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INTRODUCTION

All the rings, in this case, are associated with R unity. Mapping =: R — R is an involution if
(a+b)" =a"+b", (ab)" =b"a" and (a")" = afor all a,b € R. A *-ring R is called *-zero divi-
sor, for any a = 0. If ab = ba® = 0, for some 0 = b € R since R is an integral domain of involu-
tion if there are no nonzero zero divisors with involution, see [(Usama A. Aburawash and Khadija
B. Sola, 2010)]. A self-adjoint idempotent; e? = e = e, is called projection. A nonempty subset S
of a *-ring R is called self-adjoint or *-subset if $* = {s*|s € §} = §, and from (U. A. Aburawash
& Saad, 2016), defined semi-proper involution * (resp. proper) if aRa* = 0 (resp. aa® = 0) for
0=a€R,Ifa” =0= (aa™)™ for some n,m € Z*, then a is called *-nilpotent *-ring. Moreover,
a *-ring R is said to be *-reduced if it has no nonzero *-nilpotent elements, and a *-ring R is called
*-Baer if the *-right annihilator of each nonempty subset A € R is a principal *-bi-ideal generated
by a projection; that is r*(4) = eRe. Following (I. Kaplansky, 1968), A *-ring R is called Baer *-
ring if the right annihilator of every nonempty subset of R is a principal right ideal generated by a
projection, every Baer *-ring is a *-Baer ring with involution. From (Kim & Lee, 2003), R is semi-
commutative or has an IFP ring if for every a,b € R, if ab = 0 implies aRb = 0 or ( r(a) is an
ideal of R for any a € R. In (U. A. Aburawash & Saad, 2014) and (U. A. Aburawash & Saad,
2019), a *-ring R is called IFP with involution (resp. quasi-IFP with involution) if ab =0 (resp.
ab =0 = ab”) implies aRb* =0 (resp.; aRb =0), for all a,b € R. According to (U. A.
Aburawash & Saad, 2019), (U. A. Aburawash & Abdulhafed, 2018b), and (U. A. Aburawash &
Abdulhafed, 2018a), if ab = 0 = ab” implies ba = 0 (resp.; ba is central) for all a,b € R is called
*-reversible (resp.; central *-reversible) *-ring. Every *-reversible *-ring has quasi-IFP with involu-
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tion, a *-ring R is called weak *-IFP (resp.; weak quasi-IFP with involution), if ab = 0 (resp.,
ab =0 = ab” forall a,b € R implies aRb" is nilpotent (resp., aRb is nilpotent), a *-ring R central
quasi IFP with involution (resp., has quasi-IFP with involution), if for all a,b € R, ab =0 = ab”
implies aRb is central (resp., aRb = 0). the ring R is called weakly *-reversible, if ab = ab™ = 0,
for all a, b, » € R then Rbra is nil ideal of R.

In this article, every *-IFP is *-weak *-IFP, quasi *-IFP is *-weak quasi *-IFP and *-reversible is *-
weak *-reversible, we study some properties *-weak *-rings it above. Moreover, a *-ring R is *-
weak (*-IFP, quasi*-IFP, and *-reversible) if and only if for any n, the upper triangular matrix
equal diagonal T,,.,,(R) is *-weak (*-IFP, quasi*-IFP and *-reversible) *-ring. Further, we studied
the extension of localization and Laurent polynomial of *-weak *-rings above.

*-weak *-IFP *-ring.
Here section, we introduce another generalization for *-1FP; namely *-weak *-IFP *-rings.

Definitionl1. The *-ring R is called *- weak *-IFP, if ab = 0 implies aRb" is *- nilpotent, for any
a,b € R.

Every *-IFP is *- weak *-IFP, and *- weak *-IFP is weak *-IFP. But the discourse is true by con-
duction semi-proper or central *- reversible.

Propositionl. If R is a weak *-IFP *-ring and semi-proper involution  then R is *- weak *-1FP.

Proof. Let ab =10 for some a,b ER.,
(arb*)R(arb*)" = arb®RbRa” = a(rb*R)bRa” € aRbRa” = 0, by semi-proper involution =.
Thus, R is *- weak *-IFP.

Proposition 2. Let R be a weak *-IFP *-ring and central *-reversible. Then R is *- weak *-1FP.

Proof. Let ab =10 for some a,b €R. Also, bab =0 and
(baRb*)? = baRb*baRb* = Rb*babaRb* =0,

(baRb*)(baRb")" = baRb*bRa*bh* = Rb*babRa*bh* =0 for r € R, by central *-reversible.
Therefore, R is *- weak *-IFP.

