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Abstract

The aim of this paper is to study experimentally and numerically the
effects of vibration amplitude and frequency on the performance of
granular systems, with a view to optimizing their use in reducing vibra-
tions typically experienced in machinery. Granular material systems are
highly nonlinear systems and, as such, have multiple factors that will
affect any experiment. This nature of granular material systems caused
some discrepancies between experiment results and the simulations of
mathematical models. However, the nonlinear aspect of particle damp-
ing restricted researching its theory, but the experiment research has
largely surmounted that limitation. Experimental results suggested sev-
eral damping theories. Accordingly, the ability to reduce vibrations of
particle dampers depends on several external and internal factors. The
two external factors are excitation amplitude and its frequency, whereas
the internal factors are related to the properties of the particles and the
size of the container. Other internal factors relate to the mass ratio of
total particles to the primary structure and particle placement. The ex-
perimental work included developing a computational single degree of
freedom (SDOF) model to provide better understanding of the effect of
shock vibration and work with the future experimental work.
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INTRODUCTION

Particle dampers are devices that control vibration levels in structures. They function by
an impact and friction damping together. The primary structure’s energy is transferred to the
particles inside the damper’s casing that is attached to the vibrating system where it dissipated
by being absorbed by the action of the contacts between the particles. The principal processes
engaged in energy dissipating are: collisions, sliding friction and rolling friction with those pro-
cesses taking place between the particles and with the particles and the damper casing’s walls.
This type of damping can be optimized by adjusting the acceleration of the particles within the
container [1]. At lower frequencies, the damping mechanism requires that the particles and the
casing wall to be out-of-phase with one another resulting in comparatively empty container.
Particle impact dampers originated from impact dampers and they are more efficient in reduc-
ing vibrations than them [2]. Another key mechanism operating inside particle dampers is asso-
ciated with the granular material’s state of matter. For example, at high amplitude frequencies
gas-like states occur whereas at lower frequencies solid and liquid-like states appear. In this
damping mechanism, performance can be optimized by paying attention to the state of the par-
ticles in the container [3].
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Particle dampers are used in several industries to limit vibrations and noises. The aero-
space industry led the way in using them, however; other industries such as automotive, medi-
cal and energy soon followed [4]. There are many particle dampers’ applications in strengthen-
ing buildings against earthquake and in automotive gears to suppress vibrations in the rotary
shaft of gear transmission. There are other uses in helicopter and aircraft mechanisms in rotor
blades and landing gears, and in machine tools. Noise resulting from machine actions can also
be reduced by impact dampers [5], however; at times the actions of the impact dampers can in-
crease it [2].

The use of granular materials to reduce resonant vibrations in machinery and structures
is increasing. They are attractive because they combine several different energy dissipation
mechanisms, making them more versatile than traditional damping materials. This study sets
out to understand and model the effects of vibration amplitude and frequency on the perfor-
mance of granular systems, with a view to explaining and optimizing their use in reducing vi-
brations typically experienced in machinery.

Numerical modelling will be used alongside laboratory experiments to investigate the ef-
fects on energy dissipation performance of features such as particle material, shape, and the ge-
ometry of a flexible—walled packet container. The experiments described in this study were de-
vised to give some introductory understanding of single particle damping. They were also in-
tended to identify key variables and to direct the design of future experiments. The experiment
was to investigate the damping performance of a single particle (viscoelastic sphere) placed
within a cavity attached to a vibrating beam. First, the resonance of the beam plus empty damp-
er was considered and then the natural frequency and modal damping ratio for different ampli-
tudes and damper gap settings are identified.

Finally, the SDOF mathematical model is used to write a MATLAB code for a simula-
tion to estimates time domain response for a SDOF impact damper using measured parameters
obtained and the numerical results are then compared with the single particle impact damper
experimental results.

MATERIALS AND METHODS

This experiment Investigated the resonance of a beam with a single damper attached and
identified the first natural frequency and modal damping ratio for different amplitudes. The ex-
perimental analysis is performed with the system shown in figure 1.

Fig. 1 Impact damper experiment setup
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Table (1): Description of individual components

SigLab 4 signal analyser

300W power amplifier

PCB model 482A22 charge amplifier

Particle damping enclosure (empty)

PCB 353B18 accelerometer (Sensitivity 981 m/s*/V)

PCB 208B01 force transducer (Sensitivity 8.99 N/V)

Electromagnetic shaker (peak sine force capacity 100 N)

Clamped steel beam 425L x 75W x 4D (mm)

The test structure is a steel beam that is clamped at either end. The beam has a cross-
section that is approximately 75x4 mm and the free length between the clamps is approximately
425 mm. A casing of the damper (of mass 266.6 grams) is attached to the beam using a threaded
connector.

