

covers all flow regimes. The selection of the data used to train the symbolic regression 
algorithm is described in the next section. 

• We aim to find a simpler formula that accurately represents the exact solution of the problem 
in the viscous flow regime. 

In the next section, we review the most common expressions in all flow regimes, with emphasis 
of available correlations in the intermediate regime. This is followed by a comparison of 
experimental data in the intermediate flow regime to each other, as well as to existing 
correlations. In the results section, we provide an evaluation of the performance of the generated 
correlation. The results section also includes a brief overview of the method we used to 
reproduce the exact solution of Haberman and Sayre, which we used to generate data for our 
symbolic regression machine learning algorithm. 

MATERIALS AND METHODS 

Recent reviews of the existing correlations that have been developed to estimate the drag 
coefficient can be found in (Chhabra, Agarwal et al. 2003, Arsenijević, Grbavčić et al. 2010, 
Singh, Sharma et al. 2012). Based on their extensive review of the bulk of the experimental work 
on the wall effect and its range of applicability, Chhabra et al. (Chhabra, Agarwal et al. 2003) 
recommended the use of the Haberman and Sayre equation (Haberman and Sayre 1958) in the 
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viscous regime, the Di Felice equation (Di Felice 1996) for the intermediate regime, and the 
Newton equation (Barr 1931) for the turbulent regime. The aforementioned equations, which 
describe each flow regime, are listed below. This is followed by a review of all previous efforts 
to correlate the wall correction factor in the intermediate regime Haberman and Sayre tabulated 
values of their –theoretically derived- analytical solution for λ values ranging from 0 - 0.8 with 
an increment of 0.1. Moreover, they provided an approximate solution which takes the following 
form: 
 

𝐾𝑣 = 1−0.75857𝜆5

1−2.105𝜆+2.0865𝜆3−1.7068𝜆5+0.72603𝜆6
  (1) 

 
Which is close enough to their exact analysis for up to λ =0.5.  Numerical   investigation by 
Bowen and Sharif (Bowen and Sharif 1994) found that the above formula to agree with 
numerical experiments data for up to λ =0.8 while Wham et al. (Wham, Basaran et al. 1996) 
found the agreement with the expression to extend for up to λ =0.5. Simulations performed by 
Tullock et al. (Tullock, Phan Thien et al. 1992) and Higdon and Muldowney (Higdon and 
Muldowney 1995) almost matched the exact analysis of Haberman and Sayre for up to λ=0.8. 

Differences between Haberman and Sayre’s expression with earlier analysis made by Ladenburg 
(Ladenburg 1907), and Faxen  are almost identical. The superiority of HS solution comes from 
the wider applicability limits which extends much further than previous analysis (Haberman and 
Sayre 1958, Clift, Grace et al. 1978). The formula applicability limit also exceeds the theoretical 
analysis of Bohlin (Bohlin 1960) whom extended the original analysis of Faxen to formulate a 
more accurate expression for the wall correction factor (Bohlin 1960, Happel, Brenner et al. 
1983). 
Newton developed a semi-empirical formula (Barr 1931, Chandrasekhar 2003) for the fully 
turbulent flow regime can be expressed as:  
 

𝐾𝑣 = (1 − 𝜆2)(1− 0.5𝜆2)0.5   (2) 
 

However, Bougas and Stamatoudis (Bougas and Stamatoudis 1993) investigation of the transient 
behavior of settling spheres at high Reynolds number found Munore’s (Munroe 1889) formula to 
have better agreement as compared to other proposed correlations. Monroe’s formula takes the 
form: 

𝐾𝑣 = (1 − 𝜆)3 2⁄     (3) 
 

Bougas and Stamatoudis (Bougas and Stamatoudis 1993) applied Munore’s (Munroe 1889) 
formula to their experimental work range (0.11 ≤ λ ≤ 0.83) and found  a good agreement with the 
for values of λ  up to 0.7 and Reynolds numbers ranging between 13500 - 70000. 
 
