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 Abstract 

The order continuous operators consider one of important topic in 
functional analysis and its applications, the affiliations among order 
continuous operators and the other classes of operators such as  𝜎𝜎-
order are continuous, order bounded, and singular operators, have 
been studied and investigated, we proved that if an order bounded 
operator ℱ:𝒰𝒰 → 𝒱𝒱 concerning two Riesz space with 𝒱𝒱 Dedekind 
complete is continuous and ordered, then |ℱ| is order continuous, 
and this paper shows that if 𝒰𝒰 is space that is countable, now ℱ is 
not 𝜎𝜎-order continuous, while 𝒰𝒰 is uncountable, then ℱ is 
necessarily 𝜎𝜎-order continuous, by giving an example we showed 
that null ideal for the operator ℱ is band when ℱ is bounded 
ordered, further, it is ordered and  continuous. Finally, we concluded 
the operator that is a positively and orderly continuous map on 
ordered dense with memorizing Riesz subspace of a Riesz space 
with its range is Dedekind complete, it has only unique ordered 
continuous expansion all of space. 

Keywords: Riesz Spaces, Positive Operator, Order Continuous 
Operator, Order  Bounded Operator. 

INTRODUCTION 
 In linear algebra and functional analysis, the operator ℱ:𝒰𝒰 → 𝒱𝒱  where 𝒰𝒰 and 𝒱𝒱 are Riesz spaces 
is defined as an order continuous operator whenever 𝑢𝑢𝛼𝛼

0
→ 0 in 𝒰𝒰 gives   ℱ(𝑢𝑢𝛼𝛼)

0
→ 0  inside𝒱𝒱; and 

𝜎𝜎-order continuous whenever  𝑢𝑢𝑛𝑛
0
→ 0 in 𝒰𝒰 implies ℱ(𝑢𝑢𝑛𝑛)

0
→ 0 in 𝒱𝒱. Many researchers studied this 

topic, and some of these previous studies have proven the theory of extending the positive order 
continuous operators(Veksler, 1960). Another study defined new classes of operators, which are so-
called unbounded order continuous and further boundedly unbounded order continuous operators 
and gave extra settings under which uo-continuity is equivalent to order continuity of some 
operators on Riesz spaces (Bahramnezhad & Azar, 2018). The report investigated the relationships 
located between order to topology continuous operators and different types of operators for example 
b-weakly compact, order weakly compact and order continuous operators, and studied adjoint of 
order to norm continuous operators (Jalili et al., 2021). While recent study extends the properties of 
unbounded order continuous operators from 𝒰𝒰 Riesz space into ℜ (Turan et al., 2022). Aydin and 
Gorokhova studied the concept of statistically continuous and bounded operators with statistically 
ordered convergent sequences on Riesz spaces (Aydin & Statistics, 2023). In this paper, some basic 
results from the theory of order continuous operators were studied with proofs as needed. First, this 
work introduces some of its types: 𝜎𝜎-order continuous operators, order bounded operators, singular 
operators, and order continuous components of the positive operator, in addition, it shows some of 
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their properties as well as the relations between them, then it studied of describing the group of all 
continuously ordered operators and some their useful characterizations and some of its application. 

 
Concepts and Theories: 
Definition 1 from previous study (Abramovich & Aliprantis, 2002):  
ℱ:𝒰𝒰 → 𝒱𝒱 is called positive if   ℱ(𝑢𝑢) ≥ 0 ∀ 𝑢𝑢 ∈ 𝒰𝒰 ;𝑢𝑢 ≥ 0. 
The beginning point within the theory of positive administrators may be a principal 
expansion theorem of Kantorovic (Kantorovitch, 1940), who proved that additive operator ℱ:𝒰𝒰+ →
𝒱𝒱+to be the constraint of a single positive operator from 𝒰𝒰 into 𝒱𝒱. The details follow. 
Theorem 1 by Kantorovic (Kantorovitch, 1940) 
If  ℱ:𝒰𝒰+ → 𝒱𝒱+ is an additive operator, then ℱ has a uniquely positive extension to the entire space 
𝒰𝒰, the unique extension (denoted by ℱ again) is given by 

ℱ(𝑢𝑢) = ℱ(𝑢𝑢+) −ℱ(𝑢𝑢−)      ∀  𝑢𝑢 ∈ 𝑋𝑋  .  
 

Definition 2 from previous study (Kreyszig, 1978):  
The disjoint complement  𝑉𝑉𝑑𝑑 is defined as follows: 
              𝑉𝑉

𝑑𝑑 = { 𝑢𝑢 ∈ 𝒰𝒰 ∶ 𝑢𝑢 ⊥ 𝑣𝑣  ∀ 𝑣𝑣 ∈ 𝑉𝑉 }  Where  𝑉𝑉𝑑𝑑𝑑𝑑  means  (𝑉𝑉𝑑𝑑)𝑑𝑑.  
 
Definition 3 from previous study (Aliprantis & Burkinshaw, 1985):  
If  𝒰𝒰 Riesz space and 𝑈𝑈 ⊂ 𝒰𝒰 , then 𝑈𝑈 is named solid if  ∀ 𝑢𝑢 ∈ 𝑈𝑈, 𝑣𝑣 ∈ 𝒰𝒰  and |𝑢𝑢| ≤ |𝑣𝑣|  gives 𝑣𝑣 ∈
𝑈𝑈. 
If U is solid sub space from 𝒰𝒰, then U is named Ideal of space 𝒰𝒰. 
 
Definition 4 John (John, 1990):  
The ordered closed ideal is mentioned to be a band. 
 
Definition 5 Aliprntis (Aliprantis & Burkinshaw, 1985):  
If  ℬ is a band in Riesz space 𝒰𝒰 and the following condition 𝒰𝒰 = ℬ ⊕ℬ𝑑𝑑 is met, then ℬ is called a 
projection band.  
 The band does not have to be a projection band; we need to mention the following theorem which 
was proven by Riesz (Riesz, 2000). 
 
Theorem 2 Aliprntis (Aliprantis & Burkinshaw, 1985): 
If  ℬ is a vector which is a band in a Dedekind of complete Riesz space 𝒰𝒰, formerly 𝒰𝒰 = ℬ ⨁ ℬ𝑑𝑑 
satisfied. 
 
