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 Abstract 

The aim of this paper is to study experimentally and numerically the 

effects of vibration amplitude and frequency on the performance of 

granular systems, with a view to optimizing their use in reducing vibra-

tions typically experienced in machinery. Granular material systems are 

highly nonlinear systems and, as such, have multiple factors that will 

affect any experiment. This nature of granular material systems caused 

some discrepancies between experiment results and the simulations of 

mathematical models. However, the nonlinear aspect of particle damp-

ing restricted researching its theory, but the experiment research has 

largely surmounted that limitation. Experimental results suggested sev-

eral damping theories. Accordingly, the ability to reduce vibrations of 

particle dampers depends on several external and internal factors. The 

two external factors are excitation amplitude and its frequency, whereas 

the internal factors are related to the properties of the particles and the 

size of the container. Other internal factors relate to the mass ratio of 

total particles to the primary structure and particle placement. The ex-

perimental work included developing a computational single degree of 

freedom (SDOF) model to provide better understanding of the effect of 

shock vibration and work with the future experimental work.    

 Keywords: Damper, Vibration, Excitation, Frequency, beam. 

INTRODUCTION 

Particle dampers are devices that control vibration levels in structures. They function by 

an impact and friction damping together. The primary structure‟s energy is transferred to the 

particles inside the damper‟s casing that is attached to the vibrating system where it dissipated 

by being absorbed by the action of the contacts between the particles. The principal processes 

engaged in energy dissipating are: collisions, sliding friction and rolling friction with those pro-

cesses taking place between the particles and with the particles and the damper casing‟s walls. 

This type of damping can be optimized by adjusting the acceleration of the particles within the 

container [1]. At lower frequencies, the damping mechanism requires that the particles and the 

casing wall to be out-of-phase with one another resulting in comparatively empty container. 

Particle impact dampers originated from impact dampers and they are more efficient in reduc-

ing vibrations than them [2]. Another key mechanism operating inside particle dampers is asso-

ciated with the granular material‟s state of matter. For example, at high amplitude frequencies 

gas-like states occur whereas at lower frequencies solid and liquid-like states appear. In this 

damping mechanism, performance can be optimized by paying attention to the state of the par-

ticles in the container [3]. 
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Particle dampers are used in several industries to limit vibrations and noises.  The aero-

space industry led the way in using them, however; other industries such as automotive, medi-

cal and energy soon followed [4]. There are many particle dampers‟ applications in strengthen-

ing buildings against earthquake and in automotive gears to suppress vibrations in the rotary 

shaft of gear transmission. There are other uses in helicopter and aircraft mechanisms in rotor 

blades and landing gears, and in machine tools. Noise resulting from machine actions can also 

be reduced by impact dampers [5], however; at times the actions of the impact dampers can in-

crease it [2].  

The use of granular materials to reduce resonant vibrations in machinery and structures 

is increasing. They are attractive because they combine several different energy dissipation 

mechanisms, making them more versatile than traditional damping materials. This study sets 

out to understand and model the effects of vibration amplitude and frequency on the perfo r-

mance of granular systems, with a view to explaining and optimizing their use in reducing v i-

brations typically experienced in machinery. 

Numerical modelling will be used alongside laboratory experiments to investigate the ef-

fects on energy dissipation performance of features such as particle material, shape, and the ge-

ometry of a flexible–walled packet container. The experiments described in this study were de-

vised to give some introductory understanding of single particle damping. They were also in-

tended to identify key variables and to direct the design of future experiments.  The experiment 

was to investigate the damping performance of a single particle (viscoelastic sphere) placed 

within a cavity attached to a vibrating beam. First, the resonance of the beam plus empty damp-

er was considered and then the natural frequency and modal damping ratio for different ampl i-

tudes and damper gap settings are identified. 

Finally, the SDOF mathematical model is used to write a MATLAB code for a simula-

tion to estimates time domain response for a SDOF impact damper using measured parameters 

obtained and the numerical results are then compared with the single particle impact damper 

experimental results. 

MATERIALS AND METHODS 

This experiment Investigated the resonance of a beam with a single damper attached and 

identified the first natural frequency and modal damping ratio for different amplitudes. The ex-

perimental analysis is performed with the system shown in figure 1.  
 