Data and Correlations at Intermediate Regime 
While many correlations exist in creeping flow and turbulent flow regimes, there is, however, a 
very limited attempts to find a correlation that covers the intermediate regime. Fidleres and 
Whitemore (Fidleris and Whitmore 1959, Fidleris and Whitmore 1961) pioneered the efforts to 
develop a correlation of the wall correction factor at intermediate regime as early as of late 50s 
of the last century but provided their results in graphical format. Their experimental data 
includes about 3000 experiments that covers a regime of Re ranging from 0.054 to 20000. 
Uhleherr and Chhabra (Uhlherr and Chhabra 1995) performed more than 220 experiments that 
covers almost the same Re range as of Fidleris and Whitmore. Their experimental results were 
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summarized in a graphical format and was found to be systematically higher than Fidleris and 
Whitmore but they are within the experimental uncertainty. The deviation with other correlations 
ranged between good agreement and up to 70% difference with no clear trend of the discrepancy. 
De Flice (Di Felice 1996) provided a correlation that has Re dependency and later Kehlenbeck 
and Di Flice  (Kehlenbeck and Felice 1999) improved the  correlation of De Flice (Di Felice 
1996) in which two fitting parameters are introduced and estimated from the available 
experimental data from the literature along with their own experimental measurements. The 
improved correlation includes the use of two fitting parameters and can be summarized as 
follows: 
 

𝐾𝑣 = 1−𝜆𝑝

1−(𝜆 𝜆𝑜⁄ )𝑝     (4) 
 

Where the first fitting (λo) parameter is found to have the following Re dependency 
 

𝜆𝑜−0.283
1.2−𝜆𝑜

= 0.041𝑅𝑒 
0.524   (5) 

 

And the second fitting parameter (p) has the following Re dependencies 
 

𝑝 = 1.44 + 0.5466𝑅𝑒 
0.434,𝑅𝑒 ≤ 35           (6a) 

𝑝 = 2.4 + 37.3𝑅𝑒 
−0.8685,𝑅𝑒 ≥ 35          (6b) 

Figure 1 presents the change of both fitting coefficients as Re changes (Eqs. (5 and 6)). Neither a 
physical interpretation of both coefficients was provided nor the significance of the assumed 
threshold of Re=35 was discussed in the paper. Although an alternative model in which an 
average value of p=2.2 was provided along with an optimized dependency of Re, the original 
model presented above agrees better with the experiments and will only be considered in the 
current work.  

 

Figure (1). Graphical representation of fitting parameters used in Di Flice & Kehlenbeck correlation (Eqs. (5&6)) 
 
Figure 2 show the variation of the inverse of the velocity correction factor (Kv-1) at different Re 
values. The solid lines are extracted from of Fidleris and Whitmore (FW) data along mapped 
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with both Uhleherr and Chhabrah (UC) graphical results and Kehlenbeck and Di Flice (KD) 
correlation. The lines of Fidleris and Whitmore (solid) along Kehlenbeck and Di Flice 
correlation (dash-dot) with are –from top to bottom - at λ values of 0.05, 0.1, 0.2, 0.3, 0.4, 0.5 
and 0.6 While those of Uhleherr and Chhabrah (dashed lines) are at λ values of 0.2-0.5 at an 
increment of 0.1. Both Haberman and Sayre “exact solution” (HS) and Newton’s formula are 
shown as limiting cases as diamonds and triangles respectively. The creeping flow limit was 
assigned to a Reynolds number of 0.004 whereas the turbulent flow limit of Newton is assumed 
at a Reynolds number of 20000. 

Interestingly the graphical representation from Uhleherr and Chhabra are only qualitatively 
similar to those of Fidleris and Whitmore. Although FW data is made at about the same time as 
the theoretical solution of Haberman and Sayre they show very good agreement at low Reynolds 
number. The agreement is also good at the fully turbulent regime limit when assuming Newton’s 
formula to be applicable at Reynolds number of 20000. Fidleris and Whitmore (Fidleris and 
Whitmore 1961) stated that “Newton’s equation increases in reliability when the highest 
Reynolds numbers reached in the experiments, which were about 10000, are approached”.  

 
 
Figure (2). Graphical representation of data and correlations at intermediate regimes along with limiting formulas at 

creeping (Haberman & Sayre) and fully turbulent (Newton) regimes 
 
Although the graphical representation of Fidleris and Whitmore show Re values of ~0.002 or so 
the smallest Re reported in the experiment is 0.054 so we suggest that F&W has extrapolated 
their plots a somewhat outside their experimental region. They assumed no further change with 
Reynolds number when extending their lines, however, by doing so there is a mismatch with the 
exact solution at most of the data points. On the other hand, Newton’s formula agrees with the 
obtained trends at Re ~20000. If the trends would continue for another order of magnitude, 
chances are that even Newton’s formula will lose its accuracy. In their investigation, Chhabra et 
al. (Chhabra, Agarwal et al. 2003) found the previously published data of (Uhlherr and Chhabra 
1995) not to correlate well with the available empirical formulas at the intermediate flow regime. 
The justification was about the influence of non-verticality of the cylinder. Besides uncertainties 
that come from measurement of the different parameters, we suggest other experimental reasons 
such as sphericity, eccentricity between the sphere center and the cylinder center, estimating the 



