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Abstract

A multi-step formable transform decomposition method (MFTDM) is
suggested in this study to solve the nonlinear fractional-order Riccati
problem. It is well understood that a corresponding numerical solution
given by the FTDM is only valid for a short period.In the case of inte-
ger-order systems, however, the MFTDM solutions are more correct and
reliable throughout time and are in very good agreement with the exact
solutions. The fractional derivative is described in the Caputo sense.
The method is tested on prominent examples, and the results show that it
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31 December 2023 is accurate and efficient when compared to other numerical methods.

Keywords: Caputo derivative; Fractional orderRiccati equation; Mul-
ti-step Formable transform decomposition Method.

INTRODUCTION

The formable transform decomposition method (FTDM) is a computational and analytical ap-
proach for solving fractional partial differential problems (Saadeh et al., 2023). The method
provides the solution in terms of convergent series with easily computable components. In the
past years, several academics have concentrated their efforts on the numerical solution of ordi-
nary differential equations of fractional order and various numerical techniques, including the
Fourier transform method ( Kemle& Beyer, 1997), Homotopy perturbation method (Wang,
2007; Odibat & Momani, 2008; Mtawal & Alkaleeli, 2020), Homotopy analysis method
(Canget al., 2009; Zurigatet al., 2010; Freihat, et al., 2014), Residual power series method (Ali
et al., 2017), Alternative variational iteration method (Mtawalet al., 2020), Triple Shehu trans-
form method (Alkaleeliet al., 2021; Kapooret al., 2022), the Laplace residual power series
method (Burgan, et al., 2022),. Recently, a formable transformation decomposition method
(FTDM) was applied by (Al-ZouBi&Zurigat, 2014), it combines the formable integral trans-
form (Saadeh, 2021) and the decomposition method (Momani& Al-Khaled, 2005; Shawagfeh,
2002; Khanet al, 2013; Mahdyet al., 2015). In the present study, we analyze the suitability and
value of the MFTDM as a method to obtain the right approximation solutions to the fractional
differential equation of the form using a series of intervals.
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with 120 0<a <L 314 subject to the initial condition.

y (0)=c. )

Where P Yo is the fractional derivative of Caputo?This optimized approach is known as the
multi-step formable transform decomposition method. The MFTDM was successfully shown to
effectively, quickly, and accurately solve fractional differential equations. There is an enormous
class of nonlinear fractional differential equations with approximations that rapidly converge to
exact solutions. We provided two examples to show the effectiveness of our results.

PRELIMINARIES

This section describes the essential terminology and notations used in the fractional derivative field
(Caputo, 1969; Miller &Roos, 1993; Beyer &Konuralp, 1995; Gorenflo&Mainardi, 1997; Podlub-
ny, 1999). Also covered are the definition and characteristics of the formable integral transform
(Kanwalet al., 2018; Saadeh& Ghazal, 2021; Saadehet al., 2023).

Definition 2.1.The Riemann-Liouville fractional integral of order g >0,ofa function
f €C,, p>-1is defined as (Miller &Roos, 1993; Beyer &Konuralp, 1995; Gorenflo&Mainardi,
1997; Podlubny, 1999) :
1 ¢t
I Q) =—=—=[t-¢) ({)d¢.

r(p)o
Definition 2.2.Let f eC", m eN w{0}. The Caputo fractional derivative of f in the Caputo
sense is defined as follows (Caputo, 1969):

1 t _ m-p-1g (m)
[T O 4
D/t (t) = m-1<g<m,
D/f (t), B=m.

Definition 2.3.(Saadeh& Ghazal, 2021; Saadehet al., 2023) A function f :[0, ) — R is said to be
of exponential order 3 (4> 0), ifthere [f (t)|<M e”", forall t >t,.

