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INTRODUCTION

Integral transforms are powerful tools for solving various classes of mathematical problems involv-
ing differential and integral equations (IEs). Well-known transforms such as the Laplace, Fourier,
Mellin, and Hankel transforms (Debnath & Bhatta, 2016) are widely used to solve linear and non-
linear ordinary and partial differential equations—including those of fractional order-as well as
Volterra-type integral equations.

In addition to these classical transforms, several modern integral transforms have been introduced,
including the Sumudu transform (Belgacem & Karaballi, 2006), the Anuj transform (Jafari et al.,
2025), the ZZ transform (Sarah Th. Alaraji, 2025), and the El-Zaki transform (M. Al-Bugami et al.,
2025), and recently the Bayawa transform (Zayyanu B. Bayawa & Aisha A. Haliru, 2024).

It is well established that integral transforms can directly solve linear and nonlinear Volterra IEs
and linear Volterra Integro-Differential Equations (IDEs), provided they possess a difference (or
convolution) kernel (Polyanin, 1998; Wazwaz, 2011, 2015). However, for other classes of IEs—
such as linear and nonlinear Fredholm IEs, Fredholm IDEs, and nonlinear VVolterra IDEs—the inte-
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gral transform needs to be combined with any of the established analytical methods. These include
the Adomian Decomposition Method (ADM) (Wazwaz, 2011), the Homotopy Perturbation Method
(HPM) (Wazwaz, 2011), and the Variational Iteration Method (VIM). (Wazwaz, 2011).

Numerous hybrid approaches have been developed by integrating integral transforms with these
techniques. Examples include the Sumudu homotopy method (Singh & Kumar, 2011), the Laplace
VIM (Khuri & Sayfy, 2012; Liu et al., 2013), the Laplace decomposition method (Eshkuvatov,
2024; Wazwaz, 2010), the El-Zaki HPM (Alshehry et al., 2023), and the El-Zaki decomposition
method (Chanchlani et al., 2023), all of which have been successfully applied to solve a wide range
of differential and integral equations.

This paper demonstrates the applicability of the Bayawa transform in solving a wide range of linear
and nonlinear IEs. Specifically, we address both first and second kinds of Fredholm and Volterra
IEs, as well as Fredholm and Volterra integro-differential equations. Furthermore, we extend the
method to solve linear and nonlinear generalized Abel’s integral equations of the first and second
kinds. To illustrate the method’s versatility, we provide numerous examples that clarify when the
Bayawa transform can be applied directly and when it must be combined with the ADM.

The structure of this paper is as follows: The related literature was reviewed in the introduction sec-
tion. Then the definition of the Bayawa integral transform with some of its properties such as the
linearity property, the Bayawa transform of derivatives, and the convolution theorem were intro-
duced in section two. The third section; considers solving Volterra IEs of convolutional kernel by
the Bayawa transform. Respectively, in section four and five, we show how to solve linear Volterra
integro-differential of convolution kernel and the generalized Abel’s IEs by the Bayawa Transform.
Section six shows the formalism of the combined Bayawa transform-ADM for solving IEs and
IDEs of Fredholm type, nonlinear Volterra IEs, as well as linear and nonlinear Volterra IDEs. To
verify the acquired approach, numerous examples are shown in this section followed by a discus-
sion and conclusion in section seven.

The Bayawa Integral Transform

Definition 1 (Zayyanu B. Bayawa & Aisha A. Haliru, 2024): If the function f(t) is a piecewise con-
tinuous of exponential order on the interval K = t = 0, then the Bayawa integral transform denoted by
the operator B{f (t)} is defined over the set:

lel

A={f()3M,1,,1, =0,|f(t)] < Me™:, ifte(—1)" x[0,00),i=0,1}
by the following formula:

B{F (£)} = F(v) = v:J-mf[t]e_rL:dt, t20, 1, <v<r, (1)

where the constant M must be finite, and 7, . T may be infinite, and v is a real parameter. The set A
presents the conditions that guarantee the existence of the Bayawa transform F(v), that is

lel

|F(x)] < MeTi,t = o0,K,M = 0.

The Inverse Bayawa Transform
Since the Bayawa transform of the function f(t) is F(v), then the inverse Bayawa transform of
F(v)is f(t), that is,
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B HF(v)} = i“i‘l{uf rf(tl e'vi‘dt} =f(t), tz0, T <svsT,

where B~ denotes the operator of the inverse Bayawa transform.