Al-Mukhtar Journal of Engineering Research 08 (1): 11-26, 2024                                                         page   17of 16 

 

terminal velocity would contribute to the error in the experimental data. If –for some reason- the 
sphere starts to rotate them the error would be exaggerated  

Kehlenbeck and Di Felice (Kehlenbeck and Felice 1999) formula agrees with Newton’s formula 
of the fully turbulent flow regime. However, the agreement with Haberman and Sayre is not 
guaranteed for all values of λ. This can be noticed at λ values of 0.6 where the prediction stalls at 
a higher value of 𝐾𝑣−1 (thus under predicts the wall correction factor) and goes below the 
Haberman and Sayre solution of 𝐾𝑣−1 (over predicting) for λ value of 0.3 and less. The hump at 
Re=35 at λ values of 0.3 and 0.2 are an artifact of the behavior of the parameter p as shown in 
Figure 1. 

Care should be taken when considering the data to be fed to the software since some of the data 
may has higher uncertainties when the diameter ratio goes to 0.9 (Chhabra, Agarwal et al. 2003). 
The data from Uhleherr and Chhabra (Uhlherr and Chhabra 1995) should thus not be considered 
due to the possible high uncertainty involved in it. The experimental data of Fidleris and 
Whitemore (Fidleris and Whitmore 1961) is to be used by itself to develop the correlation. In 
spite of some mismatch with the exact solution of Heaberman and Sayre at some λ values, the 
correlation of Kehlenbeck and Di Felice (Kehlenbeck and Felice 1999) has reasonably good 
agreement with Fidleris and Whimore  (Fidleris and Whitmore 1961) data. Generating a data 
from Kehlenbeck and Di Felice is not an option to avoid confusing the process by inclusion of 
different sources of error. Data from numerical simulations which does not cover a wide range of 
flow regime (e.g., [10, 11]) are also excluded. 

Analysis software 
The regression is to be carried-out using the Demo version of TuringBot symbolic regression 
software. The Demo version limits the number of data points to 50 and the number of columns to 
three (so that a variable can only be a function of other two parameters). The software lists a 
number of possible fitting functions (starting from a bare average) and provide their accuracy 
based on selected parameters (the default is the rms value of the target parameter). The software 
keeps refining –sometimes replacing- the existing formulas and producing more accurate 
functions until the user decides to stop it. The software allows for shuffling the data and selecting 
the Test/Train ratios. TuringBot interface allows for visualization of the different suggested 
solutions and how they fit the original data. 
 
RESULTS 
 
Here we present the regression formula obtained by the software and how it compares to the fed 
data and how it extrapolates outside the test/train regime. First, we seek a generic formula that 
properly describes the wall correction factor for viscous, inertia and extends to fully turbulent 
regime. Our goal is to find a functional dependency of the form Kv=φ(Re, λ). In the second 
section we will obtain a simple formula that is valid for the creeping flow regime using the 
training data from Haberman and Sayre’s exact solution HS=f(λ). 
 

Generic Formula 
In this part we seek a regression formula based on the graphical representation provided by 
Fidleris and Witmore (Fidleris and Whitmore 1961) and compare it with other available 
published data. Fidleris and Whitmore tabulated a small set of data (31 data points for Re of 0.1, 
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100, 1000, 3000, 10000) so we added some points from Kehlenbeck and De Flice at Re=10. 
Although the data is yet a small set we suggest that having the same systematic error –if any- 
would be more advantageous than using larger sets of different types of uncertainties. Fidleris 
and Whitemore provided their data for up to λ=0.6 thus there is a chance to judge correlations 
based on how they extrapolate when λ approaches 1 (𝐾𝑣−1 should go to zero). 
Among many formulas generated by the software we select the following Equation 
 

𝐾𝑣−1 = (1 − 𝜆)
1.3873

0.7088+∅+1.1167𝜆           (7a) 
where: 

