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Abstract

Hybrid numerical quadrature rules are widespread techniques for ap-
proximate computations of definite integrals. Such hybrid rules com-
bine as many quadrature rules as long as they possess the same degree
of precision. The revenue is a new mixed rule with a higher degree of
precision than its constituted rules at least by two. Moreover, such
mixed rules are quite simple and handy, because they do not involve
any extra evaluations of the integrand. That is by relying on the same
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number of quadrature points of the constituted rules, the acquired hy-
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ical integration of real definite integrals that do not possess a closed-
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blending Milne’s rule of Newton-Cotes type with the anti-Gaussian
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definite real integrals as confirmed analytically by the error analysis
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of precision of the proposed triple approach, the numerical computa-
tions have been implemented in an adaptive environment.
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INTRODUCTION

Numerical quadrature rules have gained great popularity in numerical integration for cer-
tain classes of integrals that cannot be integrated analytically. The quadrature rules can be clas-
sified either as Newton-Cotes-type or Gauss-type (Atkinson, 2012; Burden and Faires, 2005). The
pronounced difference between the two categories of quadrature rules is that the nodes for the
Newton-Cotes rules are equally spaced points along the interval of integration. Whereas the
Gauss rule picks the nodes differently and does not have to be equally distanced, and the corre-
sponding weights are usually irrational numbers. A great feature of the Gauss-type rule is that
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the weights are always positive which has a desirable effect on the stability of the quadrature
rule. Unfortunately, such a feature cannot be guaranteed for Newton-Cotes rules, especially for a
large number of quadrature points. Sermutlu (Sermutlu, 2005) conducted a comparative study
between Newton-Cotes-Type and Gauss-Type quadrature rules based on several criteria such as
degree of precision, running time, computational cost, coefficient of the leading term of the error,
and stability. He claimed that the Gauss-type quadrature rules offer superior performance com-
pared to the Newton-Cotes quadrature rules.

Modified families of closed, Mid-point, and open Newton-Cotes quadrature rules have
been recently established by Burg et al. (Burg and Degney, 2013; Burg, 2012; Zafar et al., 2014),
and are known as derivative-based Newton-Cotes formulae. Such formulae require the
evaluations of the integrand and its derivative at a smaller number of quadrature points in
comparison to the standard Newton-Cotes formulae. Burg et al. (Burg and Degney, 2013; Burg,
2012; Zafar et al., 2014) state that their modified Newton-Cotes formulae perform considerably
well compared with the classical Newton-Cotes (Burg and Degney, 2013; Burg, 2012; Zafar et al.,
2014; Dehghan et al., 2005 a; Dehghan et al., 2005b).

Moreover, numerical enhancements of the open and semi-open Newton-Cotes formulae
were presented respectively by Dehghan et al. (Dehghan et al., 2005a; Dehghan et al., 2005b).
Thus, they claim that the numerically enhanced rules are superior to the classical Newton-Cotes
rules of open, closed, and semi-open types. Moreover, a recent approach was first introduced by
Das and Pradhan in 1996 for numerical quadrature (Das and Pradhan, 1996). The core idea of their
approach is joining a pair of quadrature rules of the same degree of precision to generate a new
mixed rule with a better degree of precision. Then several formations of the mixed quadrature
rules appeared for numerical computation of real definite integral (Das and Pradhan, 2012; Das
and Pradhan, 2013a; Das and Pradhan, 2013b; Jena and Dash, 2011; Tripathy et. al., 2015; Patra et.
al., 2018). Furthermore, such an approach has been also implemented for the numerical
computation of analytic functions (Mohanty, 2010). Such mixed rules have been proven valuable
in solving different classes of integral equations either with regular or singular kernels (Jena and
Nayak, 2015).