The Bayawa Integral Transform of Some Functions
Here we show how to find the Bayawa integral transform of some elementary functions.

Example 1: Find the Bayawa transform of the function f(t) =/t .
Solution: Using the definition of the Bayawa transform given by the equation (1), one has

L t

B{Vt} = uff tZ-e Fdt.

o
Now based on the Euler definition of gamma function, given as

I(a)

g’

J te L. e=Frgr =
o

W
-

one can easily obtains, B{yt} ="

0(cF)- +(D)r ()

Similarly, we can derive the following result,

(5] - £(D)r (D) ¥

1 —
and 1"(—) =/,
2

1=, This result can be generalized as,

(2)

(3)

These relations will be used later in solving the generalized Abel’s IEs.
In a similar fashion, we can find the Bayawa transform for all the elementary functions that are tab-

ulated in Table 1.

Table (1): The Bayawa transform of some elementary functions.

® B{f (1)} = F(v)
t",ne Nu{o} n! v neNu{0}
eins i'.J4

1+ av?
AL nl pintd

(1 — ﬂ,i'.J::]”_H'
sinh?(at) 2a*v®

1— 4q*v*
sin(at) av

1+a%vt
cos(at) vt

1+ a®v®
sinh(at) av®

1—a’v*
cosh(at) vt

1— ap?

Some Properties of the Bayawa Integral Transform

Here in this section, we present some important properties of the Bayawa integral transform that we
need later in this article. These properties are easy to prove in a similar manner to other integral

transforms.
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e The Linearity Property: For any constants a and b, and the functions f(t), g(t) € A defined
above we have

Blaf (t) + bg(t)} = aB{f(t)} + bB{g (D)} (4)
This property holds for the inverse Bayawa transform as well.
e Multiplication by # : For any piecewise continuous function f(t) of exponential order

we have,

3

Bler () =2 [ - 7] Fw). )

e The Bayawa Transform of Derivatives

Theorem 1 (Zayyanu B. Bayawa & Aisha A. Haliru, 2024): If the function f(t) and its derivatives
are piecewise continuous functions of exponential order with some initial conditions, then we have
1

Bif (0} =—F(v) - v2f(0), (6)
%{f”(f]}=$ﬂv]—v:f’(ﬂ']—f[ﬂ], (7)
'i’i‘r{f':’”(t]} — uj':” F(L‘] _ Z L-‘_:”+:k+4f':k:'(ﬂ]. (Sj

e Convolution of the Bayawa Transform

The most important property of the Bayawa transform is listed in the following theorem.
Theorem 2: Let F(v) and F(v) are respectively the Bayawa transforms of the functions f(t) and
g(t), and the Bayawa convolution product of these functions is presented as,

(f?g)(r)=(g*f)(r)=f f(r)g(r—r)dr=fg(rjftr—rﬁdr.

Then the Bayawa transforms of this convolution product can be easily obtained as,

B(f - )9} =2 BIO) ©)

Next, we show how to solve some IEs of Volterra type by using the Bayawa transform.

Solving Volterra IEs of Convolution Kernel by the Bayawa Transform

In this section, we demonstrate the application of the Bayawa transform to solve both linear and
nonlinear Volterra IEs of the first and second kind, provided the kernel is of convolution type. Ad-
ditionally, we extend the method to linear Volterra integro-differential equations of both kinds. A
key requirement for employing any integral transform is the validity of its convolution theorem.
Thus, we restrict our analysis to IEs with convolution -type kernels to ensure the transform’s ap-
plicability.

Definition 2 (Polyanin, 1998): An integral equation is an equation in which the unknown function

u(x) to be determined appears under the integral signs and can be presented as:
bix)

pu(x) = f(x) +.»1J. K(x, t)F (u(t))dt, (10)

alx)
where the function a(x) and b(x) are the limits of integration may be both variables, constants, or
mixed. The functions f(x),u and K(x,t) are given for a(x) < x,t < b(x), and 4 is a non-zero
parameter, which may be real or complex, the function k(x,t) is called the kernel of integral equa-
tion. Respectively if 4 = 0 or g = c = 0, then equation (10) is called an integral equation of the



Al-Mukhtar Journal of Basic Sciences 23 (3): 163-176, 2025 page 167of 14

first or second kinds. The integral equation (10) is called non-linear if the function F(u(t)) is non-
linear functions of u(t) such as u*,u®, ...,sinu,e® In(u+ 1), ... otherwise the integral equation
(10) is linear. If f(x) = 0 then it is called homogeneous, otherwise it is called nonhomogeneous
IE.