Moreover, each commutative *-ring is *-weak *-1FP. The proof is easy with the following result.

Proposition 3. The class *-ring of the *-weak IFP with involution is closed (using changeless in-
volution) by constructing *- subrings under its direct sums.

Proposition 4. Suppose that R be a commutative *-ring, then T,,,.,(R) is a weak *-IFP *-ring, with
involution * define as;

@ Qg Q3 " Oy O\ /@ OB O-zn 7 Gan O
0 a ay - Qym-2y Qo 0 a Az lyngy Gym-1y
00 a ~ = gy |_|0 0 @ Gy
0.0 0 = = Gy 0 0 0 e e ys
00 0 = = g 0 0 0 = = a

(i.e., fix the two diagonals (right and left) with interchange the symmetric elements.)
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Proof. If A= (a;) and B = (b;) € Tyxn(R) with ab =0 = ab*, where 1 <i <j < n, then
ab = 0. By hypothesis, R is *-weak *-IFP, there exists k € N such that (ach)¥ =0 for any
C= (cU) € T,xn(R), since a, b and, c are the diagonal elements of 4, B and, C with respective.
Hence, there exists n,m € N such that ((ACB*)*)" =0, (((ACB*)(ACB*)*)*)™ = 0. Therefore,
T, xn(R) is *-weak *-IFP.

Now, every *-ring having*-IFP is *- weak*-IFP. The converse is true with semi-proper involution
*, and each *- weak*-IFP *-ring is weak*-IFP *- ring while the converse is not true, as shown in
the following example.

a b ¢ a d c
Examplel. The *-ring Ts.3(Z)with the involution * given by: (0 a d) = (0 a b) is *-
0 0 a 0 0 a

0 1 0 0 1 1
weak *-IFP by Proposition 4. For A = (0 0 0) and B = (0 0 0), we have AB = 0 and
0 0 0 0 0 0

0 0 a
ARB* = (0 0 0) + 0,a € Z, S0 T3,3(Z) has not *-IFP.
0 0 0

There is a weak semi-commutative (IFP) *-ring which is not *-weak IFP with involution, see [(U.
A. Aburawash & Abdulhafed, 2018b), Example 9].
Next, by Proposition 4, the ring T, (R) is *-weak *-IFP. Also, M. (R) with self- adjoint has not

*-weak *-IFP, since A= (3 g),B = (g 2) satisfy AB =0 while
ACB* = (é g) (g 5;) (3 g) - (g g) £0, Vx,y,2 €R.

Therefore, we note that by diagram in the class of *-rings.

*IFP - [FP - quasi-*-1FP
*_weak-*-1FP weak-IFP —— weak quasi-*-IFP
=
=
weak *-1FP

Diagram (1)

*- weak quasi *-1FP *-ring.
In her section, we study the properties of the *-weak quasi-*-1FP rings with involution.

Definition 2. The *-ring R is called *- weak *-IFP, if for all a,b € R, ab = 0 = ab” implies aRb is

*- nilpotent. Consequently, akRb* is also *-nilpotent .Every commutative *-ring is *-weak quasi IFP
with involution, each *-weak quasi-IFP with involution ring with involution is weak quasi-IFP with
involution and *-weak quasi-IFP with involution ring with involution is quasi-IFP with involution,
however, the converse is proper when the *-ring is semi-proper.
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Proposition 5. Consider R is a weak quasi-*-IFP ring with involution and semi-proper involution .
Then R is the *- weak quasi-*-1FP *-ring.

Proof. Let ab =0 = ab” for some a,b ER,
(arb)R(arb)" = arbRb*Ra” = a(rbR)b*Ra” € aRb*Ra” = 0 for a,b € R, by semi-proper invo-
lution *. Thus, R is *- weak *-IFP.

Proposition 6. Suppose that R is a central *-reversible *-ring and a weak quasi-IFP with involu-
tion. Then R is a *- weak quasi-IFP with involution.

Proof. If ab=0=ab” for some a,b€R, then bab = 0 = bab® and
(baRb)? = baRbbaRb = baRbabRb = 0,

(baRb)(baRb)* = baRbb*Ra*b* = Rbbab*Ra*b* = 0, from central *-reversible. Thus, R is *-
weak quasi-*-1FP.

Now, while there is no clear connection between *-weak quasi-*-IFP and weak- IFP. However, *-
weak quasi-*-IFP R is weak- IFP if R has *-1FP.