Definition 6 Ogasawara (Ogasawara, 1942).  A net { 𝑢𝑢𝛼𝛼} in a Riesz space is called the order 
convergent to 𝑢𝑢 whenever there exists a net  { 𝑣𝑣𝛼𝛼} with the same indexed set satisfying  |𝑢𝑢𝛼𝛼 − 𝑢𝑢| ≤
𝑣𝑣𝛼𝛼 ↓ 0 it is referred to as: 𝑢𝑢𝛼𝛼 

0
→  𝑢𝑢 

 
Definition 7 Ogasawara (Ogasawara, 1942): The operator  ℱ:𝒰𝒰⟶ 𝒱𝒱 where 𝒰𝒰 and 𝒱𝒱 are two 
Riesz spaces is named to be 
(a) Ordered continuous, if 𝑢𝑢𝛼𝛼 

0
→  0 inside 𝒰𝒰 then  ℱ(𝑢𝑢𝛼𝛼 )

0
→  0 in 𝒱𝒱.  

(b) 𝛿𝛿- ordered continuous, if  𝑢𝑢𝑛𝑛 
0
→  0 inside 𝒰𝒰 then ℱ(𝑢𝑢𝑛𝑛) 

0
→  0 in 𝒱𝒱.  

It is valuable to remember that a positive operator  ℱ:𝒰𝒰 → 𝒱𝒱 is ordered continuous ⟺  𝑢𝑢𝛼𝛼 ↓ 0  in 
𝒰𝒰 gives  ℱ(𝑢𝑢𝛼𝛼) ↓ 0  in 𝒱𝒱 (moreover  ⟺   0 ≤ 𝑢𝑢𝛼𝛼 ↑ 𝑢𝑢 in 𝒰𝒰 gives  ℱ(𝑢𝑢𝛼𝛼) ↑ ℱ(u) in 𝒱𝒱).  
the next example proves that 𝛿𝛿- order continuous does not have to be an ordered continuous 
operator. 
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Example 1 Let 𝒰𝒰 the vector space of all real functions that are Lebesgue integrable on the period 
0 ≤ 𝑢𝑢 ≤ 1. It is clear that any two functions that are not equal at one point are considered two 
unequal functions, meaning of that  𝒫𝒫 ≥ 𝒬𝒬 for all 0 ≤ 𝑢𝑢 ≤ 1, this is called the law of pointwise 
ordering of functions, 𝒰𝒰 describes a Riesz space (for more details a function space). Further, see 
that  𝒫𝒫𝛼𝛼 ↑ 𝒫𝒫 applied in 𝒰𝒰  ⟺   𝒫𝒫𝛼𝛼 (𝑢𝑢) ↑ 𝒫𝒫(𝑢𝑢)  satisfied of all 0 ≤ 𝑢𝑢 ≤ 1 in ℜ. 
If the operator ℱ:𝒰𝒰 → ℛ is defined as follows 
           ℱ( 𝒫𝒫 ) = ∫ 𝒫𝒫 ( 𝑢𝑢 )𝑑𝑑𝑑𝑑1

0  
It is clear that ℱ is not an order continuous operator that is also positive, hence from the Lebesgue 
Dominated Convergence theory it is clear that ℱ is 𝛿𝛿- order continuous. 
The following theorem shows that order continuous operators that are order bounded have a sum of 
useful characterizations.  
 
Theorem 3 If  𝒰𝒰,𝒱𝒱 are Riesz spaces where Y is Dedekind complete, and ℱ:𝒰𝒰⟶ 𝒱𝒱 is bounded 
ordered operator, then following arguments are equivalent: 

a) The operator  ℱ is continuous. 
b) If 𝑢𝑢𝛼𝛼 ↓ 0 gives in 𝒰𝒰, then ℱ( 𝑢𝑢𝛼𝛼)

0
→ 0   in 𝒱𝒱. 

c) If  𝑢𝑢𝛼𝛼 ↓ 0 gives in 𝒰𝒰, then  inf  { |ℱ(𝑢𝑢𝛼𝛼 )|} = 0 in 𝒱𝒱. 
d) ℱ+ and  ℱ−are together order continuous. 
e)  |ℱ| is ordered continuous. 

Proof:   a) → b) and b) → c) are clear. 
  c) → d) to prove this paragraph, it is sufficient to prove that  ℱ+ is order continuous, suppose 
𝑢𝑢𝛼𝛼 ↓ 0 in 𝒰𝒰, and   ℱ+(𝑢𝑢𝛼𝛼) ↓ 𝑠𝑠 ≥ 0 in 𝒱𝒱. It is need to prove that  𝑠𝑠 = 0 , Make some  𝛽𝛽 fixed and 
let 𝑢𝑢 =  𝑢𝑢𝛽𝛽. 
Now ∀ 𝑣𝑣 ∈ [ 𝑜𝑜 , 𝑢𝑢 ] and ∀ 𝛼𝛼 ≥ 𝛽𝛽  is: 

0 ≤ 𝑣𝑣 − 𝑣𝑣 ∧ 𝑢𝑢𝛼𝛼 = 𝑣𝑣 ∧ 𝑢𝑢 − 𝑣𝑣 ∧ 𝑢𝑢𝛼𝛼 ≤ 𝑢𝑢 − 𝑢𝑢𝛼𝛼 
This means that: 
ℱ(𝑣𝑣) − ℱ(𝑣𝑣 − 𝑢𝑢𝛼𝛼 ) = ℱ(𝑣𝑣 − 𝑣𝑣 ∧ 𝑢𝑢𝛼𝛼 ) ≤ ℱ+(𝑢𝑢 −  𝑢𝑢𝛼𝛼  ) =  ℱ+(𝑢𝑢)−  ℱ+( 𝑢𝑢𝛼𝛼 )Therefore 

  0 ≤ 𝑠𝑠 ≤ ℱ+(𝑢𝑢𝛼𝛼 ) ≤ ℱ+(𝑢𝑢) + |ℱ(𝑣𝑣 ∧ 𝑢𝑢𝛼𝛼 )|− ℱ(𝑣𝑣)         ……….  (⋆) 

applies  ∀  𝛼𝛼 ≥ 𝛽𝛽 and   ∀  0 ≤ 𝑣𝑣 ≤ 𝑢𝑢 ,  since   ∀  0 ≤ 𝑣𝑣 ≤ 𝑢𝑢  gives   𝑣𝑣 ∧ 𝑢𝑢𝛼𝛼 ↓𝛼𝛼≥𝛽𝛽 0  this means 
that it fulfills the hypothesis  𝑖𝑖𝑖𝑖𝑖𝑖𝛼𝛼≥𝛽𝛽 { |ℱ (𝑣𝑣 ∧ 𝑢𝑢𝛼𝛼)|} = 0 , referring to the inequality (⋆) note that  
0 ≤ 𝑠𝑠 ≤ ℱ+(𝑢𝑢) −ℱ(𝑣𝑣) satisfies ∀  0 ≤ 𝑣𝑣 ≤ 𝑢𝑢 , from   ℱ+(𝑢𝑢) = sup{ ℱ(𝑣𝑣): 0 ≤ 𝑣𝑣 ≤ 𝑢𝑢}, recent 
inequality leads to that 𝑠𝑠 = 0 ,this is what is required, 
d) → e) since  |ℱ| = ℱ+ + ℱ−, this means that |ℱ| is order continuous, 
e) → a) this can be easily proven by applying the inequality |ℱ(𝑢𝑢)| ≤ |ℱ|(|𝑢𝑢|) . 
 theorem 3 is true for 𝜎𝜎-order continuous operators, and this can be proven in the same way as 
before.  
The combination of all ordered continuous operators of  ℓ𝑏𝑏(𝒰𝒰,𝒱𝒱) is represented by the symbol  
ℓ𝑛𝑛(𝒰𝒰,𝒱𝒱). 
The symbol ℓ𝑛𝑛(𝒰𝒰,𝑣𝑣) indicates that the order continuous operators are in addition normal operators, 
in another meaning:  