Example 2: Consider the second-kind and linear Volterra IE as,

u(x) = sin(x) + cos(x) + 2 J. sin(x — t) u(t) dt. (11)

]
Solution: This IE has a convolution kernel, thus taking the Bayawa transform of this IE and making

use of the convolution product (9) With the aid of Table 1 we obtain,
& 4

U(v) = — 42 +2 U
YTl 1400 1+t

where B{u(x)} = U(v). Now carrying out some manipulations, leads to
4

u(x) = B HUW)} = 'ss.-l( iu:) = e*,

1
Example 3: Consider the first-kind and non-linear Volterra IE as,

1 1 2 * -
—+ —cosh(2x) — —cosh(x) = J. sinh(x —t) u*(t) dt. (12)
27 6 3 )

Solution: Firstly, we need to linearize this IE by assuming that w(x) = u*(x), then this IE is con-
verted to the following linear Volterra IE as,

—+—c05h[2x]—gcnsh(:€) J. sinh(x —t) w(t) dt.

This kernel of this IE is of a convolution type, thus taking the Bayawa transform of it and making
use of the convolution theorem 2 with the aid of Table 1 leads to,

v L 1 v 2 T B 1 W( 1,

2 6(1L—4vY) 3(1—vY) 2 (1— v

where B{w (x)} = W(v). By carrying out some manlpulations, one obtains

w(x) = BLHW ()} = 'aa-l( 2v

1 —4p*
Thus, the solution of the original non-linear VIE (12) is obtained as, u(x) = sinh(x),

) = sinh®(x).

Example 4: Consider the first-kind and non-linear Volterra IE as,
1

1 X
5 sin(x) —Exccrs[x] = J. sinh(x — t) sin(u(t)) dt. (13)
o
Solution: Firstly, we need to linearize this IE by assuming that,
w(x) = sin(u(x)), u(x) = sin_l[w[xj).
Then this IE is converted to the following linear Volterra IE as,

%sin[x] —%xcos[x] = fxsinh[x —t)wl(t) dt.

o
Now taking the Bayawa transform of this IE and making use of the convolution theorem 2 with the
aid of Table 1 leads to,

1 v® 1 1
Em—i'ﬁ{xcnsﬁx]}_—[(l_F W[U)l (14)

where B{w (x)} = W {v). Now recall the property (5) to obtain

_ua el , v _vﬁ[l—u‘}]
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Now substituting from equation (15) into equation (14), then carrying out some manipulations,
leads to

wix) =B Hw(v)}=8"1 (1 n u“) = sin(x).

Thus, the solution of the original IE (13) is obtained as, u(x) = sin™*(sin x) = x.

-

Solving Linear Volterra Integro-Differential Equations of Convolution Kernel by the Bayawa
Transform

In this section we show how to solve the linear Volterra integro-differential equation of convolution
kernel directly by using the Bayawa transform.
Definition 3: The linear Volterra integro-differential equation of convolution kernel is given by,

w™ ()= f()+ A J.IK(:( — t)ul(t)dt, (16)

M

with initial condition %’ (0)=d,;0 < k< n—1,k € N, where u'™ (x) = :— and d,, are con-

x.‘l
stants. We note that the unknown function u(x) in the integro-differential integral equation occurs
twice as an ordinary derivative and under the integral sign.

Example 5: Consider the first-kind and linear Volterra IDE of the second order as,
1 * 1
Esin[zx] = J- (x —t)ult) dt + ZJ (x—t—1)u"(t)) dt, (17)

o o

with the initial conditions u(0) = 1, u'(0) = 0.

