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 Abstract 

Hybrid numerical quadrature rules are widespread techniques for ap-

proximate computations of definite integrals. Such hybrid rules com-

bine as many quadrature rules as long as they possess the same degree 

of precision. The revenue is a new mixed rule with a higher degree of 

precision than its constituted rules at least by two. Moreover, such 

mixed rules are quite simple and handy, because they do not involve 

any extra evaluations of the integrand. That is by relying on the same 

number of quadrature points of the constituted rules, the acquired hy-

brid rule performs more efficiently than its ingredients rules. In this pa-

per; a triple hybrid quadrature rule has been constructed for the numer-

ical integration of real definite integrals that do not possess a closed-

form anti-derivative.  At First, a dual hybrid rule was produced by 

blending Milne’s rule of Newton-Cotes type with the anti-Gaussian 

quadrature rule to prevail a dual rule of a degree of precision equal to 

five. Then the acquired dual rule is recombined with the composite de-

rivative-based and mid-Point Newton–Cotes formula producing a hy-

brid triple rule of degree of precision equal to seven. The accomplished 

approach is satisfactory and efficient in the approximate evaluation of 

definite real integrals as confirmed analytically by the error analysis 

and numerically by some verification examples. To promote the degree 

of precision of the proposed triple approach, the numerical computa-

tions have been implemented in an adaptive environment. 

 Keywords: Hybrid Quadrature Rule, Milne’s Rule, Anti-Gaussian 

Quadrature, Derivative-Based Newton-Cotes Quadrature Rules, Com-

posite Mid-Point Newton-Cotes Quadrature Rules, Adaptive Quadra-

ture Rule, Numerical Integration. 

INTRODUCTION 

Numerical quadrature rules have gained great popularity in numerical integration for cer-

tain classes of integrals that cannot be integrated analytically. The quadrature rules can be clas-

sified either as Newton-Cotes-type or Gauss-type (Atkinson, 2012; Burden and Faires, 2005). The 

pronounced difference between the two categories of quadrature rules is that the nodes for the 

Newton-Cotes rules are equally spaced points along the interval of integration. Whereas the 

Gauss rule picks the nodes differently and does not have to be equally distanced, and the corre-

sponding weights are usually irrational numbers.  A great feature of the Gauss-type rule is that 
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the weights are always positive which has a desirable effect on the stability of the quadrature 

rule. Unfortunately, such a feature cannot be guaranteed for Newton-Cotes rules, especially for a 

large number of quadrature points. Sermutlu (Sermutlu, 2005) conducted a comparative study 

between Newton-Cotes-Type and Gauss-Type quadrature rules based on several criteria such as 

degree of precision, running time, computational cost, coefficient of the leading term of the error, 

and stability. He claimed that the Gauss-type quadrature rules offer superior performance com-

pared to the Newton-Cotes quadrature rules. 

Modified families of closed, Mid-point, and open Newton-Cotes quadrature rules have 

been recently established by Burg et al. (Burg and Degney, 2013; Burg, 2012; Zafar et al., 2014), 

and are known as derivative-based Newton-Cotes formulae. Such formulae require the 

evaluations of the integrand and its derivative at a smaller number of quadrature points in 

comparison to the standard Newton-Cotes formulae. Burg et al. (Burg and Degney, 2013; Burg, 

2012; Zafar et al., 2014) state that their modified Newton-Cotes formulae perform considerably 

well compared with the classical Newton-Cotes (Burg and Degney, 2013; Burg, 2012; Zafar et al., 

2014; Dehghan et al., 2005 a; Dehghan et al., 2005b).  

Moreover, numerical enhancements of the open and semi-open Newton-Cotes formulae 

were presented respectively by Dehghan et al. (Dehghan et al., 2005a; Dehghan et al., 2005b).  