Proposition 7. If R is *-weak quasi-*-IFP and R has IFP with involution, then R is a weak -IFP.
Proof. Since ab = 0 implies aRb* = 0, by hypothesis and R is a weak IFP.

Further, the proposition below shows that *-subrings are the direct sums of the *-weak quasi-*-1FP
*-ring.

Proposition 8. The class *-ring of the *-weak quasi-*-IFP is closed (using changeless involution)
by constructing *- subrings under its direct sums.
Now, with the proof similar to Proposition 4, we get the following.

Proposition 9. It R is a commutative *-ring, T, ., (R) is *-weak quasi-*-IFP, with involution * giv-
en in Proposition 4.
Next, is R is a commutative *-ring then

a a;z; djz Qin
0 a Qsg Aoy
Tuxn(R) = a, g ERNn=3,

=]
=]
- 2
2
[4%]
=

0 0 0 0 a
is *-weak quasi-*-IFP by Proposition 9. However, T,.(R) is not quasi-*-IFP, so in general in
case n = 4 is not quasi-*-IFP.

Moreover, as an instance, we note that the condition T,, ., (R)of Proposition 9, cannot be weakened
to the whole matrix *-ring M+, (R), because n is more than 1.

Example 2. Let R be the *-ring of integer numbers (Z). Consider the *-ring is *- weak quasi-IFP
with involution, while the *-ring M, (Z) with self-adjoint is not *-weak quasi-IFP with involu-

i _ (0 0 (0 —a . o .

tion. 1 Folr A= (0 a) and OB —D(G 0 ),a €Z, satisfy AB=0=AB and
— — i *_ni

C= (1 1) € My, (R), thus ACB = (0 _az) is not *-nilpotent.

Theorem1l. Consider the following conditions, where R is a *-ring.
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R is quasi-*-IFP.

R is central quasi-*-1FP.
R is *-weak quasi-*-IFP.
R is weak quasi-*-IFP.

Ao dhe

Proof. 1 = 2: Obvious.

2= 3::If aq,b € R satisfied ab = 0 = ab*, then arb,a’rb,arb? and a’rb? are central. Thus,
(arb)? = arbarb = a(arb)rb = r(a®rb)b = ra*rb? = ralarb)b = r(arb)ab = 0 and
((arb)(arb)*)? = (arb)b*r*a’ (arb)b*r*a* = b*r*a*(arb)(arb)b*r*a* =
b*r*a*(aarbrb)b*r*a* = b*r*a*(a®*rbrb)b*r*a* = b*r*a*(ra®rb*)b*r*a* =
b*r*a*r(a(arb)b)b*r*a’ = b*r*a’r((arb)ab)b*r*a* = 0

. Hence, arb is *-nilpotent for all » € R and R is *-weak quasi-*-IFP.

3 = 4: It’s clear.

Moreover, the discussion of Theorem 1 is invalidated by [(U. A. Aburawash & Abdulhafed, 2018a),
Proposition 1] and Propositions (5 and 6).

The outcome can be obtained from [(U. A. Aburawash & Abdulhafed, 2018a), Proposition 1]and
Theorem 1.

Corollary 1. Let R be *-ring and central quasi-IFP with involution, if R is a Baer ring with involu-
tion, then R is *-weak quasi-IFP with involution.

We know, every quasi-IFP with involution is *-weak quasi-IFP with involution, and by [(M. S. and
U. A. Aburawash, 2023), propositions (4.2 and 5.1) and theorem 5.6 )] the conclusion is obtained.

Corollary 2. Let R be a ring with involution and I a proper ideal a with involution of R. If I is a re-
duced with involution ring with involution (without identity) and R/I has quasi-IFP with involu-
tion, then R is also *-weak quasi-IFP with involution.

Corollary 3. Let R be a reduced with involution, ring with involution, and I an ideal with involution
of R with IFP (as a ring without identity). If R has quasi-IFP with involution, then the *-subring S
of the upper triangular matrix ring T3,z (R) over R is defined as follows:

a d c
S:(O a b
0 0 a

Corollary 4. Let R be a *-reduced *-ring and n any positive integer. If R is *-weak quasi-*-I1FP,
then R[x]/{x™) is *-weak quasi-*-1FP.
Thus, we note that by a diagram, of *-rings.

a b, c dE€ I], is *-weak quasi-*-IFP

*IFP IFP quasi-*-IF'P - central quasi-*-IFP
*weak *-IFDP weak-IFP *-weak quasi-*-IFDP
e =
weak *-IF weak quasi-*-IFP <

Diagram (2)
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*- weak *-reversible *-ring.
Here section, we introduce another generalization for *-reversible; namely *-weakly *-reversible *-
rings.

