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INTRODUCTION

In linear algebra and functional analysis, the operator F: U — V where U and V are Riesz spaces
0 0

is defined as an order continuous operator whenever u, — 0 in U gives F(u,) = 0 insideV; and

o-order continuous whenever u, 5 0 in U implies F (u,) 5 0 in V. Many researchers studied this
topic, and some of these previous studies have proven the theory of extending the positive order
continuous operators(Veksler, 1960). Another study defined new classes of operators, which are so-
called unbounded order continuous and further boundedly unbounded order continuous operators
and gave extra settings under which uo-continuity is equivalent to order continuity of some
operators on Riesz spaces (Bahramnezhad & Azar, 2018). The report investigated the relationships
located between order to topology continuous operators and different types of operators for example
b-weakly compact, order weakly compact and order continuous operators, and studied adjoint of
order to norm continuous operators (Jalili et al., 2021). While recent study extends the properties of
unbounded order continuous operators from U Riesz space into R (Turan et al., 2022). Aydin and
Gorokhova studied the concept of statistically continuous and bounded operators with statistically
ordered convergent sequences on Riesz spaces (Aydin & Statistics, 2023). In this paper, some basic
results from the theory of order continuous operators were studied with proofs as needed. First, this
work introduces some of its types: g-order continuous operators, order bounded operators, singular
operators, and order continuous components of the positive operator, in addition, it shows some of
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their properties as well as the relations between them, then it studied of describing the group of all
continuously ordered operators and some their useful characterizations and some of its application.

Concepts and Theories:

Definition 1 from previous study (Abramovich & Aliprantis, 2002):

F:U - V is called positive if F(u) =0Vu€eU;u=0.

The beginning point within ~ the theory of positive administrators may be a  principal
expansion theorem of Kantorovic (Kantorovitch, 1940), who proved that additive operator F: Ut —
V*to be the constraint of a single positive operator from U into V. The details follow.

Theorem 1 by Kantorovic (Kantorovitch, 1940)
If F:U* - V7 is an additive operator, then F has a uniquely positive extension to the entire space
U, the unique extension (denoted by F again) is given by

FwW)=Fu")—-Fu) VueXx

Definition 2 from previous study (Kreyszig, 1978):
The disjoint complement V¢ is defined as follows:
Vi={u €U:ulv Vv €V} Where V% means (V%)%.

Definition 3 from previous study (Aliprantis & Burkinshaw, 1985):

If U Riesz space and U € ‘U , then U is named solid if Vu € U, v € U and |u| < |v| gives v €
U.

If U is solid sub space from U, then U is named Ideal of space U.

Definition 4 John (John, 1990):
The ordered closed ideal is mentioned to be a band.

Definition 5 Aliprntis (Aliprantis & Burkinshaw, 1985):

If B is a band in Riesz space U and the following condition U = B @ B¢ is met, then B is called a
projection band.

The band does not have to be a projection band; we need to mention the following theorem which
was proven by Riesz (Riesz, 2000).

Theorem 2 Aliprntis (Aliprantis & Burkinshaw, 1985):
If B is a vector which is a band in a Dedekind of complete Riesz space U, formerly U = B @ B¢
satisfied.

Definition 6 Ogasawara (Ogasawara, 1942). A net {u,} in a Riesz space is called the order
convergent to u whenever there exists a net { v, } with the same indexed set satisfying |u, —u| <

0
v, | 0 it is referred to as: u, = u

Definition 7 Ogasawara (Ogasawara, 1942): The operator F: U — V where U and V are two
Riesz spaces is named to be

0 0
(a) Ordered continuous, if u, = 0 inside U then F(u,) = 0in V.

(b) §- ordered continuous, if u, b 0 inside U then F (uy, b 0inV.

It is valuable to remember that a positive operator F: U — V is ordered continuous & u, | 0 in
U gives F(uy) L 0 inV (moreover & 0 <u, TuinU gives F(u,) T F(u) in V).

the next example proves that §- order continuous does not have to be an ordered continuous
operator.
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Example 1 Let U the vector space of all real functions that are Lebesgue integrable on the period
0 <u < 1. It is clear that any two functions that are not equal at one point are considered two
unequal functions, meaning of that P > Q for all 0 < u < 1, this is called the law of pointwise
ordering of functions, U describes a Riesz space (for more details a function space). Further, see
that P, TP appliedinU <& P, (u) TP(u) satisfied ofall 0 < u < 1in ‘K.
If the operator F: U — R is defined as follows

F(P) =[P (u)du
It is clear that F is not an order continuous operator that is also positive, hence from the Lebesgue
Dominated Convergence theory it is clear that F is §- order continuous.