Thus, they claim that the numerically enhanced rules are superior to the classical Newton-Cotes 

rules of open, closed, and semi-open types. Moreover, a recent approach was first introduced by 

Das and Pradhan in 1996 for numerical quadrature (Das and Pradhan, 1996). The core idea of their 

approach is joining a pair of quadrature rules of the same degree of precision to generate a new 

mixed rule with a better degree of precision. Then several formations of the mixed quadrature 

rules appeared for numerical computation of real definite integral  (Das and Pradhan, 2012; Das 

and Pradhan, 2013a; Das and Pradhan, 2013b; Jena and Dash, 2011; Tripathy et. al., 2015; Patra et. 

al., 2018).  Furthermore, such an approach has been also implemented for the numerical 

computation of analytic functions (Mohanty, 2010).  Such mixed rules have been proven valuable 

in solving different classes of integral equations either with regular or singular kernels (Jena and 

Nayak, 2015). 

In this paper, a triple hybrid quadrature rule has been formalized for the numerical 

integration of real definite integrals that do not own closed-form anti-derivatives. The proposed 

approach blends Milne’s rule with the anti-Gauss quadrature rule to generate a dual rule with a 

degree of precision equal to five. Then the accomplished dual hybrid rule is recombined with the 

composite derivative-based Newton-Cotes rule to produce a triple hybrid rule of degree of 

precision equal to seven. The proposed triple hybrid rule will be verified by some integral 

examples that do not hold an elementary anti-derivative. 

The structure of this paper is as follows: The related literature review was reviewed in the 

introduction section. Then some preliminary concepts were introduced and the notations were 

used in this paper. In the third section; the dual and the triple hybrid quadrature rules have been 

established and an error analysis is presented analytically. To verify the acquired approach, some 

numerical results are shown in the results section followed by a discussion and conclusion.  

Preliminaries Concepts  

Here some basic definitions need throughout the paper.  

Definition 1: An n-point Gaussian-quadrature rule is defined by the formula, 
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𝐼𝑛(𝑓) = ∫ 𝑓(𝑥)
𝑏

𝑎

𝑑𝑥 ≅ ∑ 𝑤𝑖𝑓(𝑥𝑖)

𝑛

𝑖=1

+ 𝐸𝐼𝑛(𝑓),                                   (1) 

where the points 𝑥𝑖 are the quadrature points are known as nodes or abscissas, the factors 

𝑤𝑖 are the corresponding weights and 𝐸𝐼𝑛(𝑓)  is the error of the rule (1). The quadrature rule (1) 

is based on polynomials interpolation. The mechanism of the Gauss quadrature is based on the 

precision concept, that is the quadrature rule is exact for polynomial of degree less than or equal 

to 2𝑛 − 1 . That is the formula (1)  exactly integrates first 𝑛  monomials functions 𝑥𝑖 , 𝑖 =
0,1,2, … , 𝑛. Thus we obtain a non-linear system of moment equations that can be solved yielding 

the nodes and the corresponding weights.  

Definition 2 (Degree of Precision): The degree of precision of a quadrature rule is the highest 

degree of the polynomial 𝑃𝑛 = 𝑥𝑛 such that the relevant rule is exact for all the monomials 𝑥𝑖 , 𝑖 =
0,1,2, … , 𝑛. Thus the quadrature rule is exact for all polynomials of degree ≤ 𝑛 and the error does 

not vanish for 𝑖 = 𝑛 + 1, 𝑛 + 2, … 

MATERIALS AND METHODS 

Here we outline the definitions of the quadrature rules that were implemented later through the 

formalization of the hybrid rules either the dual or the triple rules. 

 

Anti-Gaussian Quadrature Rule 

Definition 3 (Laurie, 1996): An (𝑛 + 1)- the formula defines point Anti-Gaussian formula, 

𝐼𝑎𝐺(𝑛+1)(𝑓) = ∫ 𝑓(𝑥)
𝑏

𝑎

𝑑𝑥 ≈ ∑ 𝑤𝑖𝑓(𝑥𝑖),

𝑛+1

𝑖=1

                                          (2) 

where all the weights are positive and the abscissas are real and interlaced by those of the  𝑛-

point Gaussian formula (1). This rule has (2𝑛 − 1) as the degree of precision and with the error 

of the same module but the opposite sign to the error of the n-point Gauss-Legendre quadrature 

rule (2).  