Solution: Taking the Bayawa transform of this IDE and making use of the convolution theorem 2
and the relation (7) with the help of Table 1 leads to,

iﬂ [veU(v)] + ! —(v® —v*) [iU[:L:] —u(0)— 1::11,“([!]],

vl 4p? v

where B{u(x)} = U(v). Now plugging in the given initial conditions into this equation and then
carrying out some manipulations, leads to

-1 41— g1 i
B HU(v)}=8B (1+4v4).
Thus, one obtains the solution of the IDE (17) as,
w(x) = cos(2x).
2. Solving Generalized Abel’s IEs by the Bayawa Transform

In this section we show how to solve the linear generalized Abel’s integral equations that has a
weakly-singular kernel by the Bayawa transform.
Definition 4: The generalized Abel’s integral equation is defined as,

u(x) = f(x) +J. T;[Ii[:ljg

It should be noted that Abel’s integral equation is a special case of the equation (18) when g =

dt, 0 <p<1. (18)

1

The function F(u(t)) is assumed to be smooth, that is it has continuous derivatives of all orders.
The linearity of this IE relying on the linearity of the function F[u[r]).

Since the generalized Abel’s integral equations are of convolution kernel, thus they can be solved
directly by the Bayawa transform relying on the convolution property (9) as shown in the next ex-
ample.

Example 6: Consider the first-kind and non-linear Abel’s IE as,
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4 3 *1 t
—x2 :f M dt. (19)
3 p Vx—t

Solution: Firstly, we need to linearize this IE by assuming that,

w(x) = In(u(x)), then wu(x)= ewlx),

Thus, this IE is converted to the following linear IE as,

4 3 J’x wit)

—xI= dt.

3 o VX—t

Now taking the Bayawa transform of this IE and making use of the convolution theorem 2 in addi-
tion to the relation (2) leads to,

— _ — 3
ST = Sl we) = Y w).

3 4 e e

Then carrying out some manipulations, leads to

wi(x) =B8"{w{)}=8"1v®)==x

Thus, the solution of the original non-linear Abel’s IE (19) is obtained as, u(x) = e*.

Example 7: Consider the linear Abel’s integral equation of the first-kind as,
g8 3 16 5 * ul(t)
I dt. (20)
0

—xzZ+—x2+
3 5 \,"R’ —t

Solution: We start by taking the Bayawa transform of this IE and making use of the convolution
theorem 2 as,

ga{x%}_p %m{x%} 1 'iB{x_%}U(u).

R
Now recall the relation (2) for the Bayawa transform of the involved functions, to obtain
8 3m 16 15w 1
T+ s = iU,
3 4 5 8 12

Then carrying out some manipulations, leads to

U(v) = 2v® + 6ve.

Thus, one has

ul(x) = B Hu(v)} = B H(2v® + 6v®) = 2x + 3x°.

Example 8: Consider the generalized Abel’s integral equation of the second-kind as,

9 = * t
It(x:]:x——xﬁ—kf «(®) - dt. (21)
Solution: We start by taking the Bayawa transform of this IE and making use of the convolution
theorem 2 leads to,

9 5 1 1
v) = vo - =8|+ 8l T,
12
Now recall the relation (3) for the Bayawa transform of the involved functions, to obtain

27 g2y 21 g2y 10
U(v) = E'——r(—) El —ﬂr(—) 3 U(v).
() u_ 16 \3/" +_u— _3u @)
Then carrying out some manipulations, leads to

u(x) =B Hu(v)} = B8 Hv®) ==

The Combined Bayawa Transform-Adomian Decomposition Method

So far, we show the applicability of the Bayawa transform independently for solving IE of Volterra
type with convolutional kernel. However, in this section we show how to hybridize the Bayawa
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transform with the ADM for solving IE and IDEs of Fredholm type, nonlinear Volterra IEs, and lin-
ear or nonlinear Volterra IDEs.

Solving Non-Linear Volterra Integro-Differential Equations

Definition 5: The non-linear Volterra integro-differential equation of the nth-order is given by,

w'™(x) = f(x) -I-AJ K(x O[L(u(t)) + N(u(t))]dt, (16)
with initial condition u*(0)=d,;0 < k<n—1,k € N, where u"™ (x) = :Iif and d, are con-

stants. Respectively, L(u(t)) and N(u(t)) are linear and nonlinear operators acting on the func-
tion w(t).

Definition 6 (Wazwaz, 2011): The Adomian polynomials for the non-linear term F[u[t]) are given
by the following formula:

1 d" no
A (t) = e [F( E:D}L u, (t:])],n =0,1,2, .. (17)
By using this relation, one can obtain the Adomian polynomials as,
1
Ap(t) = F(uy(t)), Ay (t) = u, (£)F (up), Ay (1) = uy (O F (up) + —uy () F (1), ..