 

Fig. 1 Impact damper experiment setup 
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Table (1): Description of individual components 

 

1 SigLab 4 signal analyser 

2 300W power amplifier 

3 PCB model 482A22 charge amplifier 

4 Particle damping enclosure (empty) 

5 PCB 353B18 accelerometer (Sensitivity 981 m/s
2
/V) 

6 PCB 208B01 force transducer (Sensitivity 8.99 N/V) 

7 Electromagnetic shaker (peak sine force capacity 100 N) 

8 Clamped steel beam 425L x 75W x 4D (mm) 

 

The test structure is a steel beam that is clamped at either end. The beam has a cross-

section that is approximately 75x4 mm and the free length between the clamps is approximately 

425 mm. A casing of the damper (of mass 266.6 grams) is attached to the beam using a threaded 

connector.  

 The system is excited by an electrodynamic shaker via a stinger rod. The force applied 

by the exciter is measured with a force transducer and the beam vibration is measured with an 

accelerometer. Signals from these transducers are recorded on a data acquisition system (Table 

1, Fig. 2). The test rig is adjusted such that the direction of shaking aligns with the direction of 

gravity. The vibration response is measured over a frequency range of around 10-1000 Hz using 

signals of varying magnitude and frequency content. The amplitude will be in the range 1 to 

1000 m/s
2
. 

 
 

Fig. (2) Signal flow diagram 

 

The impact damper‟s container as shown in Fig. 3 is similar to the damper used by 

Wong et al. [6].  It is constructed from a clear PMMA cylinder so the movement of the sphere 

can be noticed with a steel base. The container has a threaded top for gap size adjustment. A 

viscoelastic sphere(rubber) of mass 11.5 grams and diameter ≈ 25mm is placed in the container. 

Natural frequency (ωn) and damping ratio (ζ) measurements of the system were taken at 

gap sizes of 0 (lid firmly on top of sphere), 10, 15, 23 millimeters; and for random excitation 19 

values of acceleration with an increment of 0.1g at accelerations of 0.07 to 1.7 g and for sin-

ewave excitation 19 values of excitation acceleration with an increment of 0.1g from 0.05 to 5.0 
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g. 

For random excitation, the SigLab virtual network analyzer (vna) was used which pro-

vides links to network-based analysis tools for measuring frequency response functions. Infor-

mation was retrieved from (vna) data file, then the post process was done in the MATLAB se t-

ting using the SLm data structure using the MATLAB function frf_from_vna in  

 

Fig (3). Damper container with adjustable gap 

combination with the function from_frf to get the natural frequency and damping ratio 

from frf uses functions mobfit and mobfit_obj to curve fit. For sinewave excitation from the 

SigLab swept-sine analyzer (vss) was used for measuring the system‟s frequency response func-

tion. The data processing was done sing the MATLAB function frf_from_vss.  

As for the repeatability and uncertainty in the results, there is a major problem connect-

ed with random excitation is that signals will always experience leakage. This leakage error will 

cause a serious reduction of the quality of the measured frequency response function (frf), with 

a sizable error resulting, mainly at the resonant peaks of the system [7]. Leakage is also an issue 

for sinewave excitation. 

RESULTS AND DISCUSSION 

Vibrating beam’s natural frequency and modal damping ratio 

First, the resonance of a vibrating beam is investigated and the natural frequency and 

modal damping ratio (ζ) for different amplitudes are identified. There is a difference in the 

damping ratio (ζ) trend between the different excitations as the damping ratio for random exci-

tation is almost constant with the increasing amplitude whereas the damping ratio for sinewave 

excitation increases with the increasing amplitude (Fig. 4).  
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Fig. (4). The acceleration‟s (g) effect of on the damping ratio (ζ) for random and sinewave excitations 

 

The results of the natural frequency (ωn) for the different excitations are illustrated in 

fig. 5, where the beam response to random and sinewave excitation show the same trend.  

If there is a resistance to the vibrations when the system is undamped then the system 

undergoes frictional or other type of loss of kinetic energy which is damped with time. The en-

ergy loss within the structure itself is called structural (hysteresis) damping where in solids 

some of the energy involved is the repetitive internal deformation and restoration to the original 

shape is dissipated in the form of random vibrations of an intramolecular nature. Most likely 

this is friction damping at the joints since metals have a loss factor of less than 0.001 and the 

PMMA damper does not significantly deform in the 10-100 Hz range. 