The system is excited by an electrodynamic shaker via a stinger rod. The force applied
by the exciter is measured with a force transducer and the beam vibration is measured with an
accelerometer. Signals from these transducers are recorded on a data acquisition system (Table
1, Fig. 2). The test rig is adjusted such that the direction of shaking aligns with the direction of
gravity. The vibration response is measured over a frequency range of around 10-1000 Hz using
signals of varying magnitude and frequency content. The amplitude will be in the range 1 to

1000 m/s?.

Fig. (2) Signal flow diagram

The impact damper’s container as shown in Fig. 3 is similar to the damper used by
Wong et al. [6]. It is constructed from a clear PMMA cylinder so the movement of the sphere
can be noticed with a steel base. The container has a threaded top for gap size adjustment. A
viscoelastic sphere(rubber) of mass 11.5 grams and diameter ~ 25mm is placed in the container.

Natural frequency (w,) and damping ratio ({) measurements of the system were taken at
gap sizes of 0 (lid firmly on top of sphere), 10, 15, 23 millimeters; and for random excitation 19
values of acceleration with an increment of 0.1g at accelerations of 0.07 to 1.7 g and for sin-
ewave excitation 19 values of excitation acceleration with an increment of 0.1g from 0.05 to 5.0
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g.

For random excitation, the SigLab virtual network analyzer (vna) was used which pro-
vides links to network-based analysis tools for measuring frequency response functions. Infor-
mation was retrieved from (vna) data file, then the post process was done in the MATLAB set-
ting using the SLm data structure using the MATLAB function frf_from_vna in

ariable
gap size

Sphere's height
= 25mm

l;sidé diameter’
39mm

Fig (3). Damper container with adjustable gap

combination with the function from_frf to get the natural frequency and damping ratio
from frf uses functions mobfit and mobfit_obj to curve fit. For sinewave excitation from the
SigLab swept-sine analyzer (vss) was used for measuring the system’s frequency response func-
tion. The data processing was done sing the MATLAB function frf_from_vss.

As for the repeatability and uncertainty in the results, there is a major problem connect-
ed with random excitation is that signals will always experience leakage. This leakage error will
cause a serious reduction of the quality of the measured frequency response function (frf), with
a sizable error resulting, mainly at the resonant peaks of the system [7]. Leakage is also an issue
for sinewave excitation.

RESULTS AND DISCUSSION

Vibrating beam’s natural frequency and modal damping ratio

First, the resonance of a vibrating beam is investigated and the natural frequency and
modal damping ratio ({) for different amplitudes are identified. There is a difference in the
damping ratio (£) trend between the different excitations as the damping ratio for random exci-
tation is almost constant with the increasing amplitude whereas the damping ratio for sinewave
excitation increases with the increasing amplitude (Fig. 4).
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Fig. (4). The acceleration’s (g) effect of on the damping ratio ({) for random and sinewave excitations

The results of the natural frequency (w,) for the different excitations are illustrated in
fig. 5, where the beam response to random and sinewave excitation show the same trend.

If there is a resistance to the vibrations when the system is undamped then the system
undergoes frictional or other type of loss of kinetic energy which is damped with time. The en-
ergy loss within the structure itself is called structural (hysteresis) damping where in solids
some of the energy involved is the repetitive internal deformation and restoration to the original
shape is dissipated in the form of random vibrations of an intramolecular nature. Most likely
this is friction damping at the joints since metals have a loss factor of less than 0.001 and the
PMMA damper does not significantly deform in the 10-100 Hz range.
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Fig. (5) Comparison of the acceleration’s (g) effect of on natural frequency (w,) for random and sinewave
excitations of a steel beam

The effects of gap size of an impact damper under random and sinewave excitation

When a continuous structure vibrates with a particular deflection shape, its motion can
be represented by a SDOF system. The mass of this equivalent system is obtained using the
equivalent Kinetic energy. For slender uniform beams, the equations for normal vibration mode
shapes are given in textbooks [8]. For these, they also show that for equal kinetic energy in both
systems,

L. _L.z L.s _ L ¥snnE -
- VsporTeg =207 = T Vipor Meg = :( . m

where ¢ defines the shape of the deflection as a function of the distance along the beam
and therefore,
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m

K5

At the end of a cantilever the fundamental vibration mode shape gives ¢* = 4, at the
mzid-point of a clamped-clamped beam ¢? = 2.52 and at the mid-point for a pinned-pinned beam
o =1.