21
To explain the idea of the iterative approach namely the combined Bayawa transform-ADM, firstly
we take the Bayawa transform of the IDE (16) to obtain

B{u™ (x)} = B{f (x)} + 1B {J.xfi'[x, [L(u(®)) + N(u(®)] dt},

a

Now we recall the relation (8) and carrying on some calculations to obtain
n—1

U(Uj — ufu Z U—E:lz+2k+4u':k:' (ﬂj + U:”F[Uj

k=0

Wi I.:L‘:I

n v:::g},{fxff[x, [L(u(t)) + N[u(t])]dt}. (18)

4

Hl:lzr}
A necessary condition for this to comply is that,

EEE:' v "B {J. K(x, t)[L(u(t)) + N[u(t))]dt} =0

i

Taking the inverse Bayawa transform of the resultant IE (18) leads to

u(x) =B 1w} + B o F(v)}+ B H{H ()}

To be able to proceed further, we need to treat this IE by the iterative ADM, to do so we decompose
the linear function L(u(t)) as,

L(u() = Z u, (t). (19)
n=0

Whereas we decompose the nonlinear function N(u(t)) as,

N(u(t)) = Z A_(1), (20)
n=0

where 4,,(t) are the Adomain polynomials defined by the equation (17). Thus, substituting the de-
compositions (19) and (20) back into the IE (18) yields,
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Z;‘tu(tj =8 W (@)} + B v F(v)]

2R U‘x K(x,t) Z:I:D[uu (t)+ 4, (8] dtH.

Finally, the ADM provides the following recursive relation as,
u, (t)=8"1 {v:”'ﬁ {f K(x,t)[u,_,(t) + Ak_l[tj]dt}}, k=123, ..

Where the initial component is taken as,
uy(t) =B Hw ()} + B H{v™F(v)}
The next example illustrates this iterative approach.

+ 31

Example 9: Consider the non-linear and second order Volterra IDE of the first kind as,
x i 1
J. (x—t) [u(t) +u"(t)] dt = i 3x + x + 3 sinh(x) +—cosh x. (21)

with the initial conditions w(0) = 1, «'(0) = o
Solution: We start by taking the Bayawa transform of this IE using the relation (7) with the convo-
lution theorem 2 to obtain,

{jx(x—t) u(t) dt}-l——[ EE v)

1 ¥
= 33,{—1 — 3x +Zx- + 3 sinh(x) + Ecosh'x}.

Plugging the given initial conditions into this equation, to obtain

Ulv)=vc+v +'E{—%—3x +—-x*+3 smh[x)—l——cosh x {J (x —t) u® (1) dt}
Now by taklng the i |nverse Bayawa transform of this IE as,

u(x)=—-——2x+ x + 3 sinh(x) +—cosh (x)— BB {Jx(x —t) u*(t) dt}

Now we resort to the ADM to treat the nonlrnearlty issue in thg resultant IE. To do so, let
uy(x) = g— 2x -I-%x: + 3 sinh(x) +£cosh:x,

and

u, (x) =4 fx[x —t)A4,_,(t) dt, k=123,..

where the fu[nctions A, (t) are the Adomian polynomials defined by equation (17). Thus,
u,(x) = J.x[x —t) A,(t) dt = J.x[x —t) up(t) dt.

So, one hag '

1 ,
u,(x) = %6 (2x* — 32x% + 42x* — 288x + 3 cosh(2x) + 288sinh(x) — 3).

Thus, the approximate solution converges to the exact solution as,
”k+l

u(x) = }1_{1;2 ki) = 1 + sinh(x).
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Solving Different Classes of Fredholm Integral Equations

It is established that the integral transforms can only be applied to IEs of Volterra type with convo-
lutional kernel, though by decomposing the considered integral transform with some established
methods such as the ADM, we can apply integral transforms to solve all types of Fredholm IEs as
we demonstrate here. Next, we present examples of the linear and non-linear Fredholm IEs and
IDEs as well.