For example, for 𝑛 = 2, we have the 3-point anti-Gaussian formula 𝐼𝑎𝐺3(𝑓) as, 

 

𝐼𝑎𝐺3(𝑓) =
ℎ

13
{16𝑓(𝜌) + 5 [𝑓 (𝜌 − ℎ√

13

15
) + 𝑓 (𝜌 + ℎ√

13

15
)]},              (3) 

 

where ℎ = (
𝑏−𝑎

2
)   and throughout the paper 𝜌 = (

𝑎+𝑏

2
) ∈ [𝑎, 𝑏] denotes the mid-point of the inte-

gration interval. Thus, one has, 

 𝐼𝐸𝑥𝑎𝑐𝑡(𝑓) = ∫ 𝑓(𝑥)
𝑏

𝑎

𝑑𝑥 = 𝐼𝑎𝐺3(𝑓) + 𝐸𝑎𝐺3(𝑓),                             (4) 

where 𝐸𝑎𝐺3(𝑓) is the truncation error of the 3-point anti-Gauss quadrature rule. Thus from equa-

tion (4), one has 

𝐸𝑎𝐺3(𝑓) = 𝐼𝐸𝑥𝑎𝑐𝑡(𝑓) − 𝐼𝑎𝐺3(𝑓).  
 

This error can be derived by polynomials interpolation (Atkinson, 2012; Burden and Faires, 2005)  

or by Taylor expansion (Das and Pradhan, 1996) of the functions involved in 𝐼𝑎𝐺3(𝑓) about the 

mid-point 𝜌 of the integration interval [𝑎, 𝑏] to yield, 
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𝐸𝑎𝐺3(𝑓) = −
ℎ5

135
𝑓(4)(𝜌) −

1016 ℎ7

675 × 7!
𝑓(6)(𝜌) −

2144 ℎ9

1125 × 9!
𝑓(8)(𝜌) − ⋯                     (5) 

 

The degree of precision of the 3-point anti-Gauss quadrature rule 𝐼𝑎𝐺3(𝑓) is three, and the local 

truncation error is of the fifth order. 

Milne’s Rule 

Milne’s rule is the three-point open Newton-Cotes quadrature rule, and is given by the following 

formula (Atkinson, 2012; Burden and Faires, 2005): 

∫ 𝑓(𝑥)
𝑏

𝑎

𝑑𝑥 ≈ 𝐼𝑀𝑖𝑙(𝑓) =
4ℎ

3
{2[𝑓(𝑎 + ℎ) + 𝑓(𝑎 + 3ℎ)] − 𝑓(𝑎 + 2ℎ)},               (6)  

where the step-size ℎ = (
𝑏−𝑎

𝑛+2
) , 𝑛 = 2. Thus, one has, 

 𝐼𝐸𝑥𝑎𝑐𝑡(𝑓) = ∫ 𝑓(𝑥)
𝑏

𝑎

𝑑𝑥 = 𝐼𝑀𝑖𝑙(𝑓) + 𝐸𝑀𝑖𝑙(𝑓),                                             (7) 

where 𝐸𝑀𝑖𝑙 is the truncation error of the Milne’s rule. Thus from equation (7), one has 

𝐸𝑀𝑖𝑙(𝑓) = 𝐼𝐸𝑥𝑎𝑐𝑡(𝑓) − 𝐼𝑀𝑖𝑙(𝑓). 
This error can be derived by Taylor expansion of the functions involved in 𝐼𝑀𝑖𝑙(𝑓) about the mid-

point 𝜌 of the integration interval [𝑎, 𝑏] to yield,  

 

𝐸𝑀𝑖𝑙(𝑓) =
14ℎ5

45
𝑓(4)(𝜌) +

656ℎ7

3 × 7!
𝑓(6)(𝜌) +

976 ℎ9

9!
𝑓(8)(𝜌) + ⋯             (8) 

 

Thus the degree of precision of Milne’s rule 𝐼𝑀𝑖𝑙(𝑓) is three and the local truncation error is of 

the fifth order. 

 

Composite Newton-Cotes-Type Derivative-Based and mid-point quadrature rule.   