Definition 3: A *-ring R is called *-weak *-reversible if for all a,b,r € R, ab = 0 = ab”, implies
Rbra is a *-nil left (equivalently, braR is a *-nil right) *-ideal of R. Consequently, Rb*ra is a *-
nil left (equivalently, b*raR is a *-nil right) *-ideal of R.

The commutative *-ring is *-weak *-reversible and each *-weak *-reversible *-ring is weak *-
reversible. The converse is true while the *- ring has *-1FP as proven inside the following.

Proposition 10: If R *- ring has *-IFP and *-weak *-reversible, then R is weakly reversible.
Now, each *-weak *-reversible *-ring is weak *-reversible. The converse is true while the *- ring
has semi-proper involution * and central *-reflexive, we have the subsequent proposition.

Proposition 11: If R *-ring has semi-proper involution * and weak *-reversible, then R is *-weak
*-reversible.

Proof. Let ab =0 = ab” for some a,b €R. Then,
(Rbra)R(Rbra)’ = Rbra(Ra’r*)b*R € RbraRb*R = 0, for all » € R, from semi-proper involu-
tion *. Hence, R is *-weak *-reversible.

Recall that, [(U. A. Aburawash & Saad, 2019) and (U. A. Aburawash & Abdulhafed, 2018a)],
ifab = ab® = 0 implies bRa = 0 (resp., bRa is central) for all a, b € R is called *-reflexive (resp.,
central *-reflexive) *-ring. Every *-reversible is *-reflexive ring with involution.

Proposition 12: If R is weak *-reversible and central *-reflexive, then R is *-weak *-reversible
since R is a *-ring.

Proof. Let ab =0 = ab* for some a,b € R. Then (Rbra)? = RbraRbra = RRbrabra = 0,
(Rbra)(Rbra)® = Rbraar*b*R = Ra*r*brab®*R = 0, for all r € R, from central *-reflexive.
Hence, R is *- weak *-reversible.

Now, prove the next result it is easy.

Proposition 13. The *-weak *-reversible ring with involution class is closed under taking subrings
with involution and under direct sums (with changeless involution).

Now, the next proposition is similar to Proposition 4.

Proposition 14. R is a commutative *-ring, T,,.,(R) IS *- weak *-reversible, with involution *
from Proposition 4.

In example 6 of (U. A. Aburawash & Abdulhafed, 2018b) there exists a *-weak *-reversible and
quasi *-1FP *-ring which is not *-reversible.

Next, for example, we note that the condition T,,.,,(R) of Proposition 14, cannot be weakened to
the whole matrix *-ring M,,..,(R), since n is more than 1.
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Example 3. If R is a *-weak *-reversible *-ring and n is more than 1, then M., (R), with adjoint
involution, is not *-weak *-reversible. For X = (g 1) and Y = (0 1),

1 0 0
11 0 2ay.
. 1) € M., (R), e see that RYZX = (G 0 ) is not

we have XY =0=XY" and for Z = (
[

nil, ¥ a,c € R.

The subsequent result shows that central *-reversible*-rings lie properly between *-reversible and
*-weak*-reversible rings with involution.

Theorem 2. Consider the following conditions, where R is a *-ring.
1. R s *-reversible.

2. R iscentral *-reversible.
3. Ris*-weak *-reversible.
4. R isweak *-reversible.

Proof. 1 = 2: It’s clear.

2= 3:Ifab=0=ab", thenryab =0 =ryab” forall a,b,r; € R, and br;a is central, since R is
central *-reversible. Hence, (rbrya)? = rbryjarbria = rrbryjabria = 0 and
(rbria)(rbria)’ = rbriad’r,"b'r* = ra’ry"briab*r* =0 for all r €R and R is weak *-
reversible.

3 = 4: It’s clear.

By [(U. A. Aburawash & Abdulhafed, 2018b), Propositions 3, 4] and Propositions (11 and 12) the
converse of Theorem 2 isn't true.

Further, we get corollaries from [(U. A. Aburawash & Abdulhafed, 2018b), Proposition 4] and
Theorem 2.

Corollary 5. Every *-domain is a *-weak *-reversible*-ring.