Example 10: Consider the linear Fredholm integral equation of the second-kind as,
1

u(x) =e* —x-l-xJ tu(t) dt. (22)
o
Solution: We start by taking the Bayawa transform of this IE as, so

U‘} 1
Ulv) = n ,,—uE—l-‘-B{xf tult) dt}.
— 2 5
Now by taking the inverse Bayawa transform of this IE as,

B {x Jit u(t) dt”

Now we resort to the ADM to solve this IE. To do so, let u,(x) = e¥ — x and the recurrence rela-

tion obtained as,
1

u, (x) = xj tu,_,(t) dt, k=123, ..
o

u(x)=e*—x+ B

Thus,
! 2 2 ! 2 2
(x) = t(ef—t) dt =—x,u,(x) == t* dt =—x, =—
u, (x) xJD (e ) 32X . (x) EXJ; * 4 (x) 7%
Thus, the solution is
2 1 1
ulx)=ugtu;, +tu, +-=e*—x —|—§x(l +§+§+m )
Taking the sum of the geometric series yields the exact solution as,
1
u(x)=e*—x+—x. 1=ex.
1-3
Example 11: Consider the first-kind and linear Volterra IDE of the first order as,
1
u'(x) = 36x° + f u(t) dt, (23)

V]
with the initial condition w(0) = 1.
Solution: Taking the Bayawa transform of this IDE leads to,

v—l:U(u) —vu(0)=72v* + B U. u(t) dt},

Now plugging the given initial condition into this equation and then carrying out some manipula-
tions, leads to

Uv)=v*+ 720 + u:'ﬁi{j ult) dt},
0

Then taking the inverse Bayawa transform of this IE as,

v-B U. 1u(t) dt} 1

1

u(x)=1+12x*+ 87!




Al-Mukhtar Journal of Basic Sciences 23 (3): 163-176, 2025 page 173of 14

Now we resort to the ADM to solve this IE. To do so, let uy(x) = 1+ 12x? and we have the fol-
lowing iterative relation as,

1
u, (x) =871 [u:'ﬁi{f u,_ (t) dt”, k=1,273,..
o
Thus,
1
u,(x) =871 {U:';B-{J (1+ 12x%) dt}
o
And similarly, we obtain u,(x) = 2x, uz(x) = x. Thus, one has
1 1
u(x)=uy+u, +u, +--=1+12x+ 4x(l+E+Z+ )
Taking the sum of the geometric series, leads to the exact solution of the IDE (23) as,

u(x) =1+ 2x + 12x3,

Example 12 (Wazwaz, 2011): Consider the non-linear Fredholm IE of the second-kind as,
1

u(x)=14+1+ H,J. [u2(t) — u(t)] dt. (24)
o
Solution: We start by taking the Bayawa transform of this IE as,

Uv)=(1+ADv*+4 'il‘i{jl[u:(tj — ul(t)] dt}.

Now by taking the inverse Bayawa transform of this IE as,

EU [ (t) — u(t)] dtH

Now we resort to the ADM to decompose both the linear and nonlinear functions appear in this IE.

To do so, let u,(x) = 1 + 4 and the iterative relation is obtained as,
1

u, (x) = H,J [A,_,(t) — u,_,(£)] dt, k=123, ..
o
where we treated the nonlinear term in the IE (24) by the Adomian polynomials. Thus,

u,(x) = ﬂ,j [4,(t) — uy(t)] dt = EI,J- [uz(t) — uy(t)] dt = 2% + A%,

u:(xj=lj ﬁ

V]

=B v B{4}} = 4x.

u(x)=1+1+181

1 1

[4,(t) — u (t)] dt = H,J- [2ugu, — uy(£)] dt = 245 +32% + A3,
0

ug(x) = H,fl[ﬁl: (t) — u,(t)] dt = }LJ-l[Euﬂ,u: + uj —u,] dt =517 +104° + 64° + 1%,
Thus, the apE)roximate solution of the IED(24) obtained as,

u(x) =ugtu, tu, + =141+ A7 +287 + 425 + 9855 + -

Solving Non-Linear Fredholm Integro-Differential Equations

Definition 7: The non-linear Fredholm integro-differential equation of the nth-order is given by,
w™(x)= f(x) + A ij[x, O[L(u(t)) + N(u(t))]dt, (25)

a
dmu

with initial condition ©*(0)=d ;0 < k< n—1,k €N, where u'™ (x) = —

stants. Respectively, L(u(t)) and N(u(t)) are linear and nonlinear functions of w(t).

