Doi: https://doi.org/10.54172/ej6xtg21

Research Article ⁶Open Access

Guanidine as A Starting Material for Preparing a Scale Inhibitor

Othman O. Dakhil¹, Khaled A. Saleh², Abdulqader A. Imrage³, Mahjoub A. M. Elaoud⁴

- ² Department, of Chemistry, The Libyan Academy of Higher Education, Benghazi, Libya.
- ³ Department of Chemistry, Faculty of Science, University of Benghazi, Benghazi, Libya.
- ⁴ Jowfe Oil Technology, Benghazi, Libya
- *Corresponding author: E-mail addresses: othman-dakeel@gmail.com. Department of chemical pharmacy, Faculty of Pharmacy University of Benghazi Benghazi-Libya

Received:

16 February 2025

Accepted:

28 August 2025

Publish online:

31 August 2025

Abstract

This study presents the synthesis and evaluation of a novel phosphonatebased scale inhibitor using guanidine as the starting material. Given guanidine's highly reactive nature and multiple substitution sites, it was chemically modified by introducing phosphonomethyl groups to enhance its scale inhibition capabilities. The synthesized compound was structurally characterized using FT-IR, ¹H NMR, ¹³C NMR, and mass spectrometry, confirming successful substitution of three hydrogen atoms with phosphonate groups. The compound's performance was assessed through static scale inhibition tests at various temperatures (40°C, 60°C, and 70°C) for calcium carbonate and calcium sulfate, showing significant inhibition at concentrations as low as 20–30 ppm. Titration-based calcium analysis revealed inhibition efficiencies up to 100%. Additionally, the compound demonstrated good compatibility with calcium and acceptable seawater biodegradability over 28 days. These results suggest that the synthesized inhibitor is a promising candidate for environmentally safer and thermally stable scale control in industrial water systems.

Keywords: Guanidine, Scale Inhibitor, Phosphonate Compound, Chelation, Calcium Carbonate, Calcium Sulfate, Biodegradability.

INTRODUCTION

Oilfield scaling is a widespread challenge in the oil and gas sector, leading to substantial financial losses due to property damage and decreased production. This issue, ranking among the top production efficiency impediments, is pervasive worldwide, primarily affecting water-related oil extraction operations alongside corrosion and hydrate formation. Scaling can accumulate on various surfaces, particularly around the wellbore, restricting fluid flow and obstructing production equipment from pore throats to processing facilities. The industry typically encounters four major types of scale: Calcium Carbonate (calcite and aragonite), Calcium Sulfate Salts (like gypsum), Strontium Sulfate (celestite), and Barium Sulfate (barite).

Scale inhibitors (SIs) are the primary solution used to prevent crystal growth and scale formation, with concentrations ranging from 1 to 500 ppm to maintain effectiveness. Water-soluble organic SIs are most common in the industry, where it is critical to sustain concentration above the minimum

The Author(s) 2025. This article is distributed under the terms of the *Creative Commons Attribution-NonCommercial 4.0 International License* ([http://creativecommons.org/licenses/by-nc/4.0/] (http://creativecommons.org/licenses/by-nc/4.0/]), which permits unrestricted use, distribution, and reproduction in any medium, *for non-commercial purposes only*, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

inhibitor concentration (MIC) to ensure efficacy. SIs are commonly applied through downhole squeeze treatments or continuous injection at the wellhead (Kelland, 2014). In squeeze treatments, inhibitors are injected into the subsurface formation, often using seawater to extend their reach, after which the inhibitors are absorbed by the formation rock near the wellbore and released gradually into the produced water, effectively controlling scale during production. Phosphoric acids, particularly those with C-PO(OH)2 moieties, are an important class of organophosphorus compounds (Garber et al., 2016; Kiran et al., 2008).

These compounds and their derivatives, known as phosphates, are widely used across agricultural, chemical, and pharmaceutical industries (Ash, 2004; Kukhar & Hudson, 2000). Organophosphonic acids and their salts are essential scale inhibitors in the oil industry (Demadis, 2006; Jordan & Mackay, 2007; Woodward et al., 2004). These inhibitors vary in structure, from small non-polymeric molecules with limited phosphonate groups to more complex polymeric compounds with a higher phosphonate concentration (Kelland, 2014). In many cases, phosphonate groups are bonded to aminomethylenephosphonate structures, where the amine acts as a Lewis base ligand, further enhancing scale inhibition.

Phosphonate groups in scale inhibitors serve a functional role in indicating inhibitor concentration in produced water. Their presence aids in determining the timing for re-squeeze operations to ensure continuous scale inhibition. Phosphonate groups are especially advantageous in the oilfield industry for mitigating scale issues due to their durability and biodegradability.