 

 
Fig. (5) Comparison of the acceleration‟s (g) effect of on natural frequency (ωn) for random and sinewave 

excitations of a steel beam 

The effects of gap size of an impact damper under random and sinewave excitation 

When a continuous structure vibrates with a particular deflection shape, its motion can 

be represented by a SDOF system. The mass of this equivalent system is obtained using the 

equivalent kinetic energy. For slender uniform beams, the equations for normal vibration mode 

shapes are given in textbooks [8]. For these, they also show that for equal kinetic energy in both 

systems, 

 

    
where φ defines the shape of the deflection as a function of the distance along the beam 

and therefore, 
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At the end of a cantilever the fundamental vibration mode shape gives φ

2
 = 4, at the 

mid-point of a clamped-clamped beam φ
2
 = 2.52 and at the mid-point for a pinned-pinned beam 

φ
2
 = 1. 

The beam has a cross-section that is approximately 75x4 mm and the free length be-

tween the clamps is approximately 425 mm. 

The test structure is a steel beam that is clamped   V= (L) (H) (W) 

V = (0.425) (0.075) (0.004)  

    = 1.275 x 10
-4

 m
3
    

 (For steel) = 7900 kg/m
3 

The mass, m = (v) () 

                      = (1.275 x10
-4

 m
3
) (7900 kg/m

3
)

   

                                 
= 1.00725 kg

       

 At the mid-point of a clamped-clamped beam φ
2
 = 2.52  

 

 

                       = 
 
   

                       
The mass of sphere = 11.5 g  

The mass of empty container = 266.6 g 

So, The Total mass is:  

mt =11.5 + 266.6 +399.7  

     = 677.8 g 

First there is a discussion of random excitation results followed by the sinewave results. 

When the system is subjected to random excitation and for a gap size of 0 mm, even though the 

sphere does not have any space to move and this does not allow for significant interchange of 

momentum between the sphere and the container, the nature of random excitation high frequen-

cy causes the particle to have more movement. Therefore, it has dissipation of energy and the 

measured damping ratio is higher than 23 mm and 10 mm gaps (Fig. 6). As the gap size in-

creases, the particles are given more room to move and the damping ratio (ζ) reaches 0.04104 at 

acceleration amplitude 1.7g which occurs at an optimum gap size of 15 mm. If the gap size is 

increased further there will be fewer impacts since the particle does not acquire enough velocity 

to travel from bottom of the container to the top, on the average twice per “cycle” of the re-

sponse. Therefore, if the gap size is increased beyond the optimum, the damping decreases.  
 

 
Fig. (6). The effect of acceleration g (rms) on the different gaps of an impact damper‟s damping ratio ( ζ) under 

random wave excitation 
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The damping ratio at optimum gap size increases with increasing acceleration. Overall, 

the damping ratio of the beam was increased by over five times, demonstrating the effectiveness 

of the particle impact damper particularly at high amplitudes of excitation (Fig. 7). Experiments 

also revealed a shift in the resonance frequency of the system. This frequency shift is affected 

by both acceleration and gap size. Figure 8 shows that the resonance frequency decreases with 

increasing acceleration  

 

 

Fig. (7) Comparison of the acceleration g (rms) effect on the damping ratio (ζ) of an impact damper (with 

15mm gap) to that of an empty-case under random wave excitation 

 

 

Fig. (8) The effect of acceleration g (rms) on the different gaps of an impact damper‟s natural frequency 

(ωn) under random wave excitation 

 

for all gap sizes at different rates. This confirms that as the sphere has more space to 

move, it contacts the container less resulting in a lower mass effect and higher resonance fre-

quency. With the increase of acceleration, a higher mass effect is produced, which implies that 

the sphere has more contacts with the container. Overall, the natural frequency of 15 mm gap 

under random excitation is lower than that of the beam‟s natural frequency. 
 

The damping ratio (ζ) values of the system under sinewave excitation exhibits show al-

most the same trend with the different gaps as the random excitation with the exception that the 

effective damper‟s gap is 10 mm which is smaller than that determined by random excitation 

(Fig. 9). The damping ratio of this gap is more than three times higher than that of the empty-

case‟s damping (Fig. 10).  
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The natural frequency (ωn) of the system under sinewave excitation exhibits a different 

trend than that of  

 

Fig. (9) The effect of acceleration g (peak) on the different gaps of an impact damper‟s damping ratio ( ζ) 

under sinewave excitation 

 

Fig. (10) Comparison of the acceleration g (peak) effect on the damping ratio (ζ) of an impact damper 

(with 10mm gap) to that of an empty-case under sinewave excitation 
 

the random excitation in that the natural frequency of the 10mm gap is lower than the 

damper with no gap (Fig. 11). And it is much lower than the empty-case‟s natural frequency as 

shown in figure 3.11. 
 

