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Abstract

We introduce new types of covering properties in generalized topology,

namely; A-Menger and A-uniformly Menger spaces, and investigate their
fundamental properties. To achieve this, we replace open sets in the def-

inition of the standard Manger spaces with A-open sets of generalized
topological spaces. The results show that the A-Menger property is

25 February 2024 stronger than the Menger property. Additionally, A-Menger spaces are

Publish online: preserved when forming subspaces and countable unions. We also char-

30 April 2024 acterize A-uniformly Menger spaces and study their relationship with A-
Menger spaces. Examples are given to further illustrate our results.
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INTRODUCTION

In this paper, we investigate the Menger covering property of generalized topological spaces.
We introduce the concepts of A-Menger spaces and A-uniformly Menger spaces and investigate
some of their characteristics. Generalized topological spaces, in the sense of A. Csaszar, was
introduced in (Csaszar, 2002). A collection 4 of subsets of a set X is called a generalized topol-
ogy (GT) if it satisfies the following:

(1) 0 € 4,

(2) A is closed under arbitrary unions.

The elements of A are generalized open sets (A-open sets) and their complements are A-closed
sets. In generalized topology, the condition that the whole space is a A-open set is dropped. A
generalized topological space (GTS) is a pair (X,4), where X is a non-empty set and 4 is a gen-
eralized topology on X. If X € 4, then (X, 4) is called a strong GTS (4A-space). Every topological
space is a A-space but the converse is not true (Csaszar, 2002). In topology, several types of
generalized open sets were introduced. For example, semi-open sets (Levine, 1963), a-open sets
(Njastad, 1965), Pre-open sets (Mashhour et al., 1982), and [5-open sets (Abd EI-Monsef et al.,
1983). However, the concept of A-open sets contains all these classes of open sets (Csaszar,
2002). Various topological notions were examined in the context of generalized topology, for
instance, generalized homotopy (Bashier, 2022), generalized separation axioms (Makai et al.,
2016), and A-compactness (Sarsak, 2013). In this work, we investigate the Menger property and
its uniform version in the setting of generalized topology by using covers whose members are
A-open sets.
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The Menger property is one of the classical selection principles which was first introduced by K.
Menger (Menger, 1924). A topological space (X, 1) is called Menger (or has Menger property) if
for each sequence (U,: n € W) of open covers of X, there is a sequence (V,:n € M) such that V,
is a finite subset of U, for each n and U, -, 1, is an open cover of X. Further details on selection
principles can be found in (Koc¢inac, 2020) and (Scheepers, 1996) and references therein.

There are generalizations of the concept of Menger spaces in the literature, for example, uni-
formly Menger (Kocinac, 2003), Semi-Menger (Sabah et al., 2016), a-Menger (Koc¢inac, 2019),
Pre-Menger (Tyagi et al., 2021), and 5-Menger (Kule, 2022). Our new generalized structures,
the A-Menger and the A-uniformly Menger spaces, extend and complement previous work.

PRELIMINARIES

Through this article, a A-space (X, 4) (or just X) means a strong GTS. The entourages of the diago-
nal are used in our approach to uniform spaces, the reader is referred to [(Engelking, 1989), Chapter
8] for unexplained notation or terminology.

Definition 2.1 (Csaszar, 2007) Let (X.4) be a GTS. A base for a GT 4, denoted by B, is a collec-
tion of subsets of X with @ € B such that A = {U,, B;: B, € B}.

Definition 2.2 (Csaszar, 2002) Let (X,A,) and (¥,4,) be two GTS’s. A function
f: (X.4) = (Y.4,)is called (4,,4,)-continuous if m € A4, implies f *(m) € 4,.

Definition 2.3 (Sarsak, 2013) Let 4 be a nonempty subset of (X, 4). The generalized subspace is a
pair (4,4,), where A, = {Un A: U € 4} is the GT on A.

Observe that, if (X, A) is a A-space, then (4, 4,) is a A4-space [(Sarsak, 2013), Remark
2.12].

Definition 2.4 (Sarsak, 2013) A A-space (X, 4] is called A-compact (A-Lindelof, respectively) if any
cover of X by A-open sets has a finite (countable, respectively) subcover.

Definition 2.5 (Dey et al., 2022) Let X be a non-empty set. A non-empty family T; of subsets of
X x X is called a A-uniformity on X if:

(1) U € U; then A S U, where A= {(x,x):x € X} is the diagonal on X x X.
(QUeU;andV 2U thenV € T;.
(3) U € U; then there exists some V € U;such that V= IV € U,

The pair (X, 1;) is called a A-uniform space.
Recall that, given U€eU;, x€X and AcX, then Ulx]={yve X:(x,y) €U} and
U[A] = U,... U[x] (Engelking, 1989).