∅ = �−0.0542 +
0.052
𝜆

� × (−0.2726 + 𝑅𝑒) 
is selected because simpler equations are not so accurate and more complicated functions are not 
encouraging for use because of their length and complexity. Eq. (7a) was obtained when all the 
data was used in the training with no data used in testing. This is because the sample of data 
point is limited especially when considering three parameters. Other functions were found to 
extrapolate poorly outside the training regime. As λ →1 (λ>0.95) Eq. (7a) has a singularity 
around Reynolds number of 1000 and was found to under-predict the correction factor at very 
low Reynolds numbers (Re → 0). Eq. (7a) has a good prediction for up to λ ~0.9 and may 
benefit from some refinement. By heuristic rounding of the coefficients of Eq. (7a) a modified 
version which gives almost the same prediction can be written as: 
 

𝐾𝑣−1 = (1 − 𝜆)
1.4042

0.7071+𝑓+1.1167𝜆           (7b) 
 

where 

𝑓 = �−0.053 + �
0.053
𝜆

�� × 𝑅𝑒 

Figure 3 provides a comparison between the graphical representations of FW data with the 
current predictions of the current correlations (Eqs. (7a & 7b)). The mismatch between the data 
which was used and the digitized plot of FW data is because Fidleris and Whitmore’s data is 
averaged between two different plots of Kv and Kv

-1. We recommend not following the same 
strategy when looking at FW data but excluding the figure that show Kv since it uses a 
logarithmic axis and will be more sensitive to inaccuracies when extracting the data. In fact 
Brown and Lawler (Brown and Lawler 2003)  followed the same recommended strategy when 
correcting the drag on sphere data. In addition to that the HS exact solution is plotted (assumed at 
Re=0.004) as solid diamonds, and Newton solution at Re=20000 as solid triangles. Both HS and 
Newton solution are shown at λ values of 0.1-0.6 (color code is the same as in Figure 2). As can 
be noted from Figure 3, a quite good agreement is obtained in the tested regime (λ up to 0.6). If 
there are any pitfalls, they would be that it misses Newton’s formula at Re of 20000 at λ=0.6 and 
λ=0.5. The function fails to show the Re dependencies which are there is the experiment at 
Re>1000. Also, the exact solution at λ =0.1 is also missed at very low Re but agrees with the 
graphical presentation of Fidleris and Whitemore which is used in the training process. In spite 
of the very careful set up of the experiment and the low uncertainty reported by Fileris and 
Whitemore (Fidleris and Whitmore 1959) we suggest that there is an error involved in the 
experimental results at this λ value. 
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Figure (3). Agreement between the graphical representation of FW data along with limiting formulas at creeping 

(HS) and fully turbulent (Newton) regimes with (a) Eq. (7a) (b) Eq. (7b) 
 

The only notable differences between Eqs. (7a) and (7b) are at low diameter ratios (λ ≤ 0.1). In 
fact while the creeping flow limit of the inverse of the correction factor have been missed by 
both FW data and Eq. (7a), Eq. (7b) seem to be converging  to the desired values as Re further 
reduced. The predictions of both Eqs. (7a) and (7b) are almost indistinguishable and only Eq. 
(7b) will be considered in further comparisons. Figure 4 provides a comparison of the predict-
tions of Eq. (7b) at λ value outside the training regime (λ>0.6). Eqn. (7b) gives reasonably good 
agreement as it goes to zero. The data diverts from Newton’s formula. The deviation from 
Newtons’ formula is because the experimental data used in generating the formula seemingly 
departs from Newton’s formula as λ extrapolates beyond λ=0.6. Further increase of Re beyond 
10000 doesn’t show a notable change in the predictions. 

 

Figure (4). Predictions of Eq. (7b) at different diameter ratios. 
 
So when excluding Reynolds numbers the only seen λ-terms that may appear in the exact 
solution–based on Eq. (7b) – would have the form of λ and (1- λ). At very low Reynolds 
numbers equation (7b) can be approximated as: 

𝐾𝑣−1 = (1 − 𝜆)2.147+1.1167𝜆             (8) 
 

The other limiting behavior at very high Reynolds numbers is given by the current formula: 
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𝐾𝑣−1 = (1 − 𝜆)1.1167𝜆             (9) 
 

A comparison of Eq. (8) with both Newton and Monrue’s formulas (inverse of Eqs. 2 & 3 
respectively) is provided in Figure 5. As can be seen Monure’s predections are lower than 
predicted by Newton’s formula since they might be based on experimental work that is possibly 
at higher Reynolds numbers than those of Newton. The current correlation is in better agreement 
with Newton’s formula for up to λ=0.5 where it approaches Monrue’s formula for up to λ=0.7. 
Beyond λ=0.8 both Newton and Monrue’s predictions are about the same and both predicting a 
lower resistance by the wall than the current formula. 

