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INTRODUCTION

In this paper study was derived the asymptotic confidence intervals by the z-quantile and by the t-
quantile, to construct approximate confidence intervals of the proportion based on linear models.

Then it was introduced to the used model:
suppose that the sum random variable X; is a Poisson distribution can be splits into two separate

Poisson random variables Y;, Z, with means 4,,4, respectively. It means.,
X;~ (44,45). and since E(Yi) = Var(Yi) = A1, and E(Zi) = Var(Zi) = A2, consequently

E(Xi) = Var(X;) = 1, + 4,. Further,
P(Yi | Xi) ~ Bin(X, p), where p = ] ﬂ:ﬁ , Xi >0 (B(n, p) denotes the
Binomial distibution with parameters n, p).

The remainder of the paper was organized as follows: Description of the assumed model is given
in Sec 2. Estimation of linear model parameter were given in Sec. 3. Section 4 to provide
confidence intervals for the proportion.

The Linear model
Suppose, there are m observations of two relevant components of data, i.e., (¥;, X;); i =1,....,m are

m % 2 dimensional observed data since every observational item refrenced by the subscript i, as
well as, ¥, X; >0; vi = 1,...,m. The i*® observation represents unit, for example:

Xi =number of units for a producti;i=1,.....m
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Yi =number of damaged units for a product i; i=1,....,m.

Consider the univariate linear model ¥; = x;p + €;, 1 = 1,....,m, with the following assumptions:

E(Y;) = x;p, E(g;) = 0, also by variance relational to xi (xi is fixed variable), i.e,
Var(Y,) = Var(€,) = o2x,, compressing the model in vector form (for the i*® observation) yields:
Y; = Xp+e€, (i=1,....,m), where

Y =(Y,,.. ¥,,)7, and the m x 1 design vector.

X = (x4,...,x,,)7, then the heteroscedastic errors (e,, ..., )T = €, through the expectations,
E(e) = 0,,, and Var(€) = c®W, where 0Om =(0, ...,0)7, and W = diag (x;). The single model was
weighted by the linear transformation

A, =4, xp+ 4; &,

Y, =%p+€,i=1...m [2.1]
where, 4, = i— ,giventhatx; >0,Y, = A4, Y, = ii = Ax =[x =4 6= E_; it follows that
\ i Vi v

E(€) =0,and Var(€;) = a2, vi = 1, ...,m (homoscedastic errors), as well as
Cov(€) = a1, = Cov(¥).such that Im is an Identity Matrix of elements m x m , also the weighted

Fard ~ o~ T - - i
response vector ¥ = (¥,,...,7,,) , and the weighted design vector X = (%,, ..., %,,,)7 , as well as the
weighted error vector €= (Ei,...,’émr), where

g% = E[ '_Xma'p)z

]

Estimation in linear models
Agreeing whether the demonstrate blunders are homoscedastic or heteroscedastic blunders we
estimate the proportion p.

Heteroscedasticity

Since, error of the vector of the non-weighted ideal has covariance that is the variance proportional
to the known invertible diagonal matrix W; so, it is the Generalized Least Squares Estimator, that
is further the Best linear unbiased estimator. The covariance structure is given by

o%x; .. 0

cov(e)=| ¢ i |=dW
0 .. o’xp

x; are fixed, i = 1,..,mand W™ W =1, aswell as XTW = 17, , where 1,, = (1, ... 1)T. So, we
have

Pers = XT(@2W) X)X (W)Y = (XTWIX)IXTwly
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Homoscedasticity

It is familiar and defined very well; that the Weighted Least Squares Estimator is the Best linear
unbiased estimator, in addition, due to the reason that, the weighted errors are homoscedastic
therefore, the Weighted Least Squares Estimator functional to the Model 2.1 concludes in the OLS
Estimator, hence is also the greatest LUE , according to Gauss-Markov's theorem (1-3), i.e., Pwrs=

p. Since, cov(é) = o2l ,

then

- -1 N o
Pwis = (XT(ﬂzfm)_lX) XT(c?%1,)" Y =(XT1,X)"1X"1,.Y

m -1 _
_ 2 D XAPNES D Wirs
_(;(V[x_l) ) ;vfx_ly} E;};lxi _E?;lxl'_p'