Theorem 2.1 [(Dey et al., 2022), Theorem 2.10] Let (X, 1U;) be a A-uniform space, and let T(U;) be
a collection of subsets of X defined as: A subset G € =(U;) if and only if for every x € G, there ex-
ists some U, € U, such that U,.[x] € . Then =(U;) is a strong GT on X

The GT A = =(U; ) is called the generalized topology on X induced by the A-uniformityl;.
A -MENGER SPACES

Before we start the main results, we recall the definition of generalized covers. A A-open cover of
(X.4) is a collection U of subsets of X such that the elements of T are A-open sets and
X € UU (Thomas & John, 2012). A A-open subcover of U is a sub-collection V' = U which itself
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is a A-open cover (Thomas & John, 2012).

Definition 3.1. A A-space (X, 4) is called a A-Menger space (or has the A-Menger property) if for
any sequence (U,:n € W) of A-open covers of X, there is a sequence (V,:n € M) such that for
each n € M, V,, is a finite subset of U,, and X € U,y V...

Example 3.1. Let R be the set of real numbers. Consider the standard strong GTS

(R, 2.) introduced in (Csaszar, 2007), where A has a base set given by

B ={(—o0,s):seR}U{(t,m):t € R}

We claim that (IR, A) is a A.-Menger space. To prove this, observe that the A_-open sets take one of
the following forms: @, R, (—oo,s), (t, o), (—oo,s) U (t,00) where s < t and s,t € R. Using the
fact that any open interval can be written as the union of an increasing sequence of compact sets, let

(—oo,5) = U N[s_ n,s —1/n],

[t,mj=U [t+ 1/n,t+n)].
neEN

Therefore, for any sequence (,: n € M) of A_-open covers of IR and for each n € N, there is a fi-
nite sub-collection v, CU,, which covers the compact intervals
[s—n,s—1/n]Ut+1/n,t+n]

It easily follows that U, -, V,, is a A.-open cover of .

Example 3.2. Let Ik be the set of real numbers and A = {¢ S R:0 € G} U {0}. Then ( B, 4) is a A-
space. The set {{0,x}:x € R} is a A-open cover of R which does not contain a countable subcover.
Therefore, (IR, 4) is not A-Lindelaf, and hence, it is not A-Menger.

Remark 3.1. Evidently, every A-compact space is A-Menger, and every A-Menger space is A-
Lindelaf. The converse is not true for both cases.

Example 3.3. There is a A-Menger space that is not A-compact. Consider the A-Menger space in
Example 3.1. The set {(—oo,n) : n € M} is a 4.-open cover of & that does not have a finite A.-
subcover. Hence (IR, 4. is not A_-compact.

Example 3.4. There is a A-Lindelaf space that is not A-Menger. Let (X,4) be a A-space where
X =1[0,1) c R, and 4 has as a base given by

B ={[0,r):r €[0,1)}U{[r,1):r € [0,1)}

The A-open sets take one of the following forms: @, X, [0,r), [r,1), [0,r) U[s.1) where
r,s € [0,1) and r < 5. Using similar arguments as in [(Engelking, 1989), Example 3.8.14], we can
easily see that every A-open cover of X by basis elements has a countable subcover; hence, X is a A-
Lindelaf space. On the other hand, X is not A-Menger. To prove this, let a, b € X such that a < b.
Let (U,:n € M) be a sequence of A-open covers of X consisting of intervals [a, b), where each
cover U, ., is obtained by dividing each interval in U,, into smaller ones. For each n € M, choose a
finite V, = U,,. Since V, is finite, pick one element [a,, b,) € U,, such that [a,, b,) € V,. Then,
there is one point x in the intersection of the intervals [a,,, b,,) such that x & V,, for each n. There-
fore, U, =y V,, is not a A-open cover of X.

Remark 3.2. If 4 is not a strong GT on X, then (X, 4) is A-compact and therefore it is A-Menger.
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Lemma 3.1. If (X, 4]} is a finite GTS, then X is A-Menger.