ℓ𝑛𝑛(𝒰𝒰,𝒱𝒱) = { ℱ ∈  ℓ𝑏𝑏( 𝒰𝒰,𝒱𝒱 ) ;ℱ 𝑖𝑖𝑖𝑖 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐}. 
The symbol  ℓ𝑐𝑐(𝒰𝒰,𝒱𝒱) symbolizes the collection of all ordered bounded operators from 𝒰𝒰 into 𝒱𝒱  
which are 𝜎𝜎-ordered continuous, in another meaning:  

 ℓ𝐶𝐶(𝒰𝒰,𝒱𝒱) = { ℱ ∈  ℓ𝑏𝑏( 𝒰𝒰,𝒱𝒱 ) ;ℱ 𝑖𝑖𝑖𝑖 𝜎𝜎ــ 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐}        Obviously,  ℓ𝑛𝑛(𝒰𝒰,𝒱𝒱) ,  ℓ𝑐𝑐(𝒰𝒰, 𝑣𝑣) 
are both two vectors subspaces of ℓ𝑏𝑏(𝒰𝒰,𝒱𝒱) furthermore ℓ𝑛𝑛(𝒰𝒰,𝒱𝒱) ⊆  ℓ𝑐𝑐(𝒰𝒰,𝒱𝒱) satisfied. Once 𝒱𝒱 is 
Dedekind complete. T. Ogasawara [14] proved that together ℓ𝑛𝑛(𝒰𝒰,𝒱𝒱)  , ℓ𝑐𝑐(𝒰𝒰,𝒱𝒱) are seen as bands 
of  ℓ𝑏𝑏(𝒰𝒰,𝒱𝒱),  The next theorems and details follow. 
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Theorem 4 Ogasawara (Ogasawara, 1942):  If  𝒰𝒰,𝒱𝒱 are two Riesz spaces where 𝒱𝒱 is Dedekind 
complete, this means that ℓ𝑛𝑛(𝒰𝒰,𝒱𝒱)  , ℓ𝑐𝑐(𝒰𝒰,𝒱𝒱) are together bands of ℓ𝑏𝑏(𝒰𝒰,𝒱𝒱). 
Proof:  It shall create that ℓ𝑛𝑛(𝒰𝒰,𝒱𝒱) is a band of ℓ𝑏𝑏(𝒰𝒰,𝒱𝒱). That ℓ𝑐𝑐(𝒰𝒰,𝒱𝒱) is a band can 
be demonstrated in a comparable way.  
See firstly that if  |𝐸𝐸| ≤ |ℱ| satiefies in ℓ𝑏𝑏(𝒰𝒰,𝒱𝒱)  with ℱ ∈ ℓ𝑛𝑛(𝒰𝒰,𝒱𝒱) , therefore from Theorem 3 
gives that 𝐸𝐸 ∈ ℓ𝑛𝑛(𝒰𝒰,𝒱𝒱),  which is, ℓ𝑛𝑛(𝒰𝒰,𝒱𝒱) is an ideal of ℓ𝑏𝑏(𝒰𝒰,𝒱𝒱) . 
To prove that ℓ𝑛𝑛(𝒰𝒰,𝒱𝒱)  is a band, let  0 ≤  ℱ𝜆𝜆 (𝑢𝑢) ↑ ℱ(𝑢𝑢)  inside  ℓ𝑏𝑏(𝒰𝒰,𝒱𝒱) with  { ℱ𝜆𝜆 }  ⊆
ℓ𝑛𝑛(𝒰𝒰,𝒱𝒱), and assume that 0 ≤  𝑢𝑢𝛼𝛼 ↑ 𝑢𝑢 in 𝒰𝒰 At that time for 𝜆𝜆  fixed. We have 
                 0 ≤ ℱ ( 𝑢𝑢 −  𝑢𝑢𝛼𝛼)  ≤ �ℱ(𝑢𝑢) −ℱ𝜆𝜆  (𝑢𝑢)� +  ℱ𝜆𝜆(𝑢𝑢 − 𝑢𝑢𝛼𝛼) 
Since 𝑢𝑢 −  𝑢𝑢𝛼𝛼 ↓ 0 means that  

0 ≤ inf{ ℱ (𝑢𝑢 − 𝑢𝑢𝛼𝛼)}  ≤ ( ℱ(𝑢𝑢) − ℱ𝜆𝜆(𝑢𝑢))  ∀ 𝜆𝜆. 
This shows that  ℱ −  ℱ𝛼𝛼 ↓ 0  ⟹    inf( ℱ (𝑢𝑢 − 𝑢𝑢𝛼𝛼)) = 0  and then  ℱ(𝑢𝑢𝛼𝛼) ↑  ℱ(𝑢𝑢) , In conclusion  
ℱ ∈ ℓ𝑛𝑛(𝒰𝒰,𝒱𝒱).  
The symbol ℓ𝑠𝑠( 𝒰𝒰,𝒱𝒱) denotes the ensemble of all order bounded operators from Riesz space 𝒰𝒰into 
Riesz space 𝒱𝒱, where 𝒱𝒱 is Dedekind complete, which are disjoint from ℓ𝑐𝑐(𝒰𝒰,𝒱𝒱 ), in another 
meaning ℓ𝑠𝑠( 𝒰𝒰,𝒱𝒱) = ℓ𝑐𝑐𝑑𝑑(𝒰𝒰,𝒱𝒱) 
 and its nonzero elements will be mentioned to as singular operators. Because ℓ𝑏𝑏(𝒰𝒰,𝒱𝒱) is a 
Dedekind complete Riesz space, this is given as a following from Theorem 2 that ℓ𝑐𝑐(𝒰𝒰,𝒱𝒱) is a 
projection band, this proves that ℓ𝑏𝑏(𝒰𝒰,𝒱𝒱) =  ℓ𝑐𝑐(𝒰𝒰,𝒱𝒱) ⨁ ℓ𝑠𝑠( 𝒰𝒰,𝒱𝒱). 
 Especially, if ℱ is order bounded operator from Riesz space 𝒰𝒰 into Riesz space 𝒱𝒱, then ℱ has a 
unique decomposition ℱ =  ℱ𝑐𝑐 + ℱ𝑠𝑠;   ℱ𝑐𝑐 ∈ ℓ𝑐𝑐(𝒰𝒰,𝒱𝒱) , ℱ𝑠𝑠 ∈ ℓ𝑠𝑠(𝒰𝒰,𝒱𝒱). The operator ℱ𝑠𝑠 is known as 
singular component, and ℱ𝑐𝑐  is known as the 𝜎𝜎-order continuous component of  ℱ. 
It may happen that ℓ𝑐𝑐( 𝒰𝒰,𝒱𝒱) = { 0 }.  
Another basic imbalance is valuable in numerous considers and was presented by T. Ando, which is 
later called as Ando s inequality. 
If  𝒰𝒰 a Riesz space,  𝑢𝑢 , 𝑣𝑣 ∈ 𝒰𝒰 , and 𝛾𝛾 is a real number, then from identity 𝑢𝑢 − 𝑣𝑣 = (1− 𝛾𝛾)𝑢𝑢 +
(𝛾𝛾𝛾𝛾 − 𝑣𝑣) we find that  