The following theorem shows that order continuous operators that are order bounded have a sum of
useful characterizations.

Theorem 3 If U,V are Riesz spaces where Y is Dedekind complete, and F: U — V is bounded
ordered operator, then following arguments are equivalent:
a) The operator F is continuous.

b) Ifu, | 0 gives in U, then F(u,) b 0 inV.

¢) If u, ! 0givesin U, then inf { |F(uy, )|} =0inV.
d) F* and F~are together order continuous.

e) |F| is ordered continuous.

Proof: a) — b) and b) — c) are clear.

¢) — d) to prove this paragraph, it is sufficient to prove that F7* is order continuous, suppose
U, 1 0inU,and F*(uy,)ds =0in V. It is need to prove that s = 0, Make some f fixed and
letu = ug.
NowVv €[o,u]landVa = f is:

0 Sv—vAu, =V Au—v Auyg SuU—1U,
This means that:
Fw)—Fw—u,)=Fw—-vAu,) <F"(u— u,) = F"(uw) — F*(uy)Therefore
0 Ss<F'(ug) <F"W+I|FwAu )l -Flw)  .......... (*)

applies Va=fand VO <v<wu, since VO <v<u gives VAU l4>p 0 this means
that it fulfills the hypothesis infy»z{ |F (v Augy)|} = 0, referring to the inequality (*) note that
0 <s<F*(u) —F) satisfies V 0 <v<u, from Ft(u) =sup{F():0<v <u}, recent
inequality leads to that s = 0 ,this is what is required,
d) — e) since |F| = F* + F~, this means that |F| is order continuous,
¢) — a) this can be easily proven by applying the inequality |F (w)| < |F|(lul) .
theorem 3 is true for o-order continuous operators, and this can be proven in the same way as
before.
The combination of all ordered continuous operators of ¥, (U, V) is represented by the symbol
£, (U,V).
The symbol £, (U, v) indicates that the order continuous operators are in addition normal operators,
in another meaning:

£,(U,V)={F € £,(UV);F is order continuous}.
The symbol ¢.(U,V) symbolizes the collection of all ordered bounded operators from U into V
which are g-ordered continuous, in another meaning:

Obviously, £,(U, V), £.(U,v) £.(UV)={F € £,(U,V);F is o-order continuous}
are both two vectors subspaces of £, (U, V) furthermore £,,(U, V) € £.(U, V) satisfied. Once V is
Dedekind complete. T. Ogasawara [14] proved that together £,,(U, V) , £.(U, V) are seen as bands
of £,(U,V), The next theorems and details follow.
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Theorem 4 Ogasawara (Ogasawara, 1942): If U,V are two Riesz spaces where V is Dedekind
complete, this means that €,,(U, V) , £.(U, V) are together bands of £, (U, V).
Proof: It shall create that £,(U,V) is a band of #,(U,V). That £.(U,V) is a band can
be demonstrated in a comparable way.
See firstly that if |E| < |F| satiefies in €, (U, V) with F € £,(U, V) , therefore from Theorem 3
gives that E € £,,(U, V), which is, £,,(U, V) is an ideal of £, (U, V) .
To prove that £,(U,V) is a band, let 0< F(u) TF(u) inside €,(U,V) with {F} <
£,(U, V), and assume that 0 < u, T u in U At that time for 4 fixed. We have
0 <F(u-uy) < (F)-F @)+ F(u—uy)
Since u — u, 4 0 means that
0<inf{lF (u—uy)} <(Flw) —F(u)) VA
This shows that F — F, L 0 = inf(F (u —u,)) = 0 and then F(u,) T F(u), In conclusion
F e, (U7V).
The symbol £4( U, V) denotes the ensemble of all order bounded operators from Riesz space Uinto
Riesz space V, where V is Dedekind complete, which are disjoint from £.(U,V ), in another
meaning £,( U, V) = £4(U, V)
and its nonzero elements will be mentioned to as singular operators. Because €, (U, V) is a
Dedekind complete Riesz space, this is given as a following from Theorem 2 that £.(U, V) is a
projection band, this proves that £, (U, V) = £.(U, V) & £,(U,V).
Especially, if F is order bounded operator from Riesz space U into Riesz space V, then F has a
unique decomposition F = F, + F;; F. € £.(U, V), F € £,(U, V). The operator F is known as
singular component, and F, is known as the o-order continuous component of F.
It may happen that £.(U, V) ={0}.
Another basic imbalance is valuable in numerous considers and was presented by T. Ando, which is
later called as Ando s inequality.
If U a Riesz space, u,v € U, and y is a real number, then from identity u — v = (1 — y)u +
(yu — v) we find that
u—v<A-pu+@yu—-o)*
The o-order continuous the following basic imbalance is valuable in numerous thinks about and
was presented by