Corollary 6. If R is a central *-reversible and *-Baer ring with involution, then R is *-weak *-
reversible.
It's important to remember that every Bear *-ring is a *-Bear *-ring. We have the following result.

Corollary 7. If R is a Baer and central *-reversible *-ring, then R is *-weak *-reversible.
Now, as shown by the next theorem, the central *-reversible*-rings properly lie between the classes
of *-reversible, weak quasi-*-1FP, and *-weak quasi-*-IFP*-rings

Theorem 3. Consider the following conditions, where R is a *-ring.
1. Ris *-reversible.

2. R is central *-reversible.
3. R isweak quasi-*-1FP.
4. R is *-weak quasi-*-1FP.

Proof. 1 = 2: Obviously.

2 = 3: By [(U. A. Aburawash & Abdulhafed, 2018b), Theorem 2].
3 = 4: From Propositions (5 and 6).

The converse of Theorem 3 is not true from [(U. A. Aburawash & Abdulhafed, 2018b), Example
6].
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The following results, from [(U. A. Aburawash & Saad, 2019), Proposition 10], [(U. A.
Aburawash & Abdulhafed, 2018b), Corollaries (7, 8, 9, 10)], and Theorem 2.

Corollary 8. If R is *-ring and central reduced then T(R; R) is a *-weak *-reversible.
Corollary 9. If the *-ring R is reduced then T(R; R) is a *-weak *-reversible.

Corollary 10. If the *-ring R is *-reduced and *-reversible, then T(R; R), with
componentwise involution, is *-weak *-reversible.

Corollary 11. If the *-ring R is reduced and *-reversible, then T(R; R), with component wise invo-
lution, is *-weak *-reversible.
Thus, we note that by the diagram, of *-rings.

*IFP > IFP - *#-Abelian

*-doman ————= *-reversible ———= quasi-*-1FP - central quasi-*-IFP

central *-reversible
-

*-weak *-reversible *-weak quasi-*-IFP
\
weak *-reversible weak quasi-*-IFP -

Diagram (3)

Extending of *-weak (*-1FP, quasi *-1FP, and *-reversible) rings with involution.

We will here focus on the properties of *-weak (*-IFP, the quasi —IFP with involution, and *-
reversible) rings with involution is proven to be extended from a *-ring to its localization and Lau-
rent polynomial, the Dorroh extension, and from Ore *-ring to its classical quotient.

If QR={u'la|u€ea€R} then Q" !Ris a *-ring with involution o defined as
(uta)’ = u ' a" = u*"ta" where R is a ring with involution, Q is a multiplicative in R consisting
of R and central regular elements, see [(U. A. Aburawash & Abdulhafed, 2018b)].

For it, we have the propositions.

Proposition 15. If e is a central projection of R since R is a *-ring, then it’s equivalent.
1. R is *-weak quasi-*-IFP.
2. eR and (1 — e)R are *-weak quasi-*-IFP.
3. 07'Ris *-weak quasi-*-IFP.

Proof. 1 < 2: It is clear that this is straightforward since subrings with involution and finite direct
products of *-weak quasi-*-IFP ring with involution is *-weak quasi-*-IFP.
3 = 1: It is clear since R is a subring with involution of Q71R.
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1 = 3:Since R is a *-subring of Q7 !R. Let af = 0 = af°with @ = u™ta,f = v~1b,u,v € Q and
a,b € R, and lety = w~c for any element of Q7'R,w € Q,c € R. Since 0 contained in the center
of R, we have 0= af =utav b= (u v 1ab, and
0= af’ =uta(v=th)’ = (u (v 1)")ab", and hence ab=0=ab”*, but R *-weak quasi-*-IFP,
like this for some n and m in positive integers that (acb)" =0, ((acb)(acb)*)™ = 0. Thus
(ayB)" = (u™taw tev D) = ((vwa) tach)” = ((vwa) )" (ach)" =0 and
((ayP)(ayp))" = (w™raw tcv ™t h)(By a))" = ((u™taw tev ™) (By a’)™ =

((vwa) " t(ach)(b* (v ' c* (w1 'a (™)™ H™ = ((vwa) (ach)(u'w*v*) (b*c*'a*))™ =
((vwa) "t (u*w*v*) (ach) (b*c*'a* )™ = ((vwa) " (u*w*v*) )™ ((ach) (ach)*))™

. Therefore, Q1R is *-weak quasi-*-IFP.

Proposition 16. If R is a *-ring, and e has a central projection in R, the following is its equivalent:
1. R is*-weak *-reversible.
2. eRand (1 —e)R are *-weak *-reversible.