𝑢𝑢 − 𝑣𝑣 ≤ (1− 𝛾𝛾)𝑢𝑢 + (𝛾𝛾𝛾𝛾 − 𝑣𝑣)+ 
The 𝜎𝜎-order continuous the following basic imbalance is valuable in numerous thinks about and 
was presented by 

Theorem 5 supposes that 𝒰𝒰 𝑎𝑎𝑎𝑎𝑎𝑎 𝒱𝒱 are two Riesz spaces where 𝒱𝒱 is Dedekind complete, and  
ℱ:𝒰𝒰 ⟶ 𝒱𝒱  is a positive operator, the following sentences are true ∀ 𝑢𝑢 ∈ 𝒰𝒰 ; 𝑢𝑢 ≥ 0 

1.   ℱ𝑐𝑐(𝑢𝑢) = inf {supℱ ( 𝑢𝑢𝑛𝑛): 0 ≤  𝑢𝑢𝑛𝑛 ↑ 𝑢𝑢}, and  
2.  ℱ𝑛𝑛(𝑢𝑢) = inf {supℱ ( 𝑢𝑢𝛼𝛼): 0 ≤  𝑢𝑢𝛼𝛼 ↑ 𝑢𝑢} . 

Proof: Frist, let’s demonstrate the formula for ℱ𝑛𝑛 
For each positive operator  𝐿𝐿:𝒰𝒰⟶ 𝒱𝒱 define 𝐿𝐿⋄: 𝒰𝒰+ ⟶ 𝒱𝒱+ by 
             𝐿𝐿⋄(𝑢𝑢) = inf {sup 𝐿𝐿 ( 𝑢𝑢𝛼𝛼): 0 ≤  𝑢𝑢𝛼𝛼 ↑ 𝑢𝑢}  ∀ 𝑢𝑢 ∈  𝒰𝒰+. 
Obviously,  0 ≤  𝐿𝐿⋄(𝑢𝑢) ≤ 𝐿𝐿(𝑢𝑢)  ∀ 𝑢𝑢 ∈  𝒰𝒰+ , and  𝐿𝐿⋄(𝑢𝑢) = 𝐿𝐿(𝑢𝑢) whenever 𝐿𝐿 ∈ ℓ𝑛𝑛(𝒰𝒰,𝒱𝒱). 
 Furthermore, it is easy to see that 𝐿𝐿⋄ is improver on 𝒰𝒰+ , and then (use Theorem 1), covers to a 
positive operator from  𝒰𝒰 into 𝒱𝒱. On the other hand, it is easy to see that  𝐿𝐿 ⟶ 𝐿𝐿⋄ from ℓ𝑏𝑏+( 𝒰𝒰,𝒱𝒱) 
into ℓ𝑏𝑏+( 𝒰𝒰,𝒱𝒱) , is likewise additive,  ( 𝐿𝐿1 + 𝐿𝐿2)⋄ = 𝐿𝐿1⋄ + 𝐿𝐿2⋄  satisfies, thus  𝐿𝐿 ⟶ 𝐿𝐿⋄ defines a 
positive Operator Form ℓ𝑏𝑏( 𝒰𝒰,𝒱𝒱) into ℓ𝑏𝑏( 𝒰𝒰,𝒱𝒱). From the inequality 0 ≤  𝐿𝐿⋄  ≤ 𝐿𝐿 can be seen that 
 𝐿𝐿 ⟶ 𝐿𝐿⋄ is ordered continuous,  𝐿𝐿𝛼𝛼 ↓ 0implies 𝐿𝐿𝛼𝛼⋄ ↓ 0. 
Now let  ℱ:𝒰𝒰⟶ 𝒱𝒱  be positive operator that is fixed. It is sufficient to demonstrat that ℱ⋄ is 
ordered continuous. When this is proven, then  ℱ⋄ ≤ ℱ implies ℱ⋄ =  (ℱ⋄)𝑛𝑛 ≤  ℱ𝑛𝑛 , and since  
ℱ𝑛𝑛 ≤ ℱ⋄ holds trivially, we see that  ℱ⋄ =  ℱ𝑛𝑛. Finally, let  0 ≤  𝑣𝑣𝜆𝜆 ↑ 𝑣𝑣 in 𝒱𝒱 it should be shown that  
ℱ⋄( 𝑣𝑣 −  𝑣𝑣𝜆𝜆) ↓ 0 in 𝒱𝒱. 
Fix the interval  𝜀𝜀 ∈ ( 0, 1 ), and suppose  ℱ𝜆𝜆 denote the operator defined by: 

