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 Abstract 

Burris and Sankappanavar established a connection between con-

gruence in group G (ring R) and a normal subgroup of G (ideal of 

ring R). In this paper in the same manner, the connection between 

strongly regular relation defined on canonical hypergroup and nor-

mal subcanonical hypergroup of canonical hypergroup is estab-

lished. 
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INTRODUCTION 

The French mathematician Marty proposed the idea of hyperstructure, and particularly the idea 

of hypergroup, in 1934 )Marty, 1934). There are basic definitions and theories concerning the 

hyperstructures previously (AbouElwan & Alderawe, 2023; Davvaz et al., 2023) Several fields 

of other disciplines can benefit from the use of hyperstructures. There have been numerous 

books and articles written about the use of hyperstructures in the study of geometry, hyper-

graphs, binary relations, lattices, fuzzy sets, etc (AbouElwan & Alderawe, 2023; Davvaz, 2012; 

Burris & Sankappanavar, 1981; Vougiouklis, 1994). Canonical hypergroup as a special kind of 

hypergroup is indeed a natural generalization of the concept of abelian group. This kind of hy-

pergroup is a basic additive hyperstructure of many hyperstructures. 

By applying a specific kind of equivalence relations, semihypergroup can be connected to 

semigroup, hypergroup to the group and canonical hypergroup to abelian group. These equiva-

lence relations are called strongly regular relations. More exactly, by given (a semihypergroup, 

a hypergroup, and a canonical hypergroup) and by using a strongly regular relation on them, (a 

semigroup, a group, and the abelian group) respectively can be constructed from their quotien t 

hyperstructures. (Corsini & Leoreanu, 2003) 

MATERIALS AND METHODS 

The definitions and examples from this section will be utilized throughout the paper.  

A hyperoperation o on a non-empty set H is a mapping ο: H × H → P *(H), P *(H) is the power 

set of H,  P *(H). Moreover, the pair (H, ο) is called a hyper-groupoid. For every A and B  P 
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*(H) and x ∈ H, the sets A ο B, A ο x and    x ο A are defined by          A ο B = ⋃{a ο b  |  a ∈ A, b 

∈ B},        A ο x = A ο {x} and x ο A = {x} ο A.   

A hypergroupoid (H, ο) is called a semihypergroup if for all a, b, c of H, we have a ο (b ο c) = (a ο 

b) ο c, this means that ⋃u ∈ b ο c  a ο u = ⋃v ∈ a ο b  v ο c. A semihypergroup (H, ο) is called a hyper-

group if for every a ∈ H, we have a ο H = H ο a = H, that is called the reproduction axiom. A hy-

pergroup     (H, ο) is called a commutative hypergroup if for all   a, b ∈ H,                    we have a ο 

b = b ο a.  A non-empty subset K of a hypergroup (H, ο) is called a subhypergroup of H if K is a 

hypergroup under ο. Several books have been written on hyperstructure theory (AbouElwan & Al-

derawe, 2022; Velrajan & Asokkumar, 2010; Vougiouklis, 1994).  

Let (H, ο) be a semihypergroup and R be an equivalence relation on H. If A, B are non-empty sub-

sets of H, then A𝑹̅B means that  

∀a ∈ A, ∃b ∈ B such that aRb, and ∀b`∈ B, ∃a`∈ A such that a`Rb`.  

Furthermore, A𝑹̿B means that  

∀a ∈ A, ∀b ∈ B, we have aRb.  

In addition, the equivalence relation R on H is said to be:  

1) Regular on the left (on the right) if  x  H, from aRb, it follows that  (x o a)𝑹̅(x o b)   ((a o x)𝑹̅(b o x) 

respectively).  

2) Strongly regular on the left (on the right) if  x  H, from aRb, it follows that  (x o a)𝑹̿(x o b) ((a o 

x)𝑹̿(b o x)respectively).  

3) Strongly regular (Regular) if it is strongly regular (regular) on the right and on the left. (see 6). 

Let (H, ο) be a hypergroup, for an equivalence relation R on H, we use R(x) to denote the equiva-

lence class of x to R and use H/R to denote the family of equivalence classes {R(x) | x ∈ H} of R. 

The reader can find the proofs of the following two theorems in (BDavvaz & Leoreanu-Fotea, 

2007; Davvaz et al., 2022). 