Definition 2.4. The formable integral transform of a continuous function f on the interval (0,«)is
defined by (Saadeh& Ghazal, 2021; Saadehet al., 2023)

Pl )= exp(—z—t

=A(s,u).
The formula for the inverse formable integral transform is
ft)=F"[A(s,u)]

:—1_ a+jiw lexp(ﬂ]A(s,u)d S.
i u

jf t)dt

A constant's or polynomial's formable integral transform is given by:
Fla]=a
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F[tm]{:—jm mimeN.

F[tﬂ}:(%f r(p+1), B>0.

Theorem 2.1.The Mittag-Leffler function's formable integral transform is provided by(Kanwalet

al., 2018)
- i u Pi+a-1
A,u)=3 A'| — .
i=0 S

Theorem 2.2.Letf be a piecewise continuous function defined on [0, o). Then, the formable inte-

gral transform of the Riemann-Liouville fractional integral of order £ >0 of the function f is giv-
en by (Saadeh& Ghazal, 2021; Saadehet al., 2023)

B
Fl1/t (t)]:(:—j A,u).

Theorem 2.3.Let f be a piecewise continuous function defined on [0, o). Then, the formable inte-

gral transform of the Caputo fractional derivative of the order 8, m —1< £ <m, of the function f
is given by (Saadeh& Ghazal, 2021; Saadehet al., 2023)

F[ D/f (t)]:(%)ﬂ [AGs,u)]

MATERIALS AND METHODS

Despite the fact that the FTDM (Saadeh, 2021) is used to approximate solutions to a wide range of
nonlinear problems in terms of convergent series with readily calculated components, it has certain
shortcomings: The series solution always converges rapidly in a small region and slowly in a bigger
region. In this section, we present the core notions of the MFDTM that we built for numerically
solving our problems (1) and (2). It is a simple tweak to regular FTDM that verifies the accuracy of

the estimated solution for large time intervals. The solution is expanded over the interval [ 0,t ]by
dividing it intoi - subintervals [t; ,t;], ] =1 2,...,i of equal length At. Ift *is the initial value

andy ; (t) is an approximation in each subinterval [t ,t;], j =1 2,...,i, the equations (1) and (2)

can be transformed into the following system:
pfy, ©=9®)-Ly,O]-N[y;®)]. ©
witht >0, 0< <1, j=12,...,i and subject to the initial condition
yit)=a y;t)=y,..)=c, (4)
wherep ? y; (t) is the Caputo fractional derivative,the source term is g (t) , L means the linear

differential operator and N means the general nonlinear differential operator.
Using the formable integral (denoted by F in this study) on both sides of Equation (3), we obtain
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Flofy; 0 ]=F[o®O-L[y,®]

-N[y, @]

Equation (5) can be read using Theorem 2.3 and the initial condition in equation (4) as

(%)

Fly, ®) ]=c, +[§YF [0 @)
-Lly; ®© =Ny, (t)ﬂ'

Using the formable inverse on both sides of Equation (6) yields

(6)

yj(t):F‘l[cj]

+F1K‘;—jﬂ Fla®]-L[y, (t)]} ()
—F{(:—jﬂ FIN Ty, (t)ﬂ}-

V0= y,0.  ©

Then,

The nonlinear term in Equation (7) can be decomposed as follows:

NLY @ J=ZA (0¥ e Yia) O)
for some Adomian’s polynomials A; that are given by (Ghorbani, 2009).

Aj,i(yj,()lijlvnayjyi):
1(n d' o 10
—| —iN(Z/l'y”) . (10)
illi=od A k=0 o

Substituting Equations (8) and (9) into Equation (7) yields
n u A
Eoyj'i(t)zchrF_{(gj F[g(t)]:l
NI oo
el e et e
(3] Flg )]
S i=0 it '

After considering the comparison in Equation (11), we obtain
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yj,O(t)zcj!

y,.)= F{(‘;—f Flg (t)]}

—Fl{(%f F [Aj,i_l]}. (12)

In addition, a power series solution needs the form

=%y @) j=12..i.13)
Finally, the system (1) solutions have the form
y, (t), tel tot, ],

yoy=1 YO teltut] gy

y; (), te[tint]
RESULTS

To show the applicability and effectiveness of our approach for solving nonlinear frac-
tional Riccate equations, we explore the following examples: (Al-ZouBi&Zurigat, 2014;Zurigatet
al., 2010; Canget al.,2009) :