ℱ𝐴𝐴( 𝑢𝑢) = sup{ ℱ(𝑣𝑣): 0 ≤ 𝑣𝑣 ≤ 𝑢𝑢 , 𝑣𝑣 ∈ 𝐴𝐴, 𝑢𝑢 ∈ 𝒰𝒰}  𝐴𝐴 ideal of  𝒰𝒰 
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 that decides with ℱ on the ideal created by ( 𝜀𝜀𝜀𝜀 −  𝑣𝑣𝜆𝜆)+ , disappears on ( 𝜀𝜀𝜀𝜀 −  𝑣𝑣𝜆𝜆)−. Evidently,  
ℱ ≥ ℱ𝜆𝜆 ↓≥ 0 and  ℱ𝜆𝜆( 𝑣𝑣𝜆𝜆 − 𝜀𝜀𝜀𝜀)+ = 0 satisfied  ∀ 𝜆𝜆.  
Let ℱ𝜆𝜆 ↓ 𝐸𝐸 in ℓ𝑏𝑏( 𝒰𝒰,𝒱𝒱). Since  𝑅𝑅( 𝑣𝑣𝜆𝜆 − 𝜀𝜀𝜀𝜀)+ = 0  ∀ 𝜆𝜆 and  0 ≤ ( 𝑣𝑣𝜆𝜆 − 𝜀𝜀𝜀𝜀)+ ↑ (1 − 𝜀𝜀)𝑣𝑣  , this 
means 𝐸𝐸⋄(𝑣𝑣) = 0.  
From the Ando inequality    

0 ≤ ( 𝑣𝑣 −  𝑣𝑣𝜆𝜆)  ≤ (1− 𝜀𝜀)𝑣𝑣 +  ( 𝜀𝜀𝜀𝜀 −  𝑣𝑣𝜆𝜆)+  , it follows that 
     0 ≤ ℱ⋄( 𝑣𝑣 −  𝑣𝑣𝜆𝜆)  ≤ (1− 𝜀𝜀)ℱ⋄(𝑣𝑣) +  ℱ⋄( 𝜀𝜀𝜀𝜀 −  𝑣𝑣𝜆𝜆)+       …….. (1) 

Now due to the reason  0 ≤ 𝑢𝑢 ≤ ( 𝜀𝜀𝜀𝜀 −  𝑣𝑣𝜆𝜆)+  gives   ℱ𝜆𝜆(𝑢𝑢) = ℱ(𝑢𝑢), the following gives: 
        ℱ⋄(( 𝜀𝜀𝜀𝜀 −  𝑣𝑣𝜆𝜆)+) = 𝑖𝑖𝑖𝑖𝑖𝑖 {𝑠𝑠𝑠𝑠𝑠𝑠ℱ ( 𝑢𝑢𝛼𝛼): 0 ≤  𝑢𝑢𝛼𝛼 ↑  ( 𝜀𝜀𝜀𝜀 −  𝑣𝑣𝜆𝜆)+}   

                    = 𝑖𝑖𝑖𝑖𝑖𝑖 {𝑠𝑠𝑠𝑠𝑠𝑠ℱ𝜆𝜆 ( 𝑢𝑢𝛼𝛼): 0 ≤  𝑢𝑢𝛼𝛼 ↑  ( 𝜀𝜀𝜀𝜀 −  𝑣𝑣𝜆𝜆)+}   
                              =  ℱ𝜆𝜆⋄( 𝜀𝜀𝜀𝜀 −  𝑣𝑣𝜆𝜆)+ ≤ ℱ𝜆𝜆⋄(𝑣𝑣) 
By substituting into the equation (1) the following is obtained:   

                  0 ≤ ℱ⋄( 𝑣𝑣 −  𝑣𝑣𝜆𝜆)  ≤ (1 − 𝜀𝜀)ℱ⋄(𝑣𝑣) +  ℱ𝜆𝜆⋄(𝑣𝑣)      ……… (2) 
Since 𝐿𝐿 ⟶ 𝐿𝐿⋄ is order continuous and ℱ𝜆𝜆 ↓ 𝐸𝐸 , this means that   ℱ𝜆𝜆⋄  ↓ 𝐸𝐸⋄, in other words,  ℱ𝜆𝜆⋄(𝑣𝑣) ↓
𝐸𝐸⋄(𝑣𝑣) = 0 applying inequality (2) we get  

0 ≤ inf { ℱ⋄( 𝑣𝑣 −  𝑣𝑣𝜆𝜆)}  ≤ (1− 𝜀𝜀) ℱ⋄(𝑣𝑣)   
satisfied for all  0 < 𝜀𝜀 < 1, therefore   ℱ⋄( 𝑣𝑣 −  𝑣𝑣𝜆𝜆)  ↓ 0  , as desired.  
Let us assume that the order bounded operator  ℱ:𝒰𝒰 ⟶ 𝒱𝒱 is between the two Riesz spaces 𝒰𝒰,𝒱𝒱 
where 𝒱𝒱  is Dedekind completed. Then define the null ideal by  𝑁𝑁ℱ of  ℱ as follows: 

𝑁𝑁ℱ = { 𝑢𝑢 ∈ 𝒰𝒰: |ℱ|( |𝑢𝑢|) = 0} 
It can be seen that 𝑁𝑁ℱ is ideal of  𝒰𝒰. 
The carrier of  ℱ is defined as the disjoint complement of 𝑁𝑁ℱ, which is denoted by the symbol 𝐶𝐶ℱ, 
meaning that:   

𝐶𝐶ℱ = 𝑁𝑁ℱ𝑑𝑑{ 𝑢𝑢 ∈ 𝒰𝒰: 𝑢𝑢 ⊥ 𝑁𝑁ℱ} 
obviously,  |ℱ| is positive on 𝐶𝐶ℱ, 0 < 𝑢𝑢 < 𝐶𝐶ℱ  ⇔  0 < |ℱ|(𝑢𝑢). 
 The following example shows that if the operator is order bounded and is order continuous, then its 
null ideal is a band, but the opposite is not true. 
 

Example 2 assume that 𝒰𝒰 is an infinite set, and that 𝒰𝒰∞ = 𝒰𝒰 ∪ {∞} is  the One-point 
compactification of  𝒰𝒰  considered with the Discrete Topology, Therefore, a function 𝑔𝑔: 𝒰𝒰⟶ ℛ  
belongs to  𝐶𝐶(𝒰𝒰∞)  ⟺ there is at least one constant  a (depending on 𝑔𝑔 ) so that ∀  𝜀𝜀 > 0 , there is   
|𝑔𝑔(ℎ)− 𝑎𝑎| < 𝜀𝜀  ∀ values of 𝑢𝑢 except a limited number of 𝑢𝑢, this mean that 𝑔𝑔(∞) = 𝑎𝑎. 
Now let’s make a fixed countable subset {𝑢𝑢1 ,𝑢𝑢2 , … }  of  𝒰𝒰, and then define the operator  
ℱ:𝐶𝐶(𝒰𝒰∞) ⟶ℛ   by 
                  ℱ(𝑔𝑔) = 𝑔𝑔(∞) + ∑ 2−𝑛𝑛𝑔𝑔(𝑢𝑢𝑛𝑛)∞