 
Fig. (11) The effect of acceleration g (peak) on the different gaps of an impact damper‟s natural frequency ( ωn) 

under sinewave excitation 
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DISSIPATED ENERGY IN THE SYSTEM 

If a vibrating system is connected to a damper, then due to damping, the amplitude will 

reduce in each cycle. This is because it is the rule of damping to reduce the amplitude and since 

the amplitude is reduced in each cycle, it means that energy of the system is dissipated. Thus, 

the damping in this system is reducing the amplitude by absorbing some energy of the vibrating 

system, so the dissipated energy of the system under sinewave excitation with gap 10 mm and 

amplitude 5g is determined by the equation (Appendix C):  

                           
Stiffness and damping for impact damper: 

                            
                             = 2 (3.1415) (46.62)

 

                                            
= 292.91 rad/s 

Accounting for the background damping of the test rig: 

                    ζ(actual) = ζmeasured – ζ test rig 

                               = 0.04333 – 0.01382 = 0.02951 

 
                                  = 2 (0.02951) (0.6778) (292.91)  

                                  = 11.72 Ns/m 

Calculating the amplitude‟s value,    

                 
                    = 49.05 / (292.91)

2 
  

                        = 5.7 x 10
-4 

m 

Dissipated energy (W): 

                    
                         = (3.1415) (11.72) (292.91) (5.7 x 10

-4
)

2
 

                         = 3.5 x 10
-3 

J  

Kinetic energy (T): 

 
                                   = ½ (11.5) [(292.91) (5.7 x 10

-4
)]

2
     

                            = 1.6 x 10
-4   

J 

Calculation of W/T ratio from impact damper: 

The Specific damping capacity (ψ) = W/T is calculated from excitation amplitude 0.1 to 5 g as 

in Table 2. 
 

Table 2: Ratio of dissipated energy per cycle (W) to kinetic energy per cycle (T) 
 

Amplitude (X) m Kinetic energy per cycle (T) J Dissipated energy per cycle (W) J W/T 

7.9 X 10
-5

 4.5 X 10
-8

 3.1e-8 0.7 

1.6 X 10
-5

 1.8 X 10
-7

 7.0e-8 0.4 

2.4 X 10
-5

 4.1 X 10
-7

 2.4e-7 0.6 

1.3 X 10
-5

 1.2 X 10
-7

 5.8e-8 0.5 

3.3 X 10
-5

 7.8 X 10
-7

 7.9e-7 1.0 

4.7 X 10
-5

 1.5 X 10
-6

 1.8e-6 1.2 

5.5 X 10
-5

 2.2 X 10
-6

 3.6e-6 1.6 

6.0 X 10
-5

 2.7 X 10
-6

 2.3e-5 8.5 

7.1 X 10
-5

 3.6 X 10
-6

 5.9e-6 1.6 

7.7 X 10
-5

 4.4 X 10
-6

 3.8e-5 8.6 

1.7 X 10
-4

 2.0 X 10
-5

 4.7e-6 0.2 

2.6 χ 10
-4

 4.5 X 10
-5

 1.0e-4 2.2 

4.5 X 10
-4

 1.0 X 10
-4

 2.8e-3 28 

5.7 X 10
-4

 1.6 X 10
-4

 3.5e-3 6.1 
Time domain simulations of a SDOF system moving between walls  
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One of the simplest ways to model a single particle impact damper is to use a SDOF 

model in which the particle is represented by mass that can move between rigid walls, which 

themselves are subject to prescribed motion. The contact between the particle and the walls of 

the casing can be represented by springs and dampers as shown in figure 12.  

The variables xc and xp represent the positions of one of the walls and the particle rela-

tive to an arbitrary fixed point in space. The second wall remains a fixed distance L from the 

first one. When the casing walls move with a prescribed time history, useful outputs of the 

model are the resulting motion of the particle and the force required to maintain the motion of 

the casing.  