 
Figure (5). Comparison of limiting behavior of Eq. (9) with Newton and Monroe’s formulas 

 
Alternate expression for the Haberman and Sayre’s exact solution 
The suggested way of getting an alternative formula to the exact formula of Haberman and Sayre 
(Haberman and Sayre 1958) is to generate a large number of data from the exact solution itself. 
This means we should be able to solve the complicated exact solution, generate a large amount 
of data then feed it to the machine learning software to come-up with a simple formula.  

Haberman and Sayre’s (Haberman and Sayre 1958) solution is based on solving the Stokes 
stream function of a steady incompressible axisymmetric fluid in both cylindrical and spherical 
coordinates. Boundary conditions are applied to both solutions and the solution constants are 
relationship between the constants are obtained by direct comparison of terms. A linear algebraic 
system of equation is then constructed to obtain the constants. For the motion of a rigid sphere in 
a stationary liquid, the resulting system takes the form: 
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Where R is the radius of the cylinder and the parameters S are integrals of combinations of 

modified Bessel functions of zeroth, first and second order. The reader is referred to the original 
report for detailed analysis and description of the solution technique. The constants an and bn 
constitute the solution vector and can be solved to a higher degree of accuracy by increasing the 
number of solved equations “n”. Since two equations are solved simultaneously, n takes an even 
number (typically multiples of 2).  
The parameter α in Eq. (7a) can be defined as follows: 
 

𝛼 = �−𝑈 𝑛 = 2
0 𝑛 > 2            (11) 

 

In fact, only b0 is of interest in solving the wall correction factor. It can be shown that [17]:  
 

𝐾𝑣 = −2
3

𝑏0
𝑈𝑅

             (12) 
 

Similar to many exact solutions the analysis yielded some infinite series and the selection of 
number of terms (truncation) would affect the accuracy of the solution. The process of 
determination of bo is described by Haberman and Sayre as: 
“Wall correction factors for rigid spheres moving in a still liquid inside an infinitely long 
cylinder have been determined by numerically solving the algebraic system (Equation [10]) for 
the coefficient bo over a large range of diameter ratios. The number of equations of the algebraic 
system used was increased (at most up to eight) until only very small changes in the value of bo 
were obtained”. 

A computer program was developed to numerically compute the integrals S2, S4 and S3 and 
construct the system of linear equations. The linear system is then solved using the buit-in 
Octave function (Octave 4.4.1 version is used) which produced the solution. The computed 
values of b0 are then used to calculate the wall correction factor as defined by Eq. (9). Table (1) 
lists a comparison of the reported values of the exact and approximate solution along with the 
values of the obtained results at different system sizes. The 2x2 system in the above equation 
should recover the approximate solution which –physically- represents a situation where a slip 
boundary condition is imposed at the cylinder. The length of the system used to obtain the exact 
solution is 8x8 as per Haberman and Sayre reported. 
“The number of equations of the algebraic system used was increased (at most up to eight) until 

only very small changes in the value of bo were Obtained.” 
A comparison of the results of the different systems is provided in Table (1) below 
 
The second columns in Table (1) is borrowed from Haberman and Sayre report while the third 
column is generated using Eq. (1). Typically, there should be no difference between the third, 
fourth columns as well as the second and sixth columns and the existing differences are because 
of numerical differences in evaluating the integrals of S (although not shown these differences 
are not significant- ranging between 0.01% -0.5%) and because of how truncation error grow 
when solving the linear system. The built-in linear system solver is designed to find the efficient 
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method of solving a linear system and perform necessary operations such as scaling. In fact a 
16x16 system had poor results at λ value > 0.5, this is because the values of S grows 
dramatically as n increases affecting the condition number of the matrix to values that could not 
be fixed by the linear solver. The solver is capable of getting a solution at lower λ values is 
because the integrals S is multiplied by powers of λ than alleviate this issue at small λ values. 
The difference between the solution of the 8x8 system is comparable to the exact solution with a 
maximum discrepancy of 1.5% at λ=0.8. 