Theorem 2.1. If (H, ο) is a hypergroup (a semihypergroup ) and R is a regular relation on H, then 

the quotient H/R is a hypergroup (a semihypergroup) under the operation defined by  

R(x)⊗R(y) ={R(z)  |  z ∈ x o y}. 

Theorem 2.2. If (H, ο) is a hypergroup (a semihypergroup) and R is a strongly regular relation on 

H, then the quotient H/R is a group                    (a semigroup) under the operation defined by  

R(x)⊗R(y) = R(z),  z ∈ x o y. 

Definition 2.3. A canonical hypergroup (M, +) is a non-empty set M together with a hyper-

operation + which satisfies the following axioms:  

i.  x, y ∈ M, x + y = y + x, 

ii.  x, y, z ∈ M, x + (y + z) = (x + y) + z, 

iii.  0 ∈ M (called neutral element of M) such that  

0 + x = {x} = x + 0,  x ∈ M, 

iv.  x ∈ M,  1      – x ∈ M such that 

0 ∈ x + (– x) ∩ (– x) + x, 
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v. the reversibility axiom:  

  x, y, z ∈ M, z ∈ x + y  y ∈ – x + z and x ∈ z + (– y).         

Let (M, +) be a canonical hypergroup, a non-empty subset N of    (M, +) is called a subca-

nonical hypergroup of M if (N, +) is a canonical hypergroup itself. Equivalently, x – y ⊆ N,  x, y 

∈ N. 

 In particular,  x ∈ N,  x – x ⊆ N. Since 0 ∈ x – x, it follows that 0 ∈ N. Moreover, N is said to be 

normal if x + N – x ⊆ N, for all x ∈ M. In addition, a subcanonical hypergroup N of M is called a 

subgroup of M if (N, +) is a group, that is, if x + y is a singleton set for all x, y ∈ N. 

Example 2.4. Consider the set M ={0, a, b}. Define a hyperaddition + on M as in the following ta-

ble 

+ 0 A b c 

0 {0} {a} {b} {c} 

a {a} {0, b} {a, c} {b} 

b {b} {a, c} {0, b} {a} 

c {c} {b} {a} {0} 

Then, (M, +) is a canonical hypergroup, {0, b} is a subcanonical hypergroup of M, and {0, c} is a 

subgroup of M. 

Remark 2.5. If N be a subcanonical hypergroup of a canonical hypergroup (M, +), then the quo-

tient is M/N = {x + N  |  x ∈ M},  

where  x + N = {x + n  |  n ∈ N}, we will use 𝒙̅ instead of  x + N.  

Theorem 2.6.[11] If N be a subcanonical hypergroup of a canonical hypergroup (M, +). Then M/N is 

a canonical hypergroup with respect to the following hyperoperation 

(x + N)⊕(y + N) ={z + N  |  z ∈ x + y}, for all  x + N,  y + N ∈ M/N. 

Proof. Let x1, y1, x2, y2 ∈ M such that 𝒙𝟏 = 𝒙̅𝟐 and 𝒚̅𝟏 = 𝒚̅𝟐 then x2 ∈ x1 + N and y2 ∈ y1 + N. Let 

z2 ∈ x2 + y2 ⊆ (x1 + N) + (y1 + N). Since M is commutative, z2 ∈ z1 + n for some z1 ∈ x1 + y1 and 

for some n ∈ N.   That is, z2 + N = z1 + N. Hence,  

𝒙̅𝟐⊕𝒚̅𝟐 ⊆ 𝒙̅𝟏⊕𝒚̅𝟏. 

Also, since x1 ∈ x2 + N and y1 ∈ y2 + N, by a similar argument, we get,  

𝒙̅𝟏⊕𝒚̅𝟏 ⊆ 𝒙̅𝟐⊕𝒚̅𝟐. 

 Hence, 𝒙̅𝟏⊕𝒚̅𝟏 = 𝒙𝟐⊕𝒚̅𝟐. Thus, ⊕ is well defined. 

Let 𝒙̅, 𝒚̅, 𝒛̅ ∈ M/N. If 𝒖̅ ∈ (𝒙⊕𝒚̅)⊕𝒛̅, then 𝒖̅ ∈ 𝒑̅⊕𝒛̅ for some 𝒑̅ ∈ 𝒙̅⊕𝒚̅. That is, 𝒖̅ = 𝒂̅ for some a 

∈ p + z. Also 𝒑̅ = 𝒃̅ for some b ∈ x + y.   