In this paper, a triple hybrid quadrature rule has been formalized for the numerical
integration of real definite integrals that do not own closed-form anti-derivatives. The proposed
approach blends Milne’s rule with the anti-Gauss quadrature rule to generate a dual rule with a
degree of precision equal to five. Then the accomplished dual hybrid rule is recombined with the
composite derivative-based Newton-Cotes rule to produce a triple hybrid rule of degree of
precision equal to seven. The proposed triple hybrid rule will be verified by some integral
examples that do not hold an elementary anti-derivative.

The structure of this paper is as follows: The related literature review was reviewed in the
introduction section. Then some preliminary concepts were introduced and the notations were
used in this paper. In the third section; the dual and the triple hybrid quadrature rules have been
established and an error analysis is presented analytically. To verify the acquired approach, some
numerical results are shown in the results section followed by a discussion and conclusion.

Preliminaries Concepts
Here some basic definitions need throughout the paper.
Definition 1: An n-point Gaussian-quadrature rule is defined by the formula,
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where the points x; are the quadrature points are known as nodes or abscissas, the factors
w; are the corresponding weights and E1,,(f) isthe error of the rule (1). The quadrature rule (1)
is based on polynomials interpolation. The mechanism of the Gauss quadrature is based on the
precision concept, that is the quadrature rule is exact for polynomial of degree less than or equal
to 2n—1. That is the formula (1) exactly integrates first n monomials functions x!,i =
0,1,2, ...,n. Thus we obtain a non-linear system of moment equations that can be solved yielding
the nodes and the corresponding weights.

Definition 2 (Degree of Precision): The degree of precision of a quadrature rule is the highest
degree of the polynomial P, = x™ such that the relevant rule is exact for all the monomials x%,i =
0,1,2, ...,n. Thus the quadrature rule is exact for all polynomials of degree < n and the error does
notvanishfori=n+1,n+ 2, ..

MATERIALS AND METHODS

Here we outline the definitions of the quadrature rules that were implemented later through the
formalization of the hybrid rules either the dual or the triple rules.

Anti-Gaussian Quadrature Rule
Definition 3 (Laurie, 1996): An (n + 1)- the formula defines point Anti-Gaussian formula,
n+1

b
lomen() = [ F@dx =Y wif G, @

where all the weights are positive and the abscissas are real and interlaced by those of the n-
point Gaussian formula (1). This rule has (2n — 1) as the degree of precision and with the error
of the same module but the opposite sign to the error of the n-point Gauss-Legendre quadrature
rule (2).

For example, for n = 2, we have the 3-point anti-Gaussian formula I,;3(f) as,

13 13

h
lags(f) = 5y16f () +5|f\p—h | |+ f P+ )| (3)

where h = (b;—a) and throughout the paper p = (azﬂ) € [a, b] denotes the mid-point of the inte-

gration interval. Thus, one has,

b
Toxac () = [ G dx = Iy (F) + Fags (1), @)

where E ;3 (f) is the truncation error of the 3-point anti-Gauss quadrature rule. Thus from equa-
tion (4), one has

Eucs (f) = IExact(f) — lag3 (f)

This error can be derived by polynomials interpolation (Atkinson, 2012; Burden and Faires, 2005)
or by Taylor expansion (Das and Pradhan, 1996) of the functions involved in I,;3(f) about the
mid-point p of the integration interval [a, b] to yield,
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The degree of precision of the 3-point anti-Gauss quadrature rule 1,43 (f) is three, and the local
truncation error is of the fifth order.
Milne’s Rule
Milne’s rule is the three-point open Newton-Cotes quadrature rule, and is given by the following
formula (Atkinson, 2012; Burden and Faires, 2005):

b

4h
f fedx = Iyu(f) = —-{2[f(a+ ) + fla+30)] = f(a+2h)}, (6)

where the step-size h = (n ) n = 2. Thus, one has,

b
Toxace () = [ FG0dx = ) + Eua (), %

where Ej;; is the truncation error of the Milne’s rule. Thus from equation (7), one has

Eva(f) = Igxace (f) — Ima (f).