The beam has a cross-section that is approximately 75x4 mm and the free length be-
tween the clamps is approximately 425 mm.

The test structure is a steel beam that is clamped V= (L) (H) (W)

V = (0.425) (0.075) (0.004)

=1.275x 10" m®
p (For steel) = 7900 kg/m?
The mass, m = (v) (p)
= (1.275 x10™ m®) (7900 kg/m®)

Mgy

=1.00725 kg
At the mid-point of a clamped-clamped beam ¢? = 2.52
m
Meg = E ]
LDOT 25
= .02
= 300.7g

The mass of sphere =11.5¢g

The mass of empty container = 266.6 g

So, The Total mass is:

m; =11.5 + 266.6 +399.7

=677.8¢

First there is a discussion of random excitation results followed by the sinewave results.
When the system is subjected to random excitation and for a gap size of 0 mm, even though the
sphere does not have any space to move and this does not allow for significant interchange of
momentum between the sphere and the container, the nature of random excitation high frequen-
cy causes the particle to have more movement. Therefore, it has dissipation of energy and the
measured damping ratio is higher than 23 mm and 10 mm gaps (Fig. 6). As the gap size in-
creases, the particles are given more room to move and the damping ratio ({) reaches 0.04104 at
acceleration amplitude 1.7g which occurs at an optimum gap size of 15 mm. If the gap size is
increased further there will be fewer impacts since the particle does not acquire enough velocity
to travel from bottom of the container to the top, on the average twice per “cycle” of the re-
sponse. Therefore, if the gap size is increased beyond the optimum, the damping decreases.
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Fig. (6). The effect of acceleration g (rms) on the different gaps of an impact damper’s damping ratio ({) under
random wave excitation
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The damping ratio at optimum gap size increases with increasing acceleration. Overall,
the damping ratio of the beam was increased by over five times, demonstrating the effectiveness
of the particle impact damper particularly at high amplitudes of excitation (Fig. 7). Experiments
also revealed a shift in the resonance frequency of the system. This frequency shift is affected
by both acceleration and gap size. Figure 8 shows that the resonance frequency decreases with
increasing acceleration
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Fig. (7) Comparison of the acceleration g (rms) effect on the damping ratio ({) of an impact damper (with
15mm gap) to that of an empty-case under random wave excitation
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Fig. (8) The effect of acceleration g (rms) on the different gaps of an impact damper’s natural frequency
(on) under random wave excitation

for all gap sizes at different rates. This confirms that as the sphere has more space to
move, it contacts the container less resulting in a lower mass effect and higher resonance fre-
quency. With the increase of acceleration, a higher mass effect is produced, which implies that
the sphere has more contacts with the container. Overall, the natural frequency of 15 mm gap
under random excitation is lower than that of the beam’s natural frequency.

The damping ratio ({) values of the system under sinewave excitation exhibits show al-
most the same trend with the different gaps as the random excitation with the exception that the
effective damper’s gap is 10 mm which is smaller than that determined by random excitation
(Fig. 9). The damping ratio of this gap is more than three times higher than that of the empty-
case’s damping (Fig. 10).
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The natural frequency (o,) of the system under sinewave excitation exhibits a different

trend than that of
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Fig. (9) The effect of acceleration g (peak) on the different gaps of an impact damper’s damping ratio ()
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Fig. (10) Comparison of the acceleration g (peak) effect on the damping ratio ({) of an impact damper
(with 10mm gap) to that of an empty-case under sinewave excitation

the random excitation in that the natural frequency of the 10mm gap is lower than the
damper with no gap (Fig. 11). And it is much lower than the empty-case’s natural frequency as

shown in figure 3.11.
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Fig. (11) The effect of acceleration g (peak) on the different gaps of an impact damper’s natural frequency ()

under sinewave excitation
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DISSIPATED ENERGY IN THE SYSTEM
If a vibrating system is connected to a damper, then due to damping, the amplitude will
reduce in each cycle. This is because it is the rule of damping to reduce the amplitude and since
the amplitude is reduced in each cycle, it means that energy of the system is dissipated. Thus,
the damping in this system is reducing the amplitude by absorbing some energy of the vibrating
system, so the dissipated energy of the system under sinewave excitation with gap 10 mm and
amplitude 59 is determined by the equation (Appendix C):
W=wcewX"
Stiffness and damping for impact damper:
wy, =21 f
= 2(3.1415) (46.62)
= 292.91 rad/s
Accounting for the background damping of the test rig:
C(actual) = Cmeasured — G test rig
= 0.04333 - 0.01382 = 0.02951
€= 2{Mmia,
=2 (0.02951) (0.6778) (292.91)
= 11.72 Ns/m
Calculating the amplitude’s value, A= Xy
X=—=