MATERIALS AND METHODS

Previous studies (Mady & Kelland, 2017) have shown that conjugating amino phosphonates with methylene phosphonates significantly improves the effectiveness of scale inhibitors, though biodegradability remains a challenge, as seen in BP-7 and BP-9, which exhibited low biodegradation rates. This study focuses on synthesizing a new scale inhibitor using guanidine as a starting material. Research suggests that phosphonate groups can effectively replace hydrogen atoms bound to nitrogen in guanidine, enhancing the compound's ability to prevent scaling. Furthermore, the inhibitory efficiency is expected to increase with the number of phosphonate groups attached. Consequently, guanidine, with its five hydrogen atoms, provides a promising molecular framework for this investigation, as shown in Scheme 1.

Scheme (1). ((dihydroxyphosphaneyl)methyl)-1.3.3- tris(phosphonomethyl)guanidino) methyl) phosphonic acid

Guanidine is a hygroscopic organic compound with the chemical formula CH₅N₃ and a molecular weight of approximately 59.07 g/mol. It is a colorless solid that is soluble in polar solvents and possesses strong basic properties. Guanidine is not only found as an independent molecule but also as a constituent in larger organic compounds, including arginine side chains, and occurs naturally in various sources such as urine, turnip juice, mushrooms, rice husks, and muscle tissue. Its melting point

is around 50°C, and upon heating to 160°C, it converts to melamine and ammonia. For the development of an effective and environmentally friendly scale inhibitor, certain criteria must be met (Mady & Kelland, 2017). These include chieving a minimal effective concentration of 1 to 100 ppm, with an optimal range of 1 to 5 ppm; maintaining thermal stability at temperatures up to 100°C and between 130°C to 170°C; exhibiting at least 60% biodegradability within 28 days; having a pH compatibility range of 4 to 9; compatibility with calcium; and being cost-efficient in production and application.

In addition to its potent therapeutic effects, guanidine's molecules belong to an indisputable family of chemicals that are distinguished by their ability to acquire a positive charge through protonation in physiological settings (Kim et al., 2021; Zamperini et al., 2017). Guanidine groups play a crucial role in the development and identification of antibiotics because of this characteristic, which enables them to establish hydrogen bonds or electrostatic interactions with possible bacterial targets (Kim et al., 2021). One common example of this type of chemical is the antibiotic streptomycin, which has a guanidine group (Moussa, 2014). Guanidine-functionalized groups can be added to polycarbonates as an adjuvant, greatly increasing the antibacterial activity of several antibiotics (Zamperini et al., 2017).

Guanidine can be isolated from several of the medications in which it is used; thus, purchasing it is not necessary. By repurposing old medications rather than discarding them, this approach guarantees environmental preservation. The ketophane molecule was extracted from the medicine it contains and reused in chemical reactions in a scientific investigation (Dakhil et al., 2022).

Scale Inhibitors

A scale inhibitor is a chemical agent designed to prevent the formation of scale by reducing the rate of fouling scale development (Delon Jimenez, 2014). These inhibitors typically comprise water-soluble compounds that effectively impede the nucleation and crystal growth of inorganic scales by disrupting normal crystal growth patterns, thereby preventing larger crystal formations. Certain polymers have been identified as effective nucleation inhibitors and dispersants (Kelland, 2014) . Key characteristics of an effective scale inhibitor include:

- Efficiency: It must effectively inhibit scale formation, regardless of the mechanisms involved.
- **Stability:** The inhibitor should remain stable under the elevated temperatures found in oil production environments.
- **Compatibility:** It must not interfere with other oilfield chemicals or change in response to their presence, while integrating smoothly with chemical injection systems.

To ensure comprehensive protection against scale formation, maintaining a minimum inhibitor concentration (MIC) is crucial; concentrations below this threshold significantly increase the risk of scale formation. In the oilfield, common scales like carbonates and sulfates contain divalent anions (CO₃²⁻ and SO₄²⁻) alongside group II metal cations. The scale inhibitor must interact with these anions or cations to anchor effectively to the scale surface and prevent competing molecules from binding to the crystal lattice (Kelland, 2014).

Various organic molecules with anionic groups can interact favorably with group II cations on scale crystal surfaces. The most prevalent anionic groups include phosphates, phosphonates, phosphinates, carboxylates, and sulfonates (Kelland, 2014). Molecules containing multiple anionic groups or mixtures of these have been effective as scale inhibitors, particularly when in their anionic dissociation form. Common classes of scale inhibitors include polyphosphates, phosphates, small

non-polymeric phosphonates and aminophosphonates, polyphosphonates, polycarboxylates, phosphino polymers, and polysulfonates (Kelland, 2014).

Phosphate esters are recognized for being environmentally friendly scale inhibitors, although they may not be the most efficient. Their solubility in water or oil can be adjusted by modifying the alkyl tail length of the alcohol used in their synthesis. Additionally, compact non-polymeric scale inhibitors, characterized by limited phosphonate groups, show effectiveness due to their aminomethylenephosphonate groups, which can form bonds with divalent cations, enhancing the chelation effect and stabilizing complexes (Mady & Kelland, 2017).