Theorem 5 supposes that U and V are two Riesz spaces where V is Dedekind complete, and
F:U — V is apositive operator, the following sentences are trueVu € U;u =0

1. F.(u) =inf{supF (u,):0 < u, Tu}, and

2. F,(uw)=inf{supF (u,):0 < u, Tu}.

Proof: Frist, let’s demonstrate the formula for F,
For each positive operator L: U — V define L°: Ut — V* by

L'(u) =inf{supL (u,):0 < u, Tu} Vu e U*.
Obviously, 0 < L°(u) <L(u) Yu € U*,and L°(u) = L(u) whenever L € £,(U, V).
Furthermore, it is easy to see that L’ is improver on U* , and then (use Theorem 1), covers to a
positive operator from U into V. On the other hand, it is easy to see that L — L° from ¢} (U, V)
into 3 (U,7V) , is likewise additive, (L, + L,)° = L} + L%, satisfies, thus L — L° defines a
positive Operator Form £, (U, V) into €, ( U, V). From the inequality 0 < L° < L can be seen that
L — L° is ordered continuous, L, | Oimplies Ly, { 0.
Now let F:U — V be positive operator that is fixed. It is sufficient to demonstrat that F° is
ordered continuous. When this is proven, then F° < F implies F° = (F°), < F, , and since
F. < F° holds trivially, we see that F° = F,. Finally, let 0 < v, T v inV it should be shown that
F(v—1v)1l0inV.
Fix the interval ¢ € (0,1), and suppose F, denote the operator defined by:

Fulu) =sup{Fw):0<v<u,veEAu €U} Aideal of U
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that decides with F on the ideal created by (ev — v;)* , disappears on (v — v;)~. Evidently,
F=>F,l=0and Fy(v, —ev)t = 0 satisfied V A.
Let F, LE in £,(U,V). Since R(vy—ev)t=0 VA and 0<(vy;—ev)* T(1—¢)v, this
means E°(v) = 0.
From the Ando inequality
0 <(v—1vy) <A-8v+ (ev— vy* , it follows that

0 <F(v—v) <A-8F W+ F'(ev— vt ... (1)

Now due to the reason 0 < u < (ev — v)* gives F;(u) = F(u), the following gives:
Fllev—v)Y) =inf {supF (uy):0< u, T (ev— vy)*}
=inf {supFy (ugr):0< u, T (ev— vy)*}
= Fi(ev - v)* < F )
By substituting into the equation (1) the following is obtained:
0 <F(v—v) <A-F W)+ Fi(v) ... (2)
Since L — L° is order continuous and F; | E , this means that F; | E°, in other words, F;(v) |
E°(v) = 0 applying inequality (2) we get
0 <inf{ F(v—v))} <(A—-¢)F(v)
satisfied for all 0 < € < 1, therefore F°(v — v;) 1 0 , as desired.
Let us assume that the order bounded operator F:U — V is between the two Riesz spaces U, V
where V is Dedekind completed. Then define the null ideal by Nz of F as follows:
Ny = {u € U: |F|(|ul) = 0}
It can be seen that Ny is ideal of U.
The carrier of F is defined as the disjoint complement of N, which is denoted by the symbol C#,
meaning that:
Cr = N2{u€U:ul Ng}

obviously, |F| is positiveon Cz, 0 <u < Cr & 0 < |F|(u).
The following example shows that if the operator is order bounded and is order continuous, then its
null ideal is a band, but the opposite is not true.