 

 
Fig. (12). An SDOF model showing contact between the particle and the casing 

 

Motion of the particle is related to force applied to it using Newton‟s Second Law,  

    
It can be seen from the figure that particle-wall contact is not constant and hence the 

force depends on the contact conditions. No force is transmitted when the particle is not touch-

ing a wall. In the absence of body forces such as gravity loading, . 

When in contact, force is generated by spring and damper units. However, even when in 

contact, the spring and damper together cannot exert a tensile force. These conditions are sum-

marised in Table 3. 

Time domain simulation 

The equation of motion can be solved numerically in Matlab using the function ode45. 

This function provides a numerical solution to a first order differential equation of the form,  

   , 

For the impact damper problem this can be achieved by setting 

  and,  

Table (3): Conditions of particle contacts 

 Contact with the cylinder bottom Contact with the cylinder top 

Condition   
Force f 

 

 

spring damper

spring p c

damper p c

f f f

f k x r x

f c x x

 

   

  
 

 

 

spring damper

spring p c

damper p c

f f f

f k x r x L

f c x x

 

    

  
 

No tension   
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In this example, excitation is in the form of prescribed harmonic motion of the casing 

and the forcing vector depends on the contact, 

 

Contact with the cylinder bottom: 

 
Contact with the cylinder top: 

  

 
If the motion of the casing is sinusoidal, 

    

   
The Matlab expression for running the time domain solution has the following form,  

                   [t,y] = ode45('calc',t,y0); 

where t is an array containing the discrete points in time that the solution y is obtained at 

and y0 are the starting values. The term „calc‟ refers to a function “calc.m” that specifies the 

differential equation and provides the output  (written yd) for a given input (y) at a particular 

time (t). 

yd = calc(t,y) 

For this particular example, it is convenient to note that, 

   
and, 

   
where the force f depends on the contact conditions defined on the previous page. 

This entire example has been coded into the function sdof_impact_damper. Because of 

the limitation on allowed input and output variables in “calc.m” this function has to encode in-

ternal computations to allow the force to be specified. To allow convenient adjustment of the 

values of variables, the main function sdof_impact_damper rewrites “calc.m” each time it is 

run. 

 

simulation and comparison to experimental results 

In this section, the mathematical model is verified and used to perform the simulation 

with damping and stiffness parameters obtained from the drop-bounce experiment and system 

parameters with the vibration amplitude (defined as beam displacement Xc) matching the peak 

vibration in the experimental tests (Table 4, Fig. 13). 

 
Table (4): Parameters used in the simulation 

Particle and system parameters 

Particle mass m                 11.5 x 10
-3

 m 

Particle radius                    12.5 x 10
-3

 m 

Stiffness k                          40.76 x 10
3
 N/m 

Damping c                          0.7 Ns/m 

Casing length L                  40 x 10
-3

 m 

Excitation frequency whz   46.62 Hz 

Amplitude Xc                      5.7 x 10
-4

 m 
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The specific damping capacity (ψ) W/T per cycle of the simulation is calculated and 

compared to that of the impact damper experiment (Table 5). There is a small discrepancy be-

tween the simulation and experimental results (Fig. 14).  

 

 
Fig. (13). simulation showing the dissipated energy by radian resulting from a viscoelastic sphere contact 

with the damper‟s casing at vibration amplitude (Xc) 5.7 x 10
-4

 m and excitation frequency 46.62 Hz 

 

CONCLUSION 

The practical and inert vibration control technology of particle damping is developing 

considerably at the present stage with ongoing research into its many factors. This study aims to 

explore the role of contact pressure of the particles and the configuration of its container.  
Table 5: Comparing the specific damping capacity (W/T) of experiment and simulation    

 

Amplitude (X) m W/T simulation W/T experiment 

7.9 X 10
-6

 0                                                0.3 

4.7 X 10
-6

 0 1.9 

5.5 X 10
-6

 0 0.5 

6.3 X 10
-6

 0 0.5 

7.0 X 10
-6

 0 0.5 

7.9 X 10
-6

 0 0.7 

1.6 X 10
-5

 0 0.4 

2.4 X 10
-5

 0 0.6 

1.3 X 10
-5

 0 0.5 

3.3 X 10
-5

 0 1 

4.7 X 10
-5

 0.7 1.2 

5.5 X 10
-5

 1.9 1.6 

7.1 X 10
-5

 1.2 1.6 

1.7 X 10
-4

 1.2 0.2 

2.6 X 10
-4

 3.8 2.2 

 

The identification of the main challenge: granular damper properties strongly affected by 

the extent to which 

particles are forced together to form temporary agglomerations such as what is seen in 

the "bouncing bed" phase. The ability to form and adjust the nature of these agglomerations 

gives control over the damper effectiveness, so this research focuses on physical ways of con-

trolling this. 