Proof. Every finite GTS (X, 4) is A-compact [(Thomas & John, 2012), Theorem 3.5], hence, it is A-
Menger. O

Let the collection of all semi-open (Levine, 1963) ( Pre-open (Mashhour et al., 1982), w-open
(Njastad, 1965), 5-open (Abd EI-Monsef et al., 1983), respectively) subsets of a topological space
(X,7) be denoted by SO(X) (PO(X), a0(X), BO(X), respectively). If A = SO(X) (PO(X), a0(X),
BO(X), respectively), then (X, 4) is a A-space (Csaszar, 2002). Evidently, we have:

Proposition 3.1. If (X,7) is a topological space and 4 = SO(X) (resp. PO(X), a(X), B(X)), then

the following are equivalent:

(1) (X, 4) is A-Menger.

(2) (X,7) is semi-Menger (Sabah et al., 2016) (pre-Menger (Tyagi et al., 2021), a-Menger
(Kocinac, 2019), 5-Menger (Kule, 2022), respectively).

Theorem 3.1. Let A, and 4, be two strong GT’s on a set X with 4, < 4,. If (X, 4,) is A,-Menger,
then (X, 4,) is 4;-Menger.

Proof. Let (X,4,) and (X,4,) be two GTS’s such that A, = 4,. Suppose that (X, 4,) is 4,-Menger.
Since 4, < 4, then any sequence (U,: n € M) of A,-open covers of (X, A,) will also cover (X, 4,).
Applying the A,-Menger property of (X,4,), we can find a sequence V, = U, of finite subsets
whose union covers (X, 4,). Hence, (X, 4,) is 4;,-Menger. O

Proposition 3.2. Let (X, t) be a topological space. Every A-Menger space is Menger.

Proof. For any topological space (X, t), let A stands for any of the families a0 (X), PO(X), 50(X),

or B(X). We have that
T C a0(X)c PO(X)c Bo(X),
and

T C a0(X)c 50(X) c BO(X).
It follows by Theorem 3.1 that if (X, A) is a A-Menger space, then (X, T) is a Menger space. O

Theorem 3.2. Let X,, be a subset of a A-space (X,4), where n e M. If X =1 X, and X, is a
Az _-Menger space for each =, then (X, 4) is a A-Menger space.

Proof. Let X, € X with X = U,y X,. Assume that the generalized subspace (X,.4; ) is Ay -
Menger for each n € M. Now, let (U, : n € M) be a sequence of A-open covers of X. Since
X=U, X, then U, will also be a sequence of A-open covers of X,, for each n. But X is Axn-
Menger, so for each n € M, there exists a finite sub-collection (V,;: m € M) of (U,:n € M) cover-
ing each X, with U, o, Vi covers X,,. Set V,, =U, . {Vin:m,n € M}. Then foreachn € M, V, isa
finite subset of U,, such that U, -y V,, is a A-open cover of (X, 4). O

Theorem 3.3. Let (4,4,) be a generalized subspace of a A-space (X, 4). If X is a A-Menger space,
then A is a A-Menger space provided that A is A-closed and A-open in X.

Proof. Let (4,4,) be a A-open and A-closed generalized subspace of a A-Menger space (X, 4). Let
(1L, : n € M) be a sequence of A-open covers of (4, 4,). By Definition 2.3, every 4,-open set of the
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A-open and A-closed 4 of X is the intersection of a A-open set of X with 4. Therefore, for each
n € N and for each U € U,,, there exists a A-open set M(U,n) in X such that U = A n M(U,n).
Let M, = {M(U,n): U€U,} U {¥\A}, n €N, Thus, (M,:n € N) is a sequence of A-open co-
vers of X. Applying the A-Menger property of X, there exists a finite subset 1, of M, for each
n € N such that U, ., W,covers X by A-open sets. Let V,, = {U: M(U,n) € W, } for each n. The
sequence (V,:n € M) witnesses for (U,,;: n € M) that (4, 4,) is a A-Menger space. O

Theorem 3.3 generalizes several results in the literature. For example, in a topological space (X, ),
if we take A = PO(X) then we get Theorems 3.5 of (Tyagi et al., 2021). If A = fO(X), we get
Proposition 4.3 of (Kule, 2022). If A = aO(X), we get Proposition 2.4 of (Ko¢inac, 2019).

A -UNIFORMLY MENGER SPACES

Definition 4.1. A A-uniform space (X,U;) is said to be A-totally bounded if for each U € 1,
there exists a finite subset 4 of X such that U[4] = X.

Definition 4.2. Let (X, U;) be a A-uniform space. We say that X is A-uniformly Menger space (or
has the A-uniform Menger property) if for any sequence (U, :n € M) of elements of U, there ex-
ists a sequence (4,,: n € W) of finite subsets of X such that X = U,,., U,,[4,.].