Example 2 assume that U is an infinite set, and that U, = U U {0} is the One-point
compactification of U considered with the Discrete Topology, Therefore, a function g: U — R
belongs to C(U,) < there is at least one constant a (depending on g ) so that V & > 0 , there is

|g(h) — a|] < & V values of u except a limited number of u, this mean that g() = a.
Now let’s make a fixed countable subset {u;,u,,..} of U, and then define the operator
F:C(Uo) — R by

F(g) =g() + X7 27" g(up)
It is clear that F is a positive operator, also

Ne={geC(Us):g(u,) =0,vn=12,..}

because g, T g satisfies in C(U,) & g,(u) T g(u) satisfiesin R Vu € U, it gives that N is a
band of C(U ), however, we assertion that F is not order continuous.
To make sure in this, suppose the net {u,} = C(U,) with @ goes over the collection of all finite
subsets of U Therefore, 0 < u, T 1 satisfies in C(U,) Although F(u,) not implies F(1).
Moreover, it is motivating to see that if U countable, thus F is not g-order continuous, whereas if U
is uncountable, then F must be o-order continuous.
ideal A is said to be g-ideal if the following is true {u,} € A,0<u, Tu = u € A.

Theorem 6: If F:U — V is order bounded operator between two Riesz spaces with 1V Dedekind
complete, and Az is the ideal generated by F in £, ( U, V), then F achieves the following:

1. the null ideal N, is a band for any L € Ay & F is order continuous.

2. the null ideal N;, is a o-ideal for any operator L € A < F is o-order continuous.
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Proof: To begin it’s important only to prove (1) because the proof of (2) is similar. The "only if"
part follows directly from Theorem 3 for the "if" part (in view of Theorem 3) we can suppose that
F=>0,let0<u,Tu in Uand 0 < F(uy,) T v < F(w) in V. The next to be shown F(u) = v.
By the end, assume 0 < € < 1 Va, let F, be the operator given by relation (1) in Theorem 2 that
approves with F on the ideal created by (eu — u,)*and vanishes on (eu —u,)~ , it is clear that:
F>F,1>0,and F,(su—u,)” foreverya,let F, | L >0 in€,(U,V) it is clear that L € A,
and L(eu —u,)” =0 satisfies Va and so {(eu—u,)"} S N, However, 0 < (eu —u,)" 1T
(1 — &)u in U and thus, because by our hypothesis N, is a band, u € N, In conclusion, L(u) = 0
Finally, the relation:

0<Fleu—uy)* = F(eu—w)* < F(u)

combined upon Ando is inequality 0 < u —u, < (1 — &)u + (eu —u,)”* implies 0 < F(u) —
Vv<Flu—-u) <A-Fw)+Fleu—u)* <1 -e)F) + Fy(u)

Considering that F, (u) ! L(u) = 0 the last inequality yields 0 < F(u) —v < (1 —¢) F(u)

Ve € (0,1) Hence, F(u) = v holds.

To clarify the previous theorem, suppose the operator F: C(H,) — R is defined as in the previous
example by

Fg) = g(e) + ) 27g(hy)

As it has been seen before,
Ny ={g € C(Hy):g(h,) =0V n=1,2,...}, and this means that N is a band of C(H). On the
other hand, if L: C(H,) — R is defined by

L(g) = g()
Then L is a positive operator satisfying 0 < L < F, it is clear that N, = {g € C(H,): g(o0) = 0},
it is clear that the net {h,} of all characteristic functions of the finite subsets of H satisfies {h,} =
N, and h, T1, as 1€ N, not that N, is not a band of C(H,,) , in accordance with Theorem 6 (1),
let U andV be two Riesz spaces with V Dedekind complete, if Cx = {0}, then F € £,(U, V) is
said to have zero carrier. It is clear to see that the zero administrators are arranged as persistent
administrators with zero carriers. On the other hand, if Cr = {0} , then F L £, (U, V) . (To see this,
write F = F,, + F,, and note that |F| = |F,| + |F;| So Nz S Ng_, hence depending on the order
denseness of Ny note that Ny =U,F, =0 and soF = F, € £,(U, V) , From |F +L| < |F| +
|L|, it follows that Ny N N, € N, .+, and utilizing the truth that the crossing point of two arrange
thick beliefs is an arrange thick perfect, note that the administrators of £, (U, V) with zero carriers
shape a perfect.
Another hypothesis tells us that this perfect is continuously arranged thick in €, (U, V).