Now, a ∈ p + z ⊆ b + N + z = b + z + N.   That is, a ∈ v + N              for some v ∈ b + z ⊆ (x + y) + 

z = x + (y + z). So, v ∈ x + t for some t ∈ y + z. This means that, 𝒂̅ = 𝒗̅ and 𝒗̅ ∈ 𝒙̅⊕𝒕̅. Since 𝒕̅ ∈ 

𝒚̅⊕𝒛̅, we have  

𝒖̅ = 𝒂̅ = 𝒗̅ ∈ 𝒙̅⊕𝒕̅ ⊆ 𝒙̅⊕(𝒚̅⊕𝒛̅). 

This means that, 𝒖̅ ∈ 𝒙⊕(𝒚̅⊕𝒛̅). Hence,  

(𝒙̅⊕𝒚̅)⊕𝒛̅ ⊆ 𝒙̅⊕(𝒚̅⊕𝒛̅). 
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Similarly, we get  

𝒙̅⊕(𝒚̅⊕𝒛̅) ⊆ (𝒙̅⊕𝒚̅)⊕𝒛̅. Hence, (𝒙̅⊕𝒚̅)⊕𝒛̅ = 𝒙̅⊕(𝒚̅⊕𝒛̅). 

Thus, the hyperoperation ⊕ is associative. 

Consider the element 𝟎̅ = 0 + N ∈ M/N. Now, for any x ∈ M, we have  

𝒙⊕𝟎̅ = {𝒛̅  |  z ∈ x + 0} = 𝒙̅. 

Similarly, 𝟎̅⊕𝒙̅ = 𝒙. Thus, 𝟎̅ is the zero element of M/N.  

Let x ∈ M, then 𝒙⊕(–𝒙) = {𝒛̅  |  z ∈ x + (–x) = x − x}. Since 𝟎̅ ∈ x – x, we get, 𝟎̅ ∈ 𝒙̅⊕(–𝒙̅). Simi-

larly, 𝟎̅ ∈ (–𝒙̅)⊕𝒙̅. Let 𝒙 ∈ M/N, and suppose that 𝒚̅ ∈ M/N such that 𝟎̅ ∈ 𝒚̅⊕𝒙̅, then      𝟎̅ = 𝒂̅, 

where a ∈ y + x. That is, y ∈ a − x ⊆ N − x, and hence 𝒚̅ = –𝒙̅. Thus, the element 𝒙̅ ∈ M/N has a 

unique inverse –𝒙 ∈ M/N. Suppose that 𝒛̅ ∈ 𝒙̅⊕𝒚̅, then 𝒛̅ = 𝒂̅, where a ∈ x + y. This implies,  

x ∈ a − y ⊆ z + N − y. That is, x ∈ r + N, where r ∈ z − y. Thus, 𝒙̅ = 𝒓̅ ∈ 𝒛̅⊕(−𝒚̅). Similarly, we can 

show that 𝒚̅ ∈ (−𝒙)⊕𝒛̅. Since M is commutative, it is obvious that M/N is also commutative. Thus, 

M/N is a canonical hypergroup.   

Theorem 2.7.[11] Let (M, +) be a canonical hypergroup, and let N be a normal subcanonical hyper-

group of M. Then, (M/N, ⊕) is an abelian group.  

RESULTS 

Definition 3.1. Let (M, +) be a canonical hypergroup, and ρ be an equivalence relation on M, then ρ 

is called: 

1) Regular if for all a, b ∈ M, aρb implies that for every x ∈ M, for every u ∈ a + x there exists 

v ∈ b + x such that uρv and for every v' ∈ b + x there exists u' ∈ a + x such that u'ρv'. 

2) Strongly regular if for all a, b ∈ M, aρb implies that for every x ∈ M, for every     u ∈ a + x 

and for every v ∈ b + x one has uρv. 

Proposition 3.2.[6] Let (M, +) is a canonical hypergroup, and let N be a normal subcanonical hyper-

group of M. Then, for all x, y ∈ N, the following are equivalent: 

i. y ∈ x + N, 

ii. x – y ⊆ N, 

iii. (x – y) ⋂ N ≠ ∅. 

Proof.  

(i ⟹ ii). Since y ∈ x + N, we have y – x ⊆ x + N – x, and since N is normal subcanonical hyper-

group of M, we get x + N – x ⊆ N. Thus, y – x ⊆ N. That is, – (y – x) ⊆ N, and hence          x – y ⊆ 

N. 