In the current work ,we used a derivative-based quadrature formula that only requires the 

integrand evaluations at the mid-point of the integration interval [𝑎, 𝑏, ] and evaluations of odd 

derivatives at the end-points 𝑎 and 𝑏. Such formula is given as (Burg and Degney, 2013), 

 

∫ 𝑓(𝑥)
𝑏

𝑎

𝑑𝑥 = 2ℎ𝑓(𝜌) −
ℎ2

6
[𝑓′(𝑎) − 𝑓′(𝑏)] +

7ℎ3

360
[𝑓′′′(𝑎) − 𝑓′′′(𝑏)] +

62ℎ7

3 × 7!
𝑓(6)(𝜌).     (9) 

 

Thus the degree of precision of this rule is five and the local truncation error is of the 

seventh order. It should be noted that the weights of the first and third derivatives in equation (9) 

are of opposite sign. This formula can be put in composite form as (Burg and Degney, 2013).  

 

∫ 𝑓(𝑥)
𝑏

𝑎

𝑑𝑥 = 2ℎ ∑ 𝑓(𝑥2𝑘−1)

𝑁 2⁄

𝑘=1

−
ℎ2

6
[𝑓′(𝑎) − 𝑓′(𝑏)] +

7ℎ3

360
[𝑓′′′(𝑎) − 𝑓′′′(𝑏)] +

31𝑁ℎ7

3 × 7!
𝑓(6)(𝜌), (10) 

where the nodes 𝑥𝑖 = 𝑎 + 𝑖ℎ and the step-size ℎ = (
𝑏−𝑎

𝑁
). 

 

Formula (9) has great features that make it an efficient quadrature rule. For instance, consistently 

with using the composite formula (10), only derivative evaluations at the end-points are required. 

This advantageous feature is due to the desirable appearance of the opposite-sign weights of odd 

derivatives that are involved in the formula (9). Unfortunately, such a handy feature does not 

persist with the appearance of even derivatives in the composite formula (10) for some values of 
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𝑁 where the weights of derivatives are of the same signs (Burg and Degney, 2013).   

 Furthermore, the composite formula (10) is progressive concerning the weights of the 

involved derivatives, that is it can be easily extended to involve high-order odd-derivatives. 

Therefore to acquire higher accuracy of the formula (10), Burg and Degny (Burg and Degney, 

2013) implemented the central difference approximations to the derivatives. Hence the weights 

for the low-derivative remain unchanged, thus one only needs to compute the weights for the 

arising derivatives.  

Now after we introduce all the quadrature rules that we will use in this paper either of Gauss-type 

or Newton-Cotes-type, we will formulate our hybrid rules as shown next. 

RESULTS AND ERROR ANALYSIS 

Here study shows how to formalize the triple hybrid quadrature rule, such formulation has 

two stages. The first task is to generate the dual rule, and then generate the triple quadrature rule 

as shown next. 

Establishment of the Dual Hybrid Rule Joining the 3-Point Anti-Gauss Rule with Milne’s 

Rule. 

Here we show how to mingle two quadrature rules to generate a dual rule of degree of 

precision seven. The ingredients rules of the hybrid dual rule are the 3-point anti-Gauss rule (3) 

and Milne’s rule (6) both having the same degree of precision equal to five. The core idea of 

generating the hybrid quadrature rules is to linearly combine the ingredient quadrature rules in 

such a way that leads to the cancellation of the leading term in the remainder of the ingredient 

rules as we show next. 

To attain a linear combination of the quadrature rules (3) and (6), we multiply equations 

(4) and (7) respectively by 
1

15
  and 

14

5
, then add the resulting equations, yielding the following 

dual hybrid quadrature rule as, 

𝐼𝐷𝐻(𝑓) =
1

43
[𝐼𝑀𝑖𝑙(𝑓) + 42 𝐼𝑎𝐺3(𝑓)].                                                   (11) 

 

where 𝐼𝑀𝑖𝑙(𝑓) and 𝐼𝑎𝐺3(𝑓) are respectively given by equations (6) and (3). 