The discrepancy between the simulation and experimental results could be caused by the 

level of uncertainty in the damping ratio data which is showing in the quality of the circle -fit 

which artificially effect the damping. This uncertainty could be also caused by the nonlinearity 
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of the system or could be an issue with the shaker drop-out causing more vibrations. Thus, 

measurements of natural frequency data have a higher level of certainty than the damping ratio 

data. Considering the uncertainty in the experiment the comparison result is a reasonable out-

come. 

 

 

Fig. (14). Comparing the specific damping capacity (W/T) of experiment and simulation 

The flexible packet is one way to adjust the agglomerations in a controllable manner. 

Thus, future work  

will concentrate on the design and experiment of a flexible packet damper that can be 

used to adjust the particle-to- particle contact pressure (and therefore the performance) of a 

granular damper. The flexible packet comprises a collection of particles that are squeezed to-

gether by an elastic membrane which provides a nominal static pressure that is defined by the 

tension in the membrane.  The membrane can be constructed from different materials, but initial 

work will involve an elastomer for simplicity. 

 

REFERENCES 

 

[1]  S. Masri and A. Ibrahim, “Response of the impact damper to stationary random excita-

tion,” J. Acoust. Soc. Am., vol. 53, no. 1, pp. 200-211, 1973.  

[2]  R. Ibrahim, Vibro-Impact Dynamics, Modelling, Mapping and Applications, Berlin: 

Springer-Verlag Berlin Heidelberg , 2009.  

[3]  C. Saluena, T. Pschel and S. Esipov, “Dissipative properties of vibrated granular mater i-

als,” Phys. Rev. E, vol. 59, no. 4, pp. 4422-44, 1999.  

[4]  M. Sanchez, C. Carlevaro and L. Pugnaloni, “Effect of particle shape and fragmentation on 

the response of particle dampers,” J. Vib. Control , vol. 20, no. 12, pp. 1846-1854, 2014.  

[5]  A. Oldzki, I. Siwicki and J. Winiewski, “ Impact dampers in application for tube, rod and 

rope structures,” Mech. Mach. Theory , vol. 34, no. 2, pp. 243-253, 1999.  

[6]  C. Wong, M. Daniel and J. Rongong, “Energy dissipation prediction of particle dampers,” 

Journal of Sound and Vibration, vol. 319, no. 1-2, pp. 91-118, 2009.  

[7]  P. Avitabile, Modal Testing: A Practitioner‟s Guide, Hoboken, NJ: The Society for Exper-



Al-Mukhtar Journal of Engineering Research 07 (1): 29-42, 2023                                                               page   42of 14 

 

imental Mechanics and John Wiley & Sons Ltd, 2018.  

[8]  R. D. Blevins, Fourmulas for Natural Frequency and Mode Shape, New York: Van Nos-

trand Reinhold Co., 1979.  

[9]  Z. Lu, Z. Wang, S. Masri and X. Lu, “Particle impact dampers: past, present, and future,” 

Struct. Control Health Monit. , vol. 25, no. 1, p. e2058, 2017.  

[10]  G. Michon, A. Almajid and G. Aridon, “Soft hollow particle damping identification in 

honeycomb structures,” J. Sound Vib., vol. 332, no. 3, pp. 536-544, 2013.  

[11]  Z. Xia, X. Liu, Y. Shan and X. Li, “Coupling simulation algorithm of discrete element 

method and finite element method for particle damper,” J. Low Freq. Noise Vib. Act. Control, 

vol. 28, no. 3, pp. 197-204, 2009.  

[12]  Z. Xu, M. Wang and T. Chen, “Particle damping for passive vibration suppression: numer-

ical modelling and experimental investigation,” J. Sound Vib., vol. 279, no. 3, pp. 1097-1120, 

2005.  

[13]  Z. Lu, X. Lu, H. Jiang and S. Masri, “Discrete element method simulation and experi-

mental validation of particle damper system,” Eng. Comput. , vol. 31, no. 4, pp. 810-823, 2014.  

 
 