This error can be derived by Taylor expansion of the functions involved in I,; (f) about the mid-
point p of the integration interval [a, b] to yield,

14h° 656h7

976 h°
Do) + 35O o) + f®p) + - (8)

Evu(f) =

9!

Thus the degree of precision of Milne’s rule Iy,; (f) is three and the local truncation error is of
the fifth order.

Composite Newton-Cotes-Type Derivative-Based and mid-point quadrature rule.

In the current work «<we used a derivative-based quadrature formula that only requires the
integrand evaluations at the mid-point of the integration interval [a, b, ] and evaluations of odd
derivatives at the end-points a and b. Such formula is given as (Burg and Degney, 2013),

[f "(a) = f ()] + f ©@). 9

360

b h2
[ reax =2nr ) - 1@ - o3 + =

Thus the degree of precision of this rule is five and the local truncation error is of the
seventh order. It should be noted that the weights of the first and third derivatives in equation (9)
are of opposite sign. This formula can be put in composite form as (Burg and Degney, 2013).

N/2

[ Fodx = 2h Y i D=L r@-ren+

[f (@) =" )]+ f ©(p), (10)

360 3x7!

a

where the nodes x; = a + ih and the step-size h = (%)

Formula (9) has great features that make it an efficient quadrature rule. For instance, consistently
with using the composite formula (10), only derivative evaluations at the end-points are required.
This advantageous feature is due to the desirable appearance of the opposite-sign weights of odd
derivatives that are involved in the formula (9). Unfortunately, such a handy feature does not
persist with the appearance of even derivatives in the composite formula (10) for some values of
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N where the weights of derivatives are of the same signs (Burg and Degney, 2013).

Furthermore, the composite formula (10) is progressive concerning the weights of the
involved derivatives, that is it can be easily extended to involve high-order odd-derivatives.
Therefore to acquire higher accuracy of the formula (10), Burg and Degny (Burg and Degney,
2013) implemented the central difference approximations to the derivatives. Hence the weights
for the low-derivative remain unchanged, thus one only needs to compute the weights for the
arising derivatives.

Now after we introduce all the quadrature rules that we will use in this paper either of Gauss-type
or Newton-Cotes-type, we will formulate our hybrid rules as shown next.

RESULTS AND ERROR ANALYSIS

Here study shows how to formalize the triple hybrid quadrature rule, such formulation has
two stages. The first task is to generate the dual rule, and then generate the triple quadrature rule
as shown next.

Establishment of the Dual Hybrid Rule Joining the 3-Point Anti-Gauss Rule with Milne’s
Rule.

Here we show how to mingle two quadrature rules to generate a dual rule of degree of
precision seven. The ingredients rules of the hybrid dual rule are the 3-point anti-Gauss rule (3)
and Milne’s rule (6) both having the same degree of precision equal to five. The core idea of
generating the hybrid quadrature rules is to linearly combine the ingredient quadrature rules in
such a way that leads to the cancellation of the leading term in the remainder of the ingredient
rules as we show next.

To attain a linear combination of the quadrature rules (3) and (6), we multiply equations

(4) and (7) respectively by 1—15 and 15—4 then add the resulting equations, yielding the following
dual hybrid quadrature rule as,

1
Ipu(f) = 13 Ui (f) + 42 I3 (f)]. (11)

where I,; (f) and 1,45 (f) are respectively given by equations (6) and (3).
This error of Ip(f) denoted as Epy (f) can be generated by the following equation,

Iexact (f) = Ipu(f) + Epu (f). (12)

Thus by Taylor expansions of the functions involved in I,y (f) about the mid-point p of the inte-
gration interval [a, b] one has,
34976 335984 h°
— 7 £(6) = f®
Eon(f) = 55057 M7t cooesor [P+ (13)
Hence the degree of precision of the dual hybrid I, (f) is five and the local truncation error is
of ninth order.

Establishment of the Triple Hybrid Rule.