= 49.05/ (292.91)?
=5.7x10"m
Dissipated energy (W):
W=rwcwkX"
= (3.1415) (11.72) (292.91) (5.7 x 10™)?
=3.5x 107
Kinetic energy (T):
T =15 my (wX)
= 1% (11.5) [(292.91) (5.7 x 107H]?
=1.6x10* J
Calculation of W/T ratio from impact damper:
The Specific damping capacity (y) = W/T is calculated from excitation amplitude 0.1 to 5 g as
in Table 2.

Table 2: Ratio of dissipated energy per cycle (W) to kinetic energy per cycle (T)

Amplitude (X) m Kinetic energy per cycle (T) J | Dissipated energy per cycle (W)J | WIT
7.9 X 10° 45X 10° 3.1e-8 0.7
1.6 X 10° 1.8 X 107 7.0e-8 0.4
2.4 X 10° 41X 107 2.4e-7 0.6
1.3 X 10° 1.2 X 107 5.8e-8 0.5
3.3X10° 7.8 X107 7.9e-7 1.0
4.7 X 10° 1.5 X 10°® 1.8e-6 1.2
5.5 X 10° 2.2 X10° 3.6e-6 1.6
6.0 X 10° 2.7 X10° 2.3e-5 8.5
7.1 X107 3.6 X10° 5.9e-6 1.6
7.7 X 10° 4.4 X 10° 3.8e-5 8.6
1.7 X 10 2.0 X 107 4.7e-6 0.2
2.6 410" 4.5 X 10° 1.0e-4 2.2
45X 10" 1.0 X 10 2.8e-3 28
5.7 X 10™ 1.6 X 10 3.5e-3 6.1

Time domain simulations of a SDOF system moving between walls
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One of the simplest ways to model a single particle impact damper is to use a SDOF
model in which the particle is represented by mass that can move between rigid walls, which
themselves are subject to prescribed motion. The contact between the particle and the walls of
the casing can be represented by springs and dampers as shown in figure 12.

The variables X and X, represent the positions of one of the walls and the particle rela-
tive to an arbitrary fixed point in space. The second wall remains a fixed distance L from the
first one. When the casing walls move with a prescribed time history, useful outputs of the
model are the resulting motion of the particle and the force required to maintain the motion of
the casing.

| L |
| |
I 2r |
k k
c c
—> ﬁ‘
c P

Fig. (12). An SDOF model showing contact between the particle and the casing

Motion of the particle is related to force applied to it using Newton’s Second Law,
mpi, = f

It can be seen from the figure that particle-wall contact is not constant and hence the
force depends on the contact conditions. No force is transmitted when the particle is not touch-
ing a wall. In the absence of body forces such as gravity loading, f = 0.

When in contact, force is generated by spring and damper units. However, even when in
contact, the spring and damper together cannot exert a tensile force. These conditions are sum-
marised in Table 3.

Time domain simulation
The equation of motion can be solved numerically in Matlab using the function ode45.
This function provides a numerical solution to a first order differential equation of the form,
vy = Ay +F
For the impact damper problem th[;s can_lbe achieved by setting

D ol 2
y = . = _=
- J-'r_. and1 Mp Mp

Table (3): Conditions of particle contacts

Contact with the cylinder bottom Contact with the cylinder top
Condition X Zxp—T x.Zxp+r—1L
Force f - -
orce f - fspring t fdamper f - fspring + fdamper
fspring :_k(xp _r_xc) fspring :_k(XDH_Xc_L)
fdamper :_C(Xp _Xc) fdampﬂ :_C(XP _XC)
No tension f=0 f=0
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In this example, excitation is in the form of prescribed harmonic motion of the casing
and the forcing vector depends on the contact,

Contact with the cylinder bottom:
0
k
— (e +7) + iif]
mﬂ

My

F =

Contact with the cyl'inder top:

0
k c
_{-rf-l_ir-_r:] +_-f|_'
My

My

F =

If the motion of the casing is sinusoidal,
x.= X, sin(et)
%, = wX, coslwt)
The Matlab expression for running the time domain solution has the following form,
[t,y] = ode45('calc't,yo);
where t is an array containing the discrete points in time that the solution y is obtained at
and yo are the starting values. The term ‘calc’ refers to a function “calc.m” that specifies the
differential equation and provides the output ¥ (written yq) for a given input (y) at a particular
time (t).
ya = calc(t,y)
For this particular example, it is convenient to note that,
y(1) =z, =y(2)
and, ]
¥(2) =x,=1

-
where the force f depends on the contact conditions defined on the previous page.