This error of 𝐼𝐷𝐻(𝑓) denoted as 𝐸𝐷𝐻(𝑓) can be generated by the following equation, 
 

𝐼𝐸𝑥𝑎𝑐𝑡(𝑓) = 𝐼𝐷𝐻(𝑓) + 𝐸𝐷𝐻(𝑓).                                                               (12) 
 

Thus by Taylor expansions of the functions involved in 𝐼𝐷𝐻(𝑓) about the mid-point 𝜌 of the inte-

gration interval [𝑎, 𝑏] one has,  

𝐸𝐷𝐻(𝑓) =
34976

3375 × 7!
ℎ7𝑓(6)(𝜌) +

335984 ℎ9

5625 × 9!
𝑓(8)(𝜌) + ⋯                      (13) 

 

Hence the degree of precision of the dual hybrid 𝐼𝐷𝐻(𝑓) is five and the local truncation error is 

of ninth order. 

Establishment of the Triple Hybrid Rule. 

Here study shows how to join the dual hybrid rule 𝐼𝐷𝐻 given by the equation (11) with the com-

posite quadrature rule (10) of Newton-Cotes-Type and of the same degree of precision of 𝐼𝐷𝐻 to 

establish a triple quadrature rule with the degree of precision equal to seven. The formula (10) 

can be rewritten for 𝑁 = 6  as, 
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∫ 𝑓(𝑥)
𝑏

𝑎

𝑑𝑥 = 2ℎ[𝑓(𝑥1) + 𝑓(𝑥3) + 𝑓(𝑥5)] −
ℎ2

6
[𝑓′(𝑎) − 𝑓′(𝑏)] +

7ℎ3

360
[𝑓′′′(𝑎) − 𝑓′′′(𝑏)] +

62ℎ7

7!
𝑓(6)(𝜌), (14) 

 

where 𝑥𝑖 = 𝑎 + 𝑖ℎ. This equation can be rewritten as, 

𝐼𝐸𝑥𝑎𝑐𝑡(𝑓) = ∫ 𝑓(𝑥)
𝑏

𝑎

𝑑𝑥 = 𝐼𝐶𝐷𝑀(𝑓) + 𝐸𝐶𝐷𝑀(𝑓),                             (15) 

where 𝐸𝐶𝐷𝑀 is the truncation error of the composite quadrature rule (14). Given as, 

𝐸𝐶𝐷𝑀(𝑓) =
62ℎ7

7!
𝑓(6)(𝜌) + ⋯, 

By following a similar analogy to the derivation of the dual hybrid rule, we will produce the triple 

hybrid rule. By a similar analogy of the derivation of the dual hybrid rule, an appropriate linear 

combination between the dual hybrid rule(11) and the composite quadrature rule (14). Such a 

linear mixture guarantees the cancellation of the leading term of the remainder of their ingredient 

rules. Hence, one has, 

𝐼𝑇𝐻(𝑓) =
1

31601
[34976 𝐼𝐶𝐷𝑀(𝑓) − 3375 𝐼𝐷𝐻(𝑓)],                        (16) 

and the corresponding truncation error of the triple rule 𝐼𝑇𝐻 is, 
 

𝐸𝑇𝐻(𝑓) = 𝒪(ℎ9).                                                (17) 
 

Hence the degree of precision of the generated triple hybrid 𝐼𝑇𝐻(𝑓) is seven and the local trunca-

tion error is of ninth order. 

Numerical Results 

Table (1) shows some integral examples that we consider in this paper with their non-elementary 

anti-derivative and their approximate values. 

Table: (1). Some Integral examples with their non-elementary anti-derivative and their approximate values. 

Integral Exact Value Approximate Value 

𝐼1 = ∫
𝑒𝑒

(
𝑥+3

2
)

2

1

−1

𝑑𝑥 

 

𝐼1 = 𝐸i(𝑒2) − 𝐸i(𝑒) 

Ei(𝑥) = − ∫
𝑒−𝑦

𝑦
𝑑𝑦

∞

−𝑥

 

≈ 255.676 

𝐼2 = ∫ 𝑒−𝑥2
2

1

𝑑𝑥 𝐼2 =
√𝜋

2
[𝑒𝑟𝑓(2) − 𝑒𝑟𝑓(1)] 