Example 1.Consider the following nonlinear fractional Riccati equation
Dy (t)=1-y?t), t>0, 0<p<], (15)
with the initial condition

e —1
Y(t)zm- Ifyj(t)

The exact solutions of this equation when p=1 IS IS an approximation in

each subinterval [tiats ] J=12..1 , the equations (15) and (16) can be transformed into the
following system:
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Dly;(t)=1-y;*t), j=12,..,i. (17) yj(t*)zcj’(18)
With initial conditionwith € =1

Using the formable integral (denoted by F in this study) on both sides of Equation (17), we ob-
tain

B _ 2
F[Dfy, ) ]=F[1-y,"®) ], (19)
Equation (19) can be read using Theorem 2.3 and the initial condition in equation (18) as

p
F[yj (t)]:cj +(%j F [1_yj2(t)].

Using the formable inverse on both sides of Equation (20) yields

v;0)=F7c, ]+F‘{@ﬂ F [1—yﬁ(t)]}-

(20)

(21)

2
Where N [yi (t)} =y is a nonlinear operator, respectively.The nonlinear term of Eqg.(21) can
be decomposed as

Ny, ©]=y;®)=3 A . 2
Adomian polynomials' first few components are provided by
Aj,o =yj2,07
Aii=2Y50Y 0
A =2y 0Y 2 +Y 0

Assume that the solution of Equation (17) has the following series
Yy, =% y;;@).
SRR (23)
Substituting Equations (22) and (23) into Equation (21) yields

B
% Yii (t):cj +F—l{(ﬂj F [1— §Aj’i ﬂ
i=0 S i=0
(24)

After considering the comparison in Equation (24), we obtain
yj,O(t) ZCJ )

y .t = Fl{[:—jﬁ F [1—Aj10]}

(1-c;)-t7)”
T'(s+1)

Y. =—F1H§]ﬁ F [Amﬂ

_ —2c, (1—c?) -t
B 2 B+1)
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yj'3(t):—F1K%jﬁ F [AM]}

4c? (1-c) (@ —t")¥
rcep+1
(1-c2) Ta+1) ¢ -t")*
r’(p+)rEa+n

: (25)
The series solution to equation (17) is provided by
(1-c) e -t7)”

r(g+1
2¢; (1-¢f) @ -t")* . ac?(1-ci) -t

repg+1 rcep+l

(1-c?) T@p+D ) )

I’(B+1)T (3 L+1)
In this example, the suggested method is applied to the interval [O, 10]. We selected dividing the

yj(t):cj+

interval [0,10] into subintervals with a time step of At =0.5.Figures 1 and 2 show the series solu-
tion of the MFTDM of the nonlinear fractional Riccati equations (15) and (16) for #=1,0.7,0.9 and
the exact. The graphical results show that the results produced using the MFTDM for g =1 very

closely correspond to the results of the exact solution. This emphasizes MFTDM applicability to
many different kinds of nonlinear fractional differential equations, as well as its reliability and
promise when compared to existing methods. Furthermore, as in the preceding instance, the numer-
ical results produced by the MFTDM have the same course for various values of 5. All results are

obtained using Maple 16.

Example 2.Consider the following nonlinear fractional Riccati equation
Dy (t)=1+2y (t)-y?2(t), t>0, 0<pB<1 (26)
with the initial condition

y(0)=0.  (27)
The exact solutions of this equation when 3 =1i5y(t)=1+ﬁtanh[ﬁt +%Iog(£_ﬂ]. Ify;(t)is an ap-
+
proximation in each subinterval [ti_l,ti ] j=12,...,i, the equations (26) and (27) can be trans-

formed into the following system:
Dfy;(t)=1+2y,(t)-y,’t), j=12..i. (28)
y; ) =c;, (29)
With initial conditionswithc, =1.
Using the formable integral (denoted by F in this study) on both sides of Equation (28), we obtain
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F Doy @) |=F[1+2y;@©)-y,*() ], (30)
Equation (30) can be read using Theorem 2.3 and the initial condition in equation (29) as