Table (1). Comparison of the numerical solution at different system sizes with HS solution 

λ 
Exact 
HS 

App. 
(Eq. 1) 2x2 4x4 8x8 %diff with 

Exact 
0 1.000 1 1 1 1 0 

0.1 1.236 1.2633 1.2632 1.2632 1.2632 0.02 
0.2 1.680 1.6797 1.6794 1.6795 1.6795 -0.03 
0.3 2.371 2.3697 2.3687 2.3700 2.3701 -0.04 
0.4 3.596 3.5816 3.579 3.5913 3.5914 0.63 
0.5 5.970 5.8700 5.8596 5.9467 5.9474 -0.38 
0.6 11.135 10.593 10.55 11.082 11.092 -0.39 
0.7 24.955 21.425 21.215 24.519 24.676 -1.12 
0.8 73.555 49.023 47.711 71.387 74.648 1.49 
0.9 NA 121.27 111.83 323.74 460.95 NA 

 
41 data points were fed to the software ranging between 0-0.8 with a uniform increment of 0.02. 
Complicated formulas are excluded since we are seeking a simple expression. By assuming 
Kv=f(λ,(1−λ) ) and using test/train ratio of 50-50, the following function is selected: 
 
 

𝐾𝑣 = (1 − 𝜆)−2.68945 − (𝜆 + 0.4967)𝜆     (13a) 
 

Which can be further simplified as: 
 

𝐾𝑣 = (1 − 𝜆)−2.69 − (𝜆 + 0.5)𝜆        (13b) 
 
 

 

Figure (5). Comparison with Eq. (13a) along with HS exact and approximate analysis 

Differences between Eqs. 13a and 13b are graphically indistinguishable. The agreement with the 
report exact solution from Haberman and Sayre’s report along with the agreement with the 8x8 
system result is listed in the Table (2). 
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Although a difference of ~ 6% can be seen at λ=0.9, we suggest that the behavior of the formula 
is acceptable and could be more realistic than the theoretical analysis which –to some extent- has 
numerical fingerprints. The formula has a singularity at λ =1 which is physically indicates that 
the sphere would cease its motion for infinitely long time if the sphere diameter is the same as 
the cylinder diameter. Such phenomena can be noticed in the falling ball viscometer for viscous 
liquids when λ approaches one. Indeed, the current expression agrees better with the exact 
solution reported by Haberman and Sayre than the limiting behavior of the generic function 
produced earlier (Eq. (8)).  

Table (2). Comparison of current expressions with data fed to the software and HS exact solution 

λ Exact 
HS 8×8 Eqn. 13a Diff % Eqn. 13b Diff % 

HS 8×8 HS 8×8 
0 1 1 1 0 0 1 0 0 

0.1 1.263 1.2632 1.2679 0.4 0.4 1.2677 0.4 0.4 
0.2 1.68 1.6795 1.6830 0.2 0.2 1.6826 0.2 0.2 
0.3 2.371 2.3701 2.3708 -0.0 0.0 2.3703 -0.0 0.0 
0.4 3.596 3.5914 3.5918 0.6 0.0 3.5916 0.6 0.0 
0.5 5.97 5.9474 5.9523 -0.3 0.1 5.9531 -0.3 0.1 
0.6 11.135 11.092 11.098 -0.3 0.1 11.101 -0.3 0.1 
0.7 24.955 24.676 24.646 -1.2 -0.1 24.660 -1.2 -0.1 
0.8 73.555 74.648 74.794 1.7 0.2 74.858 1.8 0.3 
0.9 -- 460.95 487.91 -- 5.9 488.52 -- 6.0 
1 -- 22098 NA -- NA NA -- NA 

 
CONCLUSIONS 
 
A machine-learning-based symbolic regression was used to generate a generic wall correction 
formula. The formula, based on data reported by Fidleris and Whitmore, captures the general 
trend of the data and has good agreement with intermediate and limiting behavior in both 
creeping flow and fully turbulent regimes.  

The generated formula (Eq. (7a)) was found applicable for λ values between 0.02 and 0.9 and 
Reynolds numbers up to 20000 whereas a slightly modified version (Eq. (7b)) is assumed 
applicable for almost the complete range of λ (0 ≤ λ ≤ 1) for the same Reynolds number. The 
exact solution of Haberman and Sayre was used to create a simple formula for the creeping flow 
regime, which was compared with the exact solution and found to be accurate up to λ =0.8. 
However, more data is needed at very high Reynolds numbers to confirm that the effect of Re 
diminishes as it approaches zero. Future work could include using more data from FW or 
running benchmark numerical simulations to improve the accuracy of the regression formula. 
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