3. O71Ris *-weak *-reversible.

Proof. It is similar to that of Proposition 15.
We get results from[(U. A. Aburawash & Abdulhafed, 2018b), Proposition 6].

Corollary 12. Let R be a *-ring, and e is a central projection of R. Then eR and (1 — e)R are *-
reversible if R is *- weak *-reversible.

Corollary 13. If R is *-reversible a *-ring and e central of e2 = e = e*in R. Then eR and (1 — e)R
are *-weak *-reversible.

Then, the ring with involution of the Laurent polynomials in x, with coefficients in the *-ring R,
consists of all formal sums f(x) = X™ . a;x" an involution *, f*(x) = XL, a; x" with explicit ad-
dition and multiplication, where a; € R and k,n (possibly negative) integers. We denote this plate
by R[x;x"1].

Corollary 14. For a *-ring R, Q is *-weak quasi-*-1FP iff R[x;x '] is *-weak quasi-IFP with invo-
lution.

Proof. It is sufficient to establish the necessity since R[x] is a subring with involution of R[x;x1].
Let 0 = {1,x,x%,x3,x%---}. Then O is a multiplicative closed subset with the involution of Q.
Where R[x;x1] = Q1R [x], it follows that R[x; x*] is *-weak quasi-*-IFP by Proposition 15.

Corollary 15. For R *-ring, Q is *-weak *-reversible if and if only R[x;x7!] is *-weak *-
reversible.

Proof. Like Corollary 14 using Proposition 16.
Accordingly, we have the equivalence on *-weak quasi-*-1FP and *-weak *-reversibility of another
situation.

Corollary 16. If R is a *-ring the following is its equivalent:
1) R is *-weak quasi-IFP with involution.

2) R[x]is *-weak quasi-IFP with involution.
3) R[x;x~1]is *-weak quasi-IFP with involution.
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Corollary 17. For a *-ring R, the following is its equivalent:
1. R is *-weak *-reversible.

2. R[x]is *-weak *-reversible.
3. R[x;x"1]is *-weak *-reversible.

Then, for the Dorroh expansion of the *-ring D(R,Z) = {(r,n):r € R,n € Z} R is a ring whose
functions are (ry,ny) + (r5,n3) = (i + 15,01+ n5) and (ry,ny)0y,n,) = (i +nyry + nor,nn,)
. The R involution can naturally extend to D(R,Z) in the form (r,n)" = (r",n) (see (U. A.
Aburawash, 1997).

Next, we get the following results by [(U. A. Aburawash & Abdulhafed, 2018b), Proposition 21]:

Corollary 18. A *-ring R is *-reversible, and the Dorroh extension D(R,Z) of R is *-weak-*-
reversible.

Corollary 19. A *-ring R is Dorroh extension D(R,Z) is *-reversible, R is *-weak-*-reversible.

We know that Let R be a ring with involution * which is a left order in a ring Q. Then R is a right
order in Q and Q has an involution given by(a™tb)* = b*(a*)™! (see [(Martindale & 3rd, 1969),
Lemma 4)], and [(U. A. Aburawash & Abdulhafed, 2018b), Theorem 4] given the following results.

Corollary 20. If R is *-reversible, then Q is *-weak-*-reversible.

Corollary 21. If Q is *-reversible, then R is *-weak-*-reversible.

CONCLUSION
weak *-IFP
*-weak *-IFP T weak IFP
*IFP IFP *- Abelian
*~doman =————= *-reversible =———= quasi-*-1FP =——= central quasi-*-1IFP

central "-rv_\'ﬂ:ru-j]rlv
*oweak '-r--\'r'rnﬂsh.: ., T-weak quasi-*-IFP
wirak '-:'-c-'.':'rﬁlh]v '.-.'1*:-1]-:--(|11:::~'i-“-il-'I’-

Here, we conclude the paper's results using diagrams to explain the relations among the correspond-
ing classes, from diagrams [(1), (2)] and diagram (3).

Furthermore, we have the following conclusions:

Every *-IFP (resp., quasi *-IFP and *- reversible) are *-weak *-IFP (resp., *-weak quasi *-IFP and
*-weak-*-reversible) rings with involution, also, each *-1FP is *-weak quasi *-IFP ring with involu-
tion. Moreover, every *-Doman is *-weak *-reversible ring with involution.
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Finally, we future studies about properties of *-weak *- rings of (*-reflexive, S. *-reversible, and S.
*-reflexive) rings with involution.
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