and d,, are con-
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Example 13 (Eshkuvatov, 2024): Consider the non-linear Fredholm IDE of the second-kind and
first order as,

(13

l ) -
u'(x) = cos(x) —%x + sa) ¥ (t) dt, u(0) = 0. (26)
0

Solution: We start by taking the Bayawa transform of this IE as,

1 v T 1 ("
2 _ 6 2

3 U(v) —v-ul(0) = 1+u4_48u + E{E‘lj{; x u(t) dt}.
e T 1 ("

U(v) = ——v¥ 4+ v B{— *(t) dt;.

(v) e 257 + v ?3{24][:':(14:[] }

Now by taking the inverse Bayawa transform of this IE, we obtain

5 L[
ve EE{EL x u(t) dtH

Now we resort to the ADM to solve this IE. To do so, let u,(x) = sin(x) — % and

u, (x) =871 [yf 'B{ifn}lk_l(tj dt}}, k=123, ..

u(x) = sin(x) —% +81

24
where we treated the nonlinear term in the IE by the Adomian polynomials 4,. Thus,

(x) =B’ B 1_r o(t) at S A + -
uylx) = v o1 Dx”ﬂ ~ 2 |288 1152 " 1105920/

u,(x) = B! [v: %{%L 4,(6) dt}} - m—l{u: m{z%J; 21y (£, (£) dtH,

Doing some calculations leads to,

x2 7m w? =m® T’ m? i3
u,(x)= —|—-—+—-— — + -
- 192 18 9 288 4608 92160 6! x 184320
Thus, the approximate solution of the IE (26) is obtained as,
(x) in(x) ij_i_x: 7 3 N m?
wi\x )= smix) —— - -
96 21288 1152 1105920
N x* ?H_i_?rﬂ e m’ N m? il N
192 18 9 288 4608 92160 6!184320

where the exact solution of the given IE is u(x) = sin(x). This solution is similar to the approxi-
mate solution obtained by the Laplace-decomposition method presented in the reference (Eshkuva-
tov, 2024).

DISCUSSION AND CONCLUSION

In this paper, we demonstrate that the Bayawa transform can be effectively applied to solve various
types of IEs. The Bayawa transform can be utilized independently to solve Volterra IEs with convo-
lutional kernels, whether they are linear or nonlinear, as illustrated by examples 1, 2, 3, 4, and 5.
Also, the Bayawa transform can be implemented independently to solve either linear or non-linear
generalized Abel’s integral equations which are IES of weakly-singular and convolutional kernels as
illustrated by the Examples 6, 7, 8. However, for solving Volterra IEs with non-convolutional ker-
nels, it is necessary to first reduce the integral equation to an equivalent initial value problem (I\VP).
The resulting IVP can then be directly solved using the Bayawa transform, as shown in the accom-
panying reference (Zayyanu B. Bayawa & Aisha A. Haliru, 2024). When it comes to nonlinear in-
tegro-differential equations, the Bayawa transform cannot solve these integral equations by itself.
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To address this challenge, we combine the Bayawa transform with the ADM to create an iterative
approach that effectively provides an exact solution for such integro-differential equations, as
demonstrated in Example 9. Generally, integral transforms are primarily used to solve Volterra IEs
rather than Fredholm IEs. However, in this paper, we illustrate how the Bayawa transform can be
applied to tackle both linear and nonlinear IEs, as well as integro-differential equations of Fredholm
type, in conjunction with the ADM. This is shown through the Examples 10, 11, 12, and 13. The
iterative Bayawa-decomposition method is considered as a semi-analytic method for solving in-
tegro-differential equations, because in most cases gives an exact solution, however for some com-
plex equations, we may only obtain an approximate solution. The Bayawa transform was proven as
an efficient tool for solving the nonlinear and first-kind, Fredholm Volterra IE, even though such IE
usually classified as an ill-conditioned problem since its solution is extremely sensitive to any
change in the free term f(x). This issue makes such IE difficult to solve, even if a solution exists, it
may not be unique. However, this is issue is manageable if the kernel of the IE is singular, as shown
by examples 6, 7 and 8 where we obtain a unique solution for a nonlinear and first-kind IE of weak-
ly-singular kernel.
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