1  
It is clear that ℱ is a positive operator, also  
                     𝑁𝑁ℱ = {𝑔𝑔 𝜖𝜖 𝐶𝐶(𝒰𝒰∞):𝑔𝑔(𝑢𝑢𝑛𝑛) = 0 ,∀ 𝑛𝑛 = 1,2, … } 
because 𝑔𝑔𝛼𝛼 ↑ 𝑔𝑔 satisfies in 𝐶𝐶(𝒰𝒰∞)  ⟺   𝑔𝑔𝛼𝛼(𝑢𝑢) ↑ 𝑔𝑔(𝑢𝑢) satisfies in ℛ   ∀ 𝑢𝑢 ∈ 𝒰𝒰 , it gives that 𝑁𝑁ℱ is a 
band of  𝐶𝐶(𝒰𝒰∞), however, we assertion that ℱ is not order continuous. 
To make sure in this, suppose the net {𝑢𝑢𝛼𝛼}  ⸦ 𝐶𝐶(𝒰𝒰∞) with 𝛼𝛼  goes over the collection of all finite 
subsets of  𝒰𝒰 Therefore, 0 ≤ 𝑢𝑢𝛼𝛼 ↑  1 satisfies in 𝐶𝐶(𝒰𝒰∞)  Although ℱ(𝑢𝑢𝛼𝛼) not implies ℱ(𝟏𝟏).  
Moreover, it is motivating to see that if 𝒰𝒰 countable, thus ℱ is not 𝜎𝜎-order continuous, whereas if 𝒰𝒰 
is uncountable, then ℱ must be 𝜎𝜎-order continuous. 
ideal 𝐴𝐴 is said to be 𝜎𝜎-ideal if the following is true  {𝑢𝑢𝑛𝑛} ⊆ 𝐴𝐴 , 0 ≤ 𝑢𝑢𝑛𝑛 ↑ 𝑢𝑢 ⇒ 𝑢𝑢 ∈ 𝐴𝐴.  
 
Theorem 6:   If  ℱ:𝒰𝒰⟶ 𝒱𝒱 is order bounded operator between two Riesz spaces with 𝒱𝒱 Dedekind 
complete, and 𝐴𝐴ℱ  is the ideal generated by ℱ  in ℓ𝑏𝑏( 𝒰𝒰,𝒱𝒱), then ℱ achieves the following: 

1.  the null ideal  𝑁𝑁𝐿𝐿 is a band for any  𝐿𝐿 ∈ 𝐴𝐴ℱ  ⇔   ℱ is order continuous. 
2. the null ideal 𝑁𝑁𝐿𝐿  is a 𝜎𝜎-ideal for any operator 𝐿𝐿 ∈ 𝐴𝐴ℱ  ⇔  ℱ is 𝜎𝜎-order continuous. 
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Proof: To begin it’s important only to prove (1) because the proof of (2) is similar. The "only if" 
part follows directly from Theorem 3 for the "if" part (in view of Theorem 3) we can suppose that 
ℱ ≥ 0 , let 0 ≤ 𝑢𝑢𝛼𝛼 ↑ 𝑢𝑢  in  𝒰𝒰 and 0 ≤ ℱ(𝑢𝑢𝛼𝛼) ↑ 𝑣𝑣 ≤ ℱ(𝑢𝑢) in 𝒱𝒱. The next to be shown ℱ(𝑢𝑢) = 𝑣𝑣. 
By the end, assume 0 < 𝜀𝜀 < 1 ∀𝛼𝛼,  let ℱ𝛼𝛼 be the operator given by relation (1) in Theorem 2 that 
approves with  ℱ on the ideal created by (𝜀𝜀𝜀𝜀 − 𝑢𝑢𝛼𝛼)+and vanishes on (𝜀𝜀𝜀𝜀 − 𝑢𝑢𝛼𝛼)− , it is clear that: 
ℱ ≥ ℱ𝛼𝛼 ↑≥ 0 ,and  ℱ𝛼𝛼(𝜀𝜀𝜀𝜀 − 𝑢𝑢𝛼𝛼)− for every 𝛼𝛼, let  ℱ𝛼𝛼 ↓ 𝐿𝐿 ≥ 0 in ℓ𝑏𝑏( 𝒰𝒰,𝒱𝒱) it is clear that  𝐿𝐿 ∈ 𝐴𝐴ℱ, 
and 𝐿𝐿(𝜀𝜀𝜀𝜀 − 𝑢𝑢𝛼𝛼)− = 0  satisfies   ∀ 𝛼𝛼 and so {(𝜀𝜀𝜀𝜀 − 𝑢𝑢𝛼𝛼)−} ⊆ 𝑁𝑁𝐿𝐿 However, 0 ≤ (𝜀𝜀𝜀𝜀 − 𝑢𝑢𝛼𝛼)− ↑
(1 − 𝜀𝜀)𝑢𝑢 in 𝒰𝒰 and thus, because by our hypothesis 𝑁𝑁𝐿𝐿 is a band, 𝑢𝑢 ∈ 𝑁𝑁𝐿𝐿 In conclusion, 𝐿𝐿(𝑢𝑢) = 0 
Finally, the relation: 
 
                   0 ≤ ℱ(𝜀𝜀𝜀𝜀 − 𝑢𝑢𝛼𝛼)+ =  ℱ𝛼𝛼(𝜀𝜀𝜀𝜀 − 𝑢𝑢)+ ≤  ℱ𝛼𝛼(𝑢𝑢) 
 
combined upon Ando is inequality  0 ≤ 𝑢𝑢 − 𝑢𝑢𝛼𝛼 ≤ (1− 𝜀𝜀)𝑢𝑢 + (𝜀𝜀𝜀𝜀 − 𝑢𝑢𝛼𝛼)+ implies  0 ≤ ℱ(𝑢𝑢)−
𝑣𝑣 ≤ ℱ(𝑢𝑢 − 𝑢𝑢𝛼𝛼) ≤ (1 − 𝜀𝜀)ℱ(𝑢𝑢) + ℱ(𝜀𝜀𝜀𝜀 − 𝑢𝑢𝛼𝛼)+ ≤ (1− 𝜀𝜀)ℱ(𝑢𝑢) + ℱ𝛼𝛼(𝑢𝑢)  
 Considering that ℱ𝛼𝛼(𝑢𝑢) ↓ 𝐿𝐿(𝑢𝑢) = 0 the last inequality yields  0 ≤ ℱ(𝑢𝑢) − 𝑣𝑣 ≤ (1 − 𝜀𝜀) ℱ(𝑢𝑢)  
∀ 𝜀𝜀 ∈ (0,1)  Hence,  ℱ(𝑢𝑢) = 𝑣𝑣 holds. 
To clarify the previous theorem, suppose the operator ℱ:𝐶𝐶(𝐻𝐻∞) → 𝑅𝑅 is defined as in the previous 
example by 