𝑒𝑟𝑓(𝑥) =
2

√𝜋
∫ 𝑒−𝑦2

𝑑𝑦
𝑥

0

 

≈ 0.135257 

𝐼3 = ∫
sin 𝑥

𝑥

2

1

𝑑𝑥 
𝐼3 = 𝑆i(2) − 𝑆i(1) 

𝑆i(𝑥) = ∫
sin 𝑥

𝑥
𝑑𝑥 

≈ 0.6593329906 

𝐼4 = ∫
𝑑𝑥

1 + 𝑥4

1

0

 𝐼4 =
𝜋 + 2coth−1(√2)

4√2
 

≈ 0.86697 

 

Table (2) shows the approximate values of the four integrals 𝐼1, 𝐼2, 𝐼3, and 𝐼4 computed by the 

dual and the triple hybrid quadrature rules 𝐼𝐷𝐻(𝑓) and 𝐼𝑇𝐻(𝑓)  and their ingredients rules 𝐼𝑀𝐼(𝑓), 
𝐼𝐶𝐷𝑀(𝑓) and 𝐼𝑎𝐺3(𝑓). The obtained results have been enhanced to reach a certain degree of preci-

sion by implementing an adaptive quadrature algorithm as explained next.  
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Table: (2). Numerical results computed by the hybrid quadrature rules 𝐼𝐻𝐷(𝑓) and 𝐼𝑇𝐻(𝑓) compared with its con-

stituent rules 𝐼𝑀𝐼 , 𝐼𝐶𝐷𝑀(𝑓, ) and 𝐼𝑎𝐺3(𝑓) 

Integral 𝐼𝑀𝐼(𝑓) 𝐼𝑎𝐺3(𝑓) 𝐼𝐷𝐻(𝑓) 𝐼𝐶𝐷𝑀(𝑓) 𝐼𝑇𝐻(𝑓) 

Relative Error Relative Error Relative Error Relative Error Relative Error 

𝐼1 202.8302589 299.7667015 297.51236563 224.5599104 216.76855772 

0.20668986 0.17244816 0.163630999 0.1217007993 0.1521743547 

𝐼2 0.135788265 0.134847269 0.1348691522 0.13532354 0.1353720733 

0.003925903 3.031182 × 10−3 2.8693892 × 10−3 4.900742 × 10−4
 8.488664 × 10−4 

𝐼3 0.659311367 0.6593440204 0.659343261 0.659326494 0.659328112 

2.811856 × 10−5 2.140659 × 10−5 2.025484 × 10−5 5.175461 × 10−6 2.72157 × 10−6 

𝐼4 0.85677642 0.8743924963 0.8739828201 0.866016272387 0.866785002 

1.17611 × 10−2 8.557947 × 10−3 8.0854108 × 10−3 1.1035118 × 10−3 2.16829 × 10−4 

 

Adaptive Quadrature   

The adaptive algorithm was first introduced by Kuncir (Kuncir, 1962), to enhance the 

accuracy of any numerical quadrature rule depending on step-size parameter ℎ. Adaptive quad-

rature routine allows us to rely on a low-order quadrature rule and, then improve the accuracy by 

implementing such a low-order rule on a finer mesh of the integration interval. The mechanism 

of the adaptive quadrature rule is to iteratively refine the step size of the relevant quadrature rule 

until a termination criterion is met and reaches the desirable degree of precision (Lyness, 1969). 

That is, the adaptive algorithm takes the following steps: 

1. Set an allowed tolerance as 𝜀 = 10−5and let 𝐼𝐸𝑥𝑎𝑐𝑡(𝑓) = 𝐸. 

2. At the mid-point 𝜌 =
𝑎+𝑏

2
, subdivide the interval of integration [𝑎, 𝑏] into two subintervals 

[𝑎, 𝜌] and [𝜌, 𝑏]. 
3. Then implement the quadrature rule separately on each subinterval [𝑎, 𝜌] and [𝜌, 𝑏], to re-

spectively obtain the approximate results 𝑅1 and 𝑅2. 