Here study shows how to join the dual hybrid rule I given by the equation (11) with the com-
posite quadrature rule (10) of Newton-Cotes-Type and of the same degree of precision of Iy to
establish a triple quadrature rule with the degree of precision equal to seven. The formula (10)
can be rewritten for N = 6 as,
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b hz 1] 1] 7h3 " " 62h’7 6)
f fG)dx = 2h[f (x) + f(3) + f(xs)] = [f (@) = f1 (D] + 55 [ (@) — 7 (D] + —; f@p), 14
where x; = a + ih. This equation can be rewritten as,
b
Tovace () = | £00) dx = Leou(F) + Ecou(£), (15)
a
where E.py, is the truncation error of the composite quadrature rule (14). Given as,
6207 _ o
Ecpu(f) = 71 )+,

By following a similar analogy to the derivation of the dual hybrid rule, we will produce the triple
hybrid rule. By a similar analogy of the derivation of the dual hybrid rule, an appropriate linear
combination between the dual hybrid rule(11) and the composite quadrature rule (14). Such a
linear mixture guarantees the cancellation of the leading term of the remainder of their ingredient
rules. Hence, one has,

Iry(f) = 31601 [34976 Icpm (f) — 3375 Ipy ()], (16)
and the corresponding truncation error of the triple rule Iy is,
Ery(f) = O(hg)- (17)
Hence the degree of precision of the generated triple hybrid I (f) is seven and the local trunca-
tion error is of ninth order.

Numerical Results
Table (1) shows some integral examples that we consider in this paper with their non-elementary
anti-derivative and their approximate values.

Table: (1). Some Integral examples with their non-elementary anti-derivative and their approximate values.

Integral Exact Value Approximate Value
1 ee("zﬁ) I, = Ei(ez); Ei(e) ~ 255.676
11=f 7 Ei(x)=—f <y
2
s ~ 0.135257
I, = f e dx I, = g [erf(2) —erf(1)]
1
2 (* .,
erf(x) = —f e Y dy
Vi Jo
Zsinx I3 = Si(2) — Si(1) ~ 0.6593329906
I3 =f dx sinx
1 X Si(x) = f . dx
- fl dx LT 2coth™1(v2) ~ 0.86697
+T o 1+ x* 4 442

Table (2) shows the approximate values of the four integrals I, I,, I, and I, computed by the
dual and the triple hybrid quadrature rules I,;(f) and I, (f) and their ingredients rules I, (f),
Icpm (f) and I,43(f). The obtained results have been enhanced to reach a certain degree of preci-
sion by implementing an adaptive quadrature algorithm as explained next.
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Table: (2). Numerical results computed by the hybrid quadrature rules I;,(f) and I (f) compared with its con-
stituent rules Iy, Icpy (f,) and Iygs(f)

Integral Iui (f) lagz(f) Iy () Iepm (f) Iy ()
Relative Error Relative Error Relative Error Relative Error Relative Error
I 202.8302589 299.7667015 297.51236563 224.5599104 216.76855772
0.20668986 0.17244816 0.163630999 0.1217007993 0.1521743547
I, 0.135788265 0.134847269 0.1348691522 0.13532354 0.1353720733
0.003925903 3.031182 x 1073 2.8693892 x 1073 4900742 x 10~* 8.488664 x 10~*
I3 0.659311367 0.6593440204 0.659343261 0.659326494 0.659328112

2.811856 x 107> 2.140659 x 1075 2.025484 x 1075 5.175461 x 107° 2.72157 x 107
Iy 0.85677642 0.8743924963 0.8739828201 0.866016272387 0.866785002
1.17611 x 1072 8.557947 x 1073 8.0854108 x 1073 1.1035118 x 1073 2.16829 x 1074