ℱ(𝑔𝑔) = 𝑔𝑔(∞) + � 2−𝑛𝑛𝑔𝑔(ℎ𝑛𝑛)
∞

1

 

As it has been seen before,  
𝑁𝑁𝐹𝐹 = {𝑔𝑔 ∈ 𝐶𝐶(𝐻𝐻∞):𝑔𝑔(ℎ𝑛𝑛) = 0 ∀ 𝑛𝑛 = 1,2, … }, and this means that 𝑁𝑁𝐹𝐹 is a band of  𝐶𝐶(𝐻𝐻∞). On the 
other hand, if 𝐿𝐿:𝐶𝐶(𝐻𝐻∞) → 𝑅𝑅   is defined by 

𝐿𝐿(𝑔𝑔) = 𝑔𝑔(∞) 
Then  is a positive operator satisfying 0 ≤ 𝐿𝐿 ≤ ℱ, it is clear that 𝑁𝑁𝐿𝐿 = {𝑔𝑔 ∈ 𝐶𝐶(𝐻𝐻∞):𝑔𝑔(∞) = 0},  
it is clear that the net {ℎ𝛼𝛼}  of all characteristic functions of the finite subsets of H satisfies {ℎ𝑛𝑛} ⸦ 
𝑁𝑁𝐿𝐿 and ℎ𝛼𝛼 ↑ 𝟏𝟏,  as  1 , not that 𝑁𝑁𝐿𝐿 is not a band of 𝐶𝐶(𝐻𝐻∞) , in accordance with Theorem 6 (1), 
let 𝒰𝒰 and 𝒱𝒱 be two Riesz spaces with 𝒱𝒱 Dedekind complete, if 𝐶𝐶ℱ = {0}, then ℱ ∈ ℓ𝑏𝑏(𝒰𝒰,𝒱𝒱 ) is 
said to have zero carrier. It is clear to see that the zero administrators are arranged as persistent 
administrators with zero carriers. On the other hand, if 𝐶𝐶ℱ = {0} , then ℱ ⊥ ℓ𝑏𝑏( 𝒰𝒰,𝒱𝒱) . (To see this, 
write ℱ = ℱ𝑛𝑛 + ℱ𝜎𝜎, and note that |ℱ| = |ℱ𝑛𝑛| + |ℱ𝜎𝜎| So  𝑁𝑁ℱ ⊆ 𝑁𝑁ℱ𝑛𝑛 , hence depending on the order 
denseness of 𝑁𝑁ℱ note that   𝑁𝑁ℱ𝑛𝑛 = 𝒰𝒰, ℱ𝑛𝑛 = 0  and so ℱ = ℱ𝜎𝜎 ∈ ℓ𝑏𝑏(𝒰𝒰,𝒱𝒱) , From  |ℱ + 𝐿𝐿| ≤ |ℱ| +
|𝐿𝐿|, it follows that 𝑁𝑁ℱ ∩ 𝑁𝑁𝐿𝐿 ⊆ 𝑁𝑁𝐿𝐿+ℱ , and utilizing the truth that the crossing point of two arrange 
thick beliefs is an arrange thick perfect, note that the administrators of ℓ𝑏𝑏( 𝒰𝒰,𝒱𝒱)  with zero carriers 
shape a perfect.  
Another hypothesis tells us that this perfect is continuously arranged thick in ℓ𝑏𝑏(𝒰𝒰,𝒱𝒱 ). 

Theorem 7:  Let 𝒰𝒰 and 𝒱𝒱  be two Riesz spaces with 𝒱𝒱 Dedekind complete. Then the ideal 
ℱ ∈ ℓ𝜎𝜎(𝒰𝒰,𝒱𝒱): 𝐶𝐶𝑟𝑟 = {0} is order dense in ℓ𝜎𝜎( 𝒰𝒰,𝒱𝒱). 

Proof: since the set  ℱ ∈ ℓ𝜎𝜎(𝒰𝒰,𝒱𝒱): 𝐶𝐶𝑟𝑟 = {0}  is an ideal in ℓ𝜎𝜎(𝒰𝒰,𝒱𝒱), let ℱ ∈ ℓ𝜎𝜎(𝒰𝒰,𝒱𝒱) is the 
positive operator with zero carrier. 
Since ℱ is not order continuous, there exists (use Theorem 6) an operator 0 ≤ 𝐿𝐿 ≤ ℱ where 𝑁𝑁𝐿𝐿 is 
not a band, denote by  the band created by 𝑁𝑁𝐿𝐿, then let  be the operator firm by Theorem 6 
where 𝑅𝑅 = 𝐿𝐿 on  𝑅𝑅 = 0 and  مراجعة on , it is clear that 𝑁𝑁𝐿𝐿 ⊆ 𝑁𝑁𝑅𝑅, and 0 ≤ 𝑅𝑅 ≤ 𝐿𝐿. On the other 
hand, later 𝑅𝑅 = 0 holds on 𝐶𝐶𝐿𝐿 = 𝑁𝑁𝐿𝐿𝑑𝑑 = 𝐵𝐵𝑑𝑑 , we see that 𝑁𝑁𝐿𝐿 ⨁𝐶𝐶𝐿𝐿 ⊆ 𝑁𝑁𝑅𝑅 , and this (in the opinion of 
Theorem 2) shows that 𝑁𝑁𝑅𝑅 is order dense in 𝒰𝒰,  this mean that  has zero carrier, finally note that 
0 ≤ 𝑅𝑅 ≤ ℱ holds. 
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From the previous theorem we know that  ℓ𝜎𝜎(𝒰𝒰,𝒱𝒱) = {0} (means that ℓ𝑏𝑏( 𝒰𝒰,𝒱𝒱) = ℓ𝑛𝑛( 𝒰𝒰,𝒱𝒱) ) if 
and only if any nonzero operator between two Riesz spaces 𝒰𝒰 and 𝒱𝒱 has a nonzero carrier.  
The following theorem explains some important relationships for order bounded operators. 

Theorem 8 Alibrandi’s and Burkinshaw (Aliprantis & Burkinshaw, 1983):  For a pair of Riesz 
spaces 𝒰𝒰  and 𝒱𝒱 with 𝒱𝒱 Dedekind complete, the following statements are equivalent: 
1. Every order bounded operator from 𝒰𝒰 into 𝒱𝒱 is order continuous. 
2. Every nonzero order bounded operator from 𝒰𝒰 into 𝒱𝒱 has a nonzero carrier. 
3. The null ideal of every order bounded operator from 𝒰𝒰 into 𝒱𝒱 is a band. 
The following result shows that when an operator is order continuous on a given ideal.  