4. Then estimate the error of the obtained approximate results as:  

5. |𝐸 − 𝑆1| and |𝐸 − 𝑆2| 
6. If |𝐸 − 𝑆1| ≤ 𝜀, the termination criterion is met for the subinterval, the adaptive routine 

will stop, the same for another subinterval [𝜌, 𝑏].  
If |𝐸 − 𝑆𝑖| > 𝜀, 𝑖 = 1,2, then the subdivision processes are still ongoing till the termination 

criterion is met.        

We build up an adaptive algorithm by Mathematica 13.1 to produce the results shown in 

Tables (3). This table shows that the approximate values of the four integrals 𝐼1, 𝐼2, 𝐼3, and 𝐼4 

computed respectively by the dual 𝐼𝐷𝐻(𝑓) and its ingredients rules 𝐼𝑀𝐼(𝑓) and 𝐼𝑎𝐺3(𝑓) in an adap-

tive environment. 

Table: (3). Numerical results computed by the hybrid quadrature rules 𝐼𝐻𝐷(𝑓) compared with its constituent 

rules 𝐼𝑀𝐼(𝑓) and 𝐼𝑎𝐺3(𝑓) in adaptive environment. 

Integral 𝐼𝑀𝐼(𝑓) steps 𝐼𝑎𝐺3(𝑓) Steps 𝐼𝐻𝐷(𝑓) steps 

𝐼1 255.675599 5 255.7257015 3 255.67606135 5 

𝐼2 0.13525742 3 0.135257133 3 0.135257140 3 

𝐼3 0.65932983 2 0.65932996 2 0.6593299577 2 

𝐼4 0.86697254 3 0.866973326 3 0.866973308 2 
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Figure (1): Plot of the integrand of  ∫
𝑒𝑒

(
𝑥+3

2 )

2

1

−1
𝑑𝑥 

DISCUSSION 

The error analysis of the proposed dual and triple hybrid rules analytically confirms that 

the degree of precision of such generated rules is higher than their ingredient quadrature rules as 

shown by equations (13) and (17). Also, the numerically observed results agree with the analytic 

error analysis. Moreover, the obtained numerical values for the four integrals 𝐼1, 𝐼2, 𝐼3, and 𝐼4 by 

implementing the dual hybrid rule 𝐼𝐷𝐻(𝑓)  are better than those attained by its ingredients 𝐼𝑀𝐼(𝑓) 

and 𝐼𝑎𝐺3(𝑓) as shown in Table (2). Also, the obtained numerical values of the four integrals 𝐼1, 

𝐼2, 𝐼3, and 𝐼4 by using the triple hybrid rule 𝐼𝑇𝐻(𝑓) are better than those obtained by its ingredients 

𝐼𝐶𝐷𝑀(𝑓) and 𝐼𝐷𝐻(𝑓)  as shown in Table (2). Apart from the integral 𝐼1, all the numerical values of 

𝐼2, 𝐼3, and 𝐼4 are reasonably very well although we use a quite few quadrature points. The slow 

convergence of the integral 𝐼1 is due to the large variation of the integrand on the integration 

interval, because the integrand has sharp variation from the value 40 at 𝑥 = −1 to the value 500 

at the value 𝑥 = 1 as shown in Figure 1. Thus, we easily tackle this issue by implementing the 

obtained quadrature rule in an adaptive environment with the allowed tolerance set to 𝜀 = 10−5 .  

Hence we achieve accurate results that coincide with the exact ones up to four digits only in two 

steps for the adaptive algorithm for the integrals 𝐼3 and 𝐼4 as shown in Table (3). 

 

CONCLUSION 

To conclude triple and dual hybrid quadrature rules have been constructed by blending 

Gauss-type rules with the classical or the modified Newton-Cotes-type rules that incorporate odd 

derivatives. Such a mixture incorporates the advantages of both types of quadrature rules to gain 

better accuracy, thus there is no need to increase the number of quadrature points that may bring 

instability issues to the numerical process. The acquired results have been enhanced by the adap-

tive quadrature algorithm. The analytic error analysis and the numerical computations both con-

firm the efficiency of the proposed approaches. A similar analogy can be adopted to generate 

hybrid quadrature rules of high-order accuracy by blending as many quadrature rules provided 

that they are of the same degree of precision. 
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