Theorem 7: Let U andV be two Riesz spaces with V Dedekind complete. Then the ideal
F € £,(U,V): C, = {0} is order dense in £,( U, V).

Proof: since the set F € £,(U,V): C, = {0} is an ideal in £5,(U, V), let F € £,(U,V) is the
positive operator with zero carrier.

Since F is not order continuous, there exists (use Theorem 6) an operator 0 < L < F where N, is
not a band, denote by B the band created by N;, then let R be the operator firm by Theorem 6
where R =L on R =0 and daal 5o ON B , it is clear that N, € N, and 0 < R < L. On the other

hand, later R = 0 holds on C;, = N = B%, we see that N, @ C, € Ny , and this (in the opinion of
Theorem 2) shows that Ny is order dense in ‘U, this mean that R has zero carrier, finally note that
0 < R < F holds.
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From the previous theorem we know that £,(U,V) = {0} (means that £,( U, V) = £,(U,V) ) if
and only if any nonzero operator between two Riesz spaces U and V has a nonzero carrier.
The following theorem explains some important relationships for order bounded operators.

Theorem 8 Alibrandi’s and Burkinshaw (Aliprantis & Burkinshaw, 1983): For a pair of Riesz
spaces U and V with V Dedekind complete, the following statements are equivalent:

1. Every order bounded operator from U into V is order continuous.

2. Every nonzero order bounded operator from U into V has a nonzero carrier.

3. The null ideal of every order bounded operator from U into V is a band.

The following result shows that when an operator is order continuous on a given ideal.

Theorem 9 Let F: U — V be a positive operator between two Riesz space with 1V Dedekind
complete, and let U be an ideal of U. Then the operator F is order (resp §- order) continuous on U
if and only if Fy is an order (resp &-order) continuous operator.
Proof: first, the result of the "order continuous" case is proven. After that, the " g-order continuous"
case is proven in a similar way. the operator Fy, is decided as follows:
Fyw) =sup{F(v):veUand 0 <v <u},;

whereas Fy; = F VY u € U, it is clear that if Fj; is an order continuous operator, then F must be
order continuous on U .
to prove the opposite direction, let F is order continuouson U, and 0 < u, Tu in U, let
Fuy(ug) Ts <Fy(uw).Now fix ve UN[O0,u] . Then 0 <vAu, Tv holds in U, and so
F(wAu,)TF() holds in V. From

FwAug) = Fa(vAu,) <s <Fu(u),
It follows that F(v) < s < Fy(u) holds Vv € U N[0, u] Hence,

Fy(w) =supFWU N[O, u]) <s <Fy(w),
and so F; = s holds, proving that F}; is an order continuous operator.

CONCLUSION

To Sum up, we concluded the positive order continuous operator F: H — V where H is order
dense majorizing Riesz subspace of Riesz space U and V is Dedekind complete, it has a unique
order continuous extension on all Riesz space U, it defined as
F(u) =sup{F(h):heH,0<h<u}ueUt
The evidence of this result is as follows:
Since H majorizes U then:
E(u) =sup{F (h):h € H,0 <h <u}locatedinV Vu € U, now see:
If{u,} € H when 0 <u, Tuthen F(u,) TE(u,),and if 0 <4 € H when 0 < /& < u, then
0 < uy A& T hsatisfies in H, from the order continuity of F:H =V is:
F(h) = sup{F (ug A1)} < sup{F(uy)} <E(w)
This gives that F(uy) T E(w).

let u,n € U*, choose nets {u,} and {hﬁ} of H™ whereas 0 < u, Tu and 0 < &g T &, this implies
tothat 0 < uy + /g Tu+ hholdsin H*, and so
F(ug) +F(hg) =F(ug+hg) TE(u+h) .
from F(u,) T E(u) and F(hg) T E(h) = E(u+h) = E(u) + E(h) holds,and E:U" - V" is
additive operator, returning to theorem 1, F extends uniquelyto E:U — 7V, this means E is an
extension of F.
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