This entire example has been coded into the function sdof_impact_damper. Because of
the limitation on allowed input and output variables in “calc.m” this function has to encode in-
ternal computations to allow the force to be specified. To allow convenient adjustment of the
values of variables, the main function sdof impact damper rewrites “calc.m” each time it is
run.

simulation and comparison to experimental results

In this section, the mathematical model is verified and used to perform the simulation
with damping and stiffness parameters obtained from the drop-bounce experiment and system
parameters with the vibration amplitude (defined as beam displacement X.) matching the peak
vibration in the experimental tests (Table 4, Fig. 13).

Table (4): Parameters used in the simulation

Particle and system parameters

Particle mass m 11.5x10°m
Particle radius 12.5x10° m
Stiffness k 40.76 x 10° N/m
Damping ¢ 0.7 Ns/m
Casing length L 40 x 103 m
Excitation frequency whz 46.62 Hz
Amplitude Xc 5.7x10" m
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The specific damping capacity (y) W/T per cycle of the simulation is calculated and
compared to that of the impact damper experiment (Table 5). There is a small discrepancy be-
tween the simulation and experimental results (Fig. 14).

dW =0.00026J/rad, T = 0.00016J

40

particle bottom
particle top
case bottom
—=—case top

N
=]

o

position, mm

o

o

-5
0 1 2 3 4 5

time, s
Fig. (13). simulation showing the dissipated energy by radian resulting from a viscoelastic sphere contact
with the damper’s casing at vibration amplitude (Xc) 5.7 x 10 m and excitation frequency 46.62 Hz

CONCLUSION

The practical and inert vibration control technology of particle damping is developing
considerably at the present stage with ongoing research into its many factors. This study aims to

explore the role of contact pressure of the particles and the configuration of its container.
Table 5: Comparing the specific damping capacity (W/T) of experiment and simulation

Amplitude (X) m WI/T simulation WI/T experiment
7.9 X 10° 0 0.3
4.7 X 10° 0 1.9
5.5 X 10° 0 0.5
6.3 X 10° 0 0.5
7.0 X 10° 0 0.5
7.9 X 10° 0 0.7
1.6 X 107 0 0.4
2.4 X 10° 0 0.6
1.3X10° 0 0.5
3.3 X 10° 0 1
4.7 X 10° 0.7 1.2
5.5 X 10° 1.9 1.6
7.1 X 10° 1.2 1.6
1.7 X 10 1.2 0.2
2.6 X 10 3.8 2.2

The identification of the main challenge: granular damper properties strongly affected by
the extent to which

particles are forced together to form temporary agglomerations such as what is seen in
the "bouncing bed" phase. The ability to form and adjust the nature of these agglomerations
gives control over the damper effectiveness, so this research focuses on physical ways of con-
trolling this.

The discrepancy between the simulation and experimental results could be caused by the
level of uncertainty in the damping ratio data which is showing in the quality of the circle-fit
which artificially effect the damping. This uncertainty could be also caused by the nonlinearity
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of the system or could be an issue with the shaker drop-out causing more vibrations. Thus,
measurements of natural frequency data have a higher level of certainty than the damping ratio
data. Considering the uncertainty in the experiment the comparison result is a reasonable out-
come.

= & =W/T simulation
oo WIT impact damper

WIT

Amplitude (m) <107
Fig. (14). Comparing the specific damping capacity (W/T) of experiment and simulation

The flexible packet is one way to adjust the agglomerations in a controllable manner.
Thus, future work

will concentrate on the design and experiment of a flexible packet damper that can be
used to adjust the particle-to- particle contact pressure (and therefore the performance) of a
granular damper. The flexible packet comprises a collection of particles that are squeezed to-
gether by an elastic membrane which provides a nominal static pressure that is defined by the
tension in the membrane. The membrane can be constructed from different materials, but initial
work will involve an elastomer for simplicity.
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