Theorem 4.1. Let (X,U;) be a A-uniform space. Then X is A-uniformly Menger if and only if for
each sequence (U,:n € M) in U;, there exists a sequence (V,,:n € M) of finite subsets of X such
that for each n € M and for each V €V, we have V x V £ U_ and U, V, is a A-open cover of
X,

Proof: Let (U,:n € M)be a sequence in ;. Suppose that X is A-uniformly Menger. By definition,
there is a sequence (4,: n € M) of finite subsets of X such that ¥ = U,y U, [4,] . Foreachn € M
and for each A €4, set V, = U, [4,], V., =U,[4,], ..., V, =U,[4,]. Then (V,:n € M) is a se-
quence of finite subsets of X such that ¥ < U ., V.. Also, V = U, [4] for each V € V, ,and for some
A €A, thereforeV XV € U,.

On the other hand, let (U,,: n € M) be a sequence in U;. Let (V,:n € M) be a sequence of finite sub-
sets of X that satisfies the conditions of the second part of the theorem. For each n € M and for each
€V, , choose a point x; in V,, such that x € U, [x}] for each x € X. Define a sequence (A4,,:n € )
as A, = {xy :xjy € V. }. Then each 4,, is a finite subset of X such that ¥ = U, ., U,[4,]. Hence, X
is A-uniformly Menger. o

Proposition 4.1. Let U;and V; be two A-uniformities on a set X such that TU; € W;. If (X,V;) is
A-uniformly Menger, then (X, U, ) is also A-uniformly Menger.

Theorem 4.2. Let (X,4) be a A-space, where A = t(U;) the GT is induced by the A-uniformity
U;. If (X,4) is a A-compact space, then (X, U; ) is A-totally bounded space.

Theorem 4.3. Let (X,4) be a A-space, where 4 = t(U;) is the GT induced by the A-uniformity
U;. If (X,4) is a A-Menger space, then (X, U; ) is a A-uniformly Menger space.

Proof. Let (U,:n € M) be a sequence in T;. The A-uniformity U; generates a GT A = (U, ), where
G € Aif and only if for every x € X, there is some U, € U; such that U,.[x] € G [5, Theorem 2.10].
Suppose that (X,4) is a A-Menger space, where 4 = (1;) is the GT induced by the A-uniformity
;. Then, by Definition 3.1, for each sequence (l,:n € M) of A-open covers of X, there exists a
sequence of finite subsets V,, of U, such thatX < U, ., V,. Let ¥ €V,. Since V is a A-open set,
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there is some U,cU,e€U; such that U,[x]ES V. Choose a point x;€V and
let 4, = {x,: V €V, }. Then for each n and for each V € V, we have V < U, [x,] and therefore,
by Theorem 4.1, the sequence (A4,:n € M) witnesses for (U,:n € W) that X is a A- uniformly
Menger space. O

Remark 4.1. The converse of Theorem 4.3 is not true. Consider the following example.

Example 4.1. cf. [(Ko¢inac, 2003), Note 3] There is a A-uniform space (X,C;) which is A-
uniformly Menger, but the A-space (X, t(C; )) is not A-Menger. To prove this, recall that every A-
Menger space is A-Lindelaf (Remark 3.1). Let (X, 4) be a A-Tychonoff space (Makai et al., 2016),
which is not A-Lindelaf. Hence, X is not A-Menger.

On the other hand, consider (IE,4A.) as defined in Example 3.1. It is shown that (R, 4.) is a 4.-
Tychonoff space (Makai et al., 2016). Let C;; (X) = {f: (X.4) — (R, 4,)} be the set of all (4, 4,)-
continuous and bounded functions. The authors (Gupta & Sarma, 2015) introduced a topology T on

Caa, (X), which has a sub-base given by the set
S, = {(ULV)UeEAVEA]
where

(uv)={fe c x):flu)cv}
Now, using (Cj 4, (X),7) in arguments similar to Example 8.1.19 and Example 8.3.4 in (Engelking,

1989), we can construct a A-uniformity ©; on X, which generates the original GT on X. Moreover,
(X.C;) is A-totally bounded and thus, A-uniformly Menger.

CONCLUSION

The present paper deals with the initiation and study of the Menger covering property in the context
of generalized topological spaces. Firstly, we defined in Definition 3.1 the notion of A-Menger,
studied some of its properties and provided several examples that illustrate some aspects of A-
Menger spaces. Secondly, we defined the notion of a A-uniformly Menger space in Definition 4.2,
gave a characterization of A-uniformly Menger spaces in terms of A-open covers, and examined its
relationship with A-Menger spaces.
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manuscript.
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