Adaptive Quadrature

The adaptive algorithm was first introduced by Kuncir (Kuncir, 1962), to enhance the
accuracy of any numerical quadrature rule depending on step-size parameter h. Adaptive quad-
rature routine allows us to rely on a low-order quadrature rule and, then improve the accuracy by
implementing such a low-order rule on a finer mesh of the integration interval. The mechanism
of the adaptive quadrature rule is to iteratively refine the step size of the relevant quadrature rule
until a termination criterion is met and reaches the desirable degree of precision (Lyness, 1969).
That is, the adaptive algorithm takes the following steps:

1. Set an allowed tolerance as e = 10~%and let Iz, 40 (f) = E.

2. At the mid-point p = asz’ subdivide the interval of integration [a, b] into two subintervals

[a, p] and [p, b].
3. Then implement the quadrature rule separately on each subinterval [a, p] and [p, b], to re-
spectively obtain the approximate results R, and R,.
Then estimate the error of the obtained approximate results as:
|E —S;| and |E — S,]|
6. If |[E —S;| < ¢, the termination criterion is met for the subinterval, the adaptive routine

will stop, the same for another subinterval [p, b].

If |E —S;| > ¢,i = 1,2, then the subdivision processes are still ongoing till the termination
criterion is met.

We build up an adaptive algorithm by Mathematica 13.1 to produce the results shown in
Tables (3). This table shows that the approximate values of the four integrals I;, I,, 15, and I,
computed respectively by the dual I, (f) and its ingredients rules Iy, (f) and I,;5(f) in an adap-
tive environment.

o~

Table: (3). Numerical results computed by the hybrid quadrature rules 1,,,(f) compared with its constituent
rules In;; (f) and I65(f) in adaptive environment.

Integral Lui () steps lag3(f) Steps Iup (f) steps
I 255.675599 5 255.7257015 3 255.67606135 5
I, 0.13525742 3 0.135257133 3 0.135257140 3
I3 0.65932983 2 0.65932996 2 0.6593299577 2
Iy 0.86697254 3 0.866973326 3 0.866973308 2
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Figure (1): Plot of the integrand of fjlee(T
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DISCUSSION

The error analysis of the proposed dual and triple hybrid rules analytically confirms that
the degree of precision of such generated rules is higher than their ingredient quadrature rules as
shown by equations (13) and (17). Also, the numerically observed results agree with the analytic
error analysis. Moreover, the obtained numerical values for the four integrals Iy, I,, I3, and I, by
implementing the dual hybrid rule I,;(f) are better than those attained by its ingredients I, (f)
and I,;3(f) as shown in Table (2). Also, the obtained numerical values of the four integrals I,
I,, 13, and I, by using the triple hybrid rule I7; (f) are better than those obtained by its ingredients
Icpm(f) and Ipy (f) as shown in Table (2). Apart from the integral I, all the numerical values of
I,, I3, and I, are reasonably very well although we use a quite few quadrature points. The slow
convergence of the integral I; is due to the large variation of the integrand on the integration
interval, because the integrand has sharp variation from the value 40 at x = —1 to the value 500
at the value x = 1 as shown in Figure 1. Thus, we easily tackle this issue by implementing the
obtained quadrature rule in an adaptive environment with the allowed tolerance setto ¢ = 1075 .
Hence we achieve accurate results that coincide with the exact ones up to four digits only in two
steps for the adaptive algorithm for the integrals I5 and I, as shown in Table (3).

CONCLUSION

To conclude triple and dual hybrid quadrature rules have been constructed by blending
Gauss-type rules with the classical or the modified Newton-Cotes-type rules that incorporate odd
derivatives. Such a mixture incorporates the advantages of both types of quadrature rules to gain
better accuracy, thus there is no need to increase the number of quadrature points that may bring
instability issues to the numerical process. The acquired results have been enhanced by the adap-
tive quadrature algorithm. The analytic error analysis and the numerical computations both con-
firm the efficiency of the proposed approaches. A similar analogy can be adopted to generate
hybrid quadrature rules of high-order accuracy by blending as many quadrature rules provided
that they are of the same degree of precision.
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