Asymptotic normal for the ratio p,;,

It supposed that the random errors €; are not Normally Distributed nonetheless are independently
identical distributed random variables,i =1, ...,m, i.e, ,E( &) = 0, and Var(&;) = 0. Furthermore,
under a positive conditions on the project X we can demonstrate that in huge sample sizes, p obeys
the asymptotic normal distribution.

And more additionally conditions on the couple of observations Xi, Yi are required, called (Xi, Yi)
are independently identical distributed pairs of random variables, plus E(Xi) exist =

(X; Y,) are then independently identical distributed random variables, furthermore E( ﬁzi) exists
i=1..,m%X = /X7 =1=X%>0.

NES

To arrive to the asymptotic distribution, one rephrases first the estimator p,,as

-1

m
b= (X'X) X'¥= (Z %, %, )

Consequently
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ﬁ?ﬁ(ﬁm

—-p)= (%i X!.)_1%<2 J;"?E)

i=1

-1

(%i X!-) ‘% (i \ﬁ-f}) (3.2)

i=1 i=1

The asymptotic of the equation 3.2, requests to confirm, the denominator in 3.2 is reliable, and the
numerator submits the CLT. It direct to see (by the LLN)

-1

_ &i Xi-) 5E@)

Given that, E(Xi) > 0, and

m 1
1 :
= (—Z xi-) —pu i, 1 1s a constant.
m
i=1
Along with the numerator

V%E;’;l JX:€ A N(0,02E(X;)), where, the marginal or asymptotic variance
cov(\/z?;- , ﬁ%) = Var(ﬁ?i-) = E(Xx, Var(§,\ X)) + Var (E( \/?E \ X, ))
= g2E(X,).

As a result, following the use of the Slutsky's lemma (see [Knight,. 2000], pp. 119-120), the
equation 3.2 can be rewritten as

Vm, - ) =N (0,02E@)(E)) ) = v (0,02(Ex)) ) (3.3)

Approximate Confidence Intervals for the Population Proportion p

From 3.3, the asymptotic variance,

0.2

E(Xﬂ,

var (Vm(p,,) ) = E( Var vm(p,,) \ X7) + Var( EVm(p,,) \ X7) =
as Var( EVm(p,) \ X7) =0,X = (X, X5, .., X,)7.
conclude that , the estimated (1 — a )% asymptotic confidence interval for the amount p is given by
[;’im + z, as. e(;’z‘m)] , Where, the standard error of p,),

Sm 2 1 m

1S-E(ﬁm) = Z::EJ_XE l s m :':1[}’!' _ﬁ ml' )2'
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Further and since X,, and s%,, are consistent estimators for E(Xi) and o2 respectively, it follows

Z
m

S
E;zn;J.Xi

that consistent estimator of the var((5,,)) is similarly, such as

ﬁm —p
s,

m
1‘=1X1'

o
~ty_y — N(0,1)

Henceforth, the interval that is safety bounds provided by

[ £ _— s.e(pn)|

m
EEIEJ_XE,

f(m_lll_g] is (1 — g) percentile of the student t distribution with (m — 1) degrees of freedom.

as well as

is the recommended more conservative confidence interval for p, where s. e(g,,) =

CONCLUSION

Results obtained from this article two confidence intervals first is the asymptotic confidence
interval and the second is the extra conservative asymptotic confidence interval for the population
proportion which can give more reliable intervals to cover the true population proportion P. Hence
we considered two confidence intervals, the asymptotic (following the normal quintile) in addition
the proposed conservative (with the adjusted t-quintile) confidence intervals.
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