B
Fly,;®]=c, +(‘;—j F[1+2yj(t)_yjz(t)].(31)

Using the formable inverse on both sides of Equation (31) yields

yj(t)zFilI:Cj:'

B
+F K%} F[1+2y, (t)]} (32)

_F{(%jﬂf [yjz(t)ﬂ

Where L{y; (t)]=y; t),N [y, (t)]=y; () are linear and nonlinear operators, respectively.The
nonlinear term of Eq.(32) can be decomposed as

N[y, ©]=yiO=2 A ()
Adomian polynomials' first few components are provided by

Aj,o =yj2,0’
Aj,l:2yj,0yj,l7
A, :Zyj,Oyj,2+yj2,l'

Assume that the solution of Equation (28) has the following series

Y (t)zéo yj,i(t)' (34)
Substituting Equations (33) and (34) into Equation (32) yields
éo y;it)=c; +

(i)

After considering the comparison in Equation (35), we obtain
y i ,o(t) :Cj 1

4| (u 7
y.t)=F {(;j F[1+2yj,O—Aj,o]}
- (1+2¢; —ci) (@ -t")”
- (B +1)
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B
yj,z(t): F_llll;_] F [2 yj,l_Aj,l:I:l

2 (1-c;)(1+2¢c; —c) ¢ -t")**
B T2 p3+1) (36)
(1+2¢; —c2) T@A+D (t )

r’(B+1) T2 pL+1)

The series solution to equation (28) is provided by
(1+2¢; —c} )t -t")”
r(g+1
2 (1-c;)(1+2¢; —c}) ¢ -t
repg+1
(1+2c; —¢?) Ta+D) t )
r’*(B+1) T2 4+1)
In this example, the suggested method is applied to the interval [O, 10]. We selected dividing the

y;(t)=c; +

interval [O, 5] into subintervals with a time step of At =0.1.Figures 3 and 4 show the series solu-

tion of the MFTDM of the nonlinear fractional Riccati equations (26) and (27) for 8 =1,0.7,0.9 and
the exact. The graphical results show that the results produced using the MFTDM for g =1 very

closely correspond to the results of the exact solution.This emphasizes MFTDM applicability to
many different kinds of nonlinear fractional differential equations, as well as its reliability and
promise when compared to existing methods. Furthermore, as in the preceding instance, the numer-
ical results produced by the MFTDM have the same course for various values of £. All results are

obtained using Maple 16.

| ——
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Figure: (1). Comparison between the exact and the MFTDM solutions of y (t) for f =1.
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Figure: (2). The MFTDM solution of y (t) for different values of £ .
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Figure: (3). Comparison between the exact and the MFTDM solutions of y ) for f=1.
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Figure: (4). The MFTDM solution of y (t) for different values of /5.
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DISCUSSION

The graphical results show that the results produced using the MFTDM p =1 very closely corre-
spond to the results of the exact solution. This emphasizes the MFTDM applicability to many dif-
ferent kinds of nonlinear fractional differential equations, as well as its reliability and promise when
compared to existing methods. Furthermore, as in the preceding instance, the numerical results pro-
duced by the MFTDM have the same course for various values of g . This is completely consistent

with the research results of Al-Zoubi&Zurigat (2014).

CONCLUSION

A multi-step formable transform decomposition method (MFTDM) is suggested in this study to
solve the nonlinear fractional-order Riccati problem.The MFTDM has been shown to solve frac-
tional Riccati equations effectively, easily, and accurately. Approximate solutions quickly converge
on exact solutions. This is completely consistent with the research results of Al-Zoubi&Zurigat
(2014).Finally, we conclude that MFTDM is an excellent enhancement of existing numerical ap-
proaches.All results are obtained using Maple 16.
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