Theorem 9 Let ℱ:𝒰𝒰⟶ 𝒱𝒱  be a positive operator between two Riesz space with 𝒱𝒱 Dedekind 
complete, and let U be an ideal of 𝒰𝒰. Then the operator ℱ is order (resp 𝛿𝛿- order) continuous on U 
if and only if  ℱ𝑈𝑈 is an order (resp  𝛿𝛿-order) continuous operator. 
Proof: first, the result of the "order continuous" case is proven. After that, the " 𝜎𝜎-order continuous" 
case is proven in a similar way. the operator ℱ𝑈𝑈 is decided as follows: 
                         ℱ𝑈𝑈(𝑢𝑢) = sup{ℱ(𝑣𝑣): 𝑣𝑣 ∈ 𝑈𝑈 𝑎𝑎𝑎𝑎𝑎𝑎 0 ≤ 𝑣𝑣 ≤ 𝑢𝑢} ; 
whereas  ℱ𝑈𝑈 = ℱ ∀ 𝑢𝑢 ∈ 𝑈𝑈, it is clear that if  ℱ𝑈𝑈 is an order continuous operator, then ℱ must be 
order continuous on . 
 to prove the opposite direction, let ℱ is order continuous on 𝑈𝑈, and 0 ≤ 𝑢𝑢𝛼𝛼 ↑ 𝑢𝑢   in 𝒰𝒰, let  
ℱ𝑈𝑈 (𝑢𝑢𝛼𝛼) ↑ 𝑠𝑠 ≤ ℱ𝑈𝑈 (𝑢𝑢). Now fix  𝑣𝑣 ∈ 𝑈𝑈⋂[0,𝑢𝑢] . Then  0 ≤ 𝑣𝑣 ∧ 𝑢𝑢𝛼𝛼 ↑ 𝑣𝑣   holds in U, and so 
ℱ(𝑣𝑣 ∧ 𝑢𝑢𝛼𝛼 ) ↑ ℱ(𝑣𝑣) holds in 𝒱𝒱. From  

ℱ(𝑣𝑣 ∧ 𝑢𝑢𝛼𝛼 ) =  ℱ𝐴𝐴(𝑣𝑣 ∧ 𝑢𝑢𝛼𝛼 ) ≤ 𝑠𝑠 ≤ ℱ𝐴𝐴(𝑢𝑢) , 
It follows that  ℱ(𝑣𝑣 ) ≤ 𝑠𝑠 ≤ ℱ𝑈𝑈(𝑢𝑢)  holds   ∀𝑣𝑣 ∈ 𝑈𝑈⋂[0,𝑢𝑢] Hence, 

ℱ𝑈𝑈(𝑢𝑢) = supℱ(𝑈𝑈 ⋂[0,𝑢𝑢])  ≤ 𝑠𝑠 ≤ ℱ𝐴𝐴 (𝑢𝑢), 
and so ℱ𝑈𝑈 = 𝑠𝑠  holds, proving that ℱ𝑈𝑈 is an order continuous operator. 
 

CONCLUSION 
 
To Sum up, we concluded the positive order continuous operator ℱ:𝐻𝐻 ⟶ 𝒱𝒱 where  is order 
dense majorizing Riesz subspace of Riesz space 𝒰𝒰 and 𝒱𝒱 is Dedekind complete, it has a unique 
order continuous extension on all Riesz space 𝒰𝒰, it defined as  

ℱ(𝑢𝑢) = sup{ℱ( ℎ ):ℎ ∈ 𝐻𝐻 , 0 ≤ ℎ ≤ 𝑢𝑢}; 𝑢𝑢 ∈ 𝒰𝒰+ 
The evidence of this result is as follows: 

Since 𝐻𝐻 majorizes 𝒰𝒰 then: 

𝐸𝐸(𝑢𝑢) = sup{ℱ ( ℎ ): ℎ ∈ 𝐻𝐻 , 0 ≤ ℎ ≤ 𝑢𝑢} located in 𝒱𝒱   ∀ 𝑢𝑢 ∈ 𝒰𝒰+, now see: 
 If {𝑢𝑢𝑛𝑛} ⊆ 𝐻𝐻  when  0 ≤ 𝑢𝑢𝛼𝛼 ↑ 𝑢𝑢 then ℱ(𝑢𝑢𝛼𝛼) ↑ 𝐸𝐸(𝑢𝑢𝛼𝛼), and if  0 ≤ ℎ ∈ 𝐻𝐻 when 0 ≤ ℎ ≤ 𝑢𝑢, then 
0 ≤ 𝑢𝑢𝛼𝛼 ∧ ℎ ↑ ℎ satisfies in H, from the order continuity of  ℱ :𝐻𝐻 → 𝒱𝒱  is:    

≤ 𝑠𝑠𝑠𝑠𝑠𝑠{ℱ(𝑢𝑢𝛼𝛼)}  ≤ 𝐸𝐸(𝑢𝑢)                            ℱ(ℎ) = 𝑠𝑠𝑠𝑠𝑠𝑠{ℱ(𝑢𝑢𝛼𝛼 ∧ ℎ)} 
This gives that  ℱ(𝑢𝑢𝛼𝛼) ↑ 𝐸𝐸(𝑢𝑢). 

 let 𝑢𝑢, ℎ ∈ 𝒰𝒰+, choose nets {𝑢𝑢𝛼𝛼} and  �ℎ𝛽𝛽� of  𝐻𝐻+ whereas 0 ≤ 𝑢𝑢𝛼𝛼 ↑ 𝑢𝑢  and 0 ≤ ℎ𝛽𝛽 ↑ ℎ , this implies 
to that 0 ≤ 𝑢𝑢𝛼𝛼 + ℎ𝛽𝛽 ↑ 𝑢𝑢 + ℎ holds in  𝐻𝐻+, and so 

ℱ(𝑢𝑢𝛼𝛼) + ℱ(ℎ𝛽𝛽) = ℱ(𝑢𝑢𝛼𝛼 + ℎ𝛽𝛽) ↑ 𝐸𝐸(𝑢𝑢 + ℎ) . 
  from  ℱ(𝑢𝑢𝛼𝛼) ↑ 𝐸𝐸(𝑢𝑢) and  ℱ(ℎ𝛽𝛽) ↑ 𝐸𝐸(ℎ)  ⟹ 𝐸𝐸(𝑢𝑢 + ℎ) = 𝐸𝐸(𝑢𝑢) + 𝐸𝐸(ℎ)  holds, and 𝐸𝐸 :𝒰𝒰+ →𝒱𝒱+ is 
additive operator, returning to theorem 1, ℱ extends uniquely to  𝐸𝐸:𝒰𝒰 ⟶ 𝒱𝒱, this means 𝐸𝐸 is an 
extension of  ℱ. 
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