(ii ⟹ iii). Is obvious. 

(iii ⟹ i). Since (x – y) ⋂ N ≠ ∅, there exists a ∈ x – y and a ∈ N. Therefore, – y + x ⊆ – y + a + y ⊆ 

N. If z ∈ – y + x, then z ∈ N. Therefore, – y ∈ z – x. That is, y ∈ x – z ⊆ x + N.   
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Now, if (M, +) is a canonical hypergroup, then we can establish the following connection between 

regular relations on M and subcanonical hypergroups of M, and establishe a similar connection be-

tween strongly regular relations on M and normal sub-canonical hypergroups of M as follows: 

i. If ρ is a regular relation on M. Then the equivalence class ρ(0) is a subcanonical hypergroup of 

M, where 0 is a neutral element of M. For a, b ∈ M, we have 

aρb    iff    a ∈ b + ρ(0). 

ii. If ρ is a strongly regular relation on M. Then the equivalence class ρ(0) is a normal subcanoni-

cal hypergroup of M, where 0 is a neutral element of M. For a, b ∈ M, we have 

aρb    iff    a – b ⊆ ρ(0). 

 Theorem 3.3. Let (M, +) be a canonical hypergroup, and let N be a normal subcanonical hyper-

group of M. If a, b are elements in M, then the binary relation ρ defined on M by: 

aρb    iff    a – b ⊆ N, 

is a strongly regular on M with ρ(0) = N. 

Proof. Let a, b, c ∈ M. Clearly, a ∈ a + 0, implies  

a − a ⊆ a + 0 − a ⊆ a + N − a ⊆ N. 

So ρ is reflexive. Also, a − b ⊆ N if and only if b − a ⊆ N. So ρ is symmetric. For transitivity, if a − 

b ⊆ N and b − c ⊆ N then by normality of N, we have  

a − b + b − c = a − b + 0 + b − c ⊆ a + N − c ⊆ a − c + N ⊆ N, 

a – c ⊆ N. 

Thus ρ is an equivalence relation on M.  

Next, to prove that the equivalence relation ρ is a strongly regular on M, suppose that aρb then a – b 

⊆ N, let x ∈ M, if  u ∈ a + x and v ∈ b + x, then  

u – v ⊆ a + x – (b + x) = a + x – (x + b) = a + (x – x) – b ⊆ a + (x + 0 – x) – b ⊆ a + N – b ⊆ N, so  

uρv, thus  

(a + x)𝜌̿(b + x). 

Hence ρ is a strongly regular relation on M.  

Now, to prove that ρ(0) is a normal subcanonical hypergroup of M. Let a, b ∈ ρ(0), then aρ0 and 

bρ0, since ρ is a strongly regular relation on M. this imply that  

(a + b)𝜌̿(0 + 0), 

this means that, for all u ∈ a + b and 0 ∈ 0 + 0, we have uρ0, it follows that 

u ∈ ρ(0),  so  a + b ⊆ ρ(0). 

Since a ∈ ρ(0) it follows that −a ∈ ρ(0). Therefore ρ(0) is a subcanonical hypergroup of M. For 

normality of ρ(0), let a ∈ ρ(0) and x ∈ M, then  

(x + a)𝜌̿(x + 0), 

this implies that                         (x + a)𝜌̿x, 

it follows that                       (x + a – x)𝜌̿(x – x), 



Al-Mukhtar Journal of Basic Sciences 21 (2): 52-57, 2023                                                                          page   57of 6 

 

then                                        (x + a – x)𝜌̿0,  since  0 ∈ x – x.  

Therefore, x + a – x ⊆ ρ(0).  

Thus ρ(0) is a normal subcanonical hypergroup of M. 

Finally, to prove that ρ(0) = N, if a ∈ ρ(0) then aρ0 implies a – 0 ⊆ N, so a ∈ N, thus ρ(0) ⊆ N. 

Conversly, if a ∈ N then a – 0 ⊆ N, it follows that aρ0 implies a ∈ ρ(0), thus  N ⊆ ρ(0).         Hence, 

ρ(0) = N.  

CONCLUSION 

By strongly regular relation defined on a canonical hypergroup M, the equivalence class ρ(0) is ex-

actly a normal subcanonical hypergroup of M. 
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