Research has highlighted the importance of bisphosphonates (BP), which have been used for decades in treating bone disorders due to their targeting properties (Ebetino et al., 1998; Maeda, 2004; Sparidans et al., 1998). These compounds are resistant analogs of pyrophosphates that inhibit mineralization processes in bones (Hirabayashi et al., 2002; Rodan & Martin, 2000). However, phosphonate-based scale inhibitors often face criticism for their limited biodegradability, which raises environmental concerns as both the water treatment industry and oil companies focus on the implications of these compounds (Popov et al., 2016).

The biodegradability of scale inhibitors is categorized by their environmental impact, with "Green" or "Yellow" classifications indicating a minimum biodegradation rate of 20% within 28 days, according to the Norwegian national environmental agency (Nowack, 2003). Conversely, "Red" category chemicals exhibit less than 20% biodegradation. Presently, environmentally friendly scale inhibitors lack stability at high reservoir temperatures exceeding 140°C. Over-extended periods resulting in a scarcity of effective options for near-wellbore regions. Scale squeeze treatments are utilized to address this issue by injecting inhibitors into formations, where they adhere to reservoir rocks and are gradually released, necessitating thermal stability for long-term effectiveness.

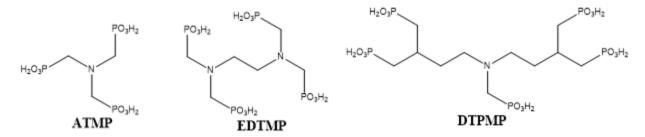


Figure (1). Common oilfield SIs containing Phosphonate Groups (Mady & Kelland, 2017).

Chemicals and Reagents

Guanidine used in the experiments in the experimental comes from India. It is imported and distributed by Chang Chun Chan Enterprise Sdn Bhd Company. Phosphorous acid (H₃PO₂), hydrochloric acid (HCI), and formaldehyde (CH₂O) from Riedel-de Haën Company. It was purchased from Egypt for the University of Benghazi.

The reagents used for performance were Sodium Chloride (NaCl) and Calcium chloride (CaC₁₂.2H₂O) supplied by (Amazon), Sodium sulfate (Na₂SO₄), and sodium Bicarbonate (NaHCO₃) comes from India.

Instrumentation and Apparatus

- A magmatic Stirrer (FAIC instrument laboratory equipment supplier in Italy). and Precision balance 440 43 (Shon GmbH, GERMANY) was utilized as the mathematical instrument in the experiment.
- A Hamilton micro syringe was used in this preliminary study for sampling.
- OEM digital pH measuring device, water quality. A tester was used.
- Used glassware from Witeg Labortechnik GmbH (Germany).
- All previous appliances, tools, and glass were purchased from Modern Science Company, Benghazi.
- ¹H and C¹³ NMR analyses were performed, and spectra were recorded using equipment at the National Research Center Central Laboratory Services Magnetic Resonance Laboratory, Cairo, Egypt.
- Fourier Transform Infrared (FT-IR) spectroscopy was employed to elucidate the molecular structure and functional group composition of the synthesized inhibitor. The analysis was conducted using an Agilent Technologies Cary 630 FT-IR spectrometer at the Libyan Advanced Center for Chemical Analysis in Tajoura, Tripoli.

A JASCO instrument. The samples were scanned with a resolution of 4 cm⁻¹ over a wavenumber range of 550-4000 cm⁻¹ at the National Research Center – Central Laboratory Services – Magnetic Resonance Laboratory, Cairo, Egypt.

Experiments and tests were conducted in the laboratory of the Libyan Academy for Postgraduate Studies in Benghazi within the timeframe specified by the academy, lasting approximately five months. The project began in February 2023, with trial and performance evaluations concluding in July 2023. This phase marks a crucial step in the experiment before transferring it to external laboratories for further analyses, as outlined in this research.

Syntheses of Scale Inhibitor.

As illustrated in the figures (2,3), guanidine (5g, 84.6 mmol) was in a two-neck flask. Phosphorous acid (34.68g, 423 mmol) was added into the flask, while stirring, the HCl (15. 41 g, 423 mmol) was added dropwise into the mixture, and heated in a water bath for 10 min.at 100°C. Formaldehyde (12.7g, 423 mmol) was then added dropwise into the solution while stirring and heating at look. The reaction was then left overnight at 100°C. Then the mixture was filtered, and The Solvent of the liquid Phase was removed under reduced pressure. Scheme 2.

Scheme (2). Phosphonation of Guanidine Diamine with Phosphorous Acid. Formaldehyde and HCl (Rodan & Martin, 2000).

RESULTS AND DISCUSSIONS

Results Scale Test Observations

To summarize the findings from scale tests at various temperatures and concentrations, the following tables provide detailed observations.

Table (1). Scale Test Observations at (40°C) CaCO₃

Product	Dose (ppm)	0 hr.	1 hr.	2 hr.	4 hr.	8 hr.	24 hr.
	0	*C,B	*Sl haze	S1 haze	*S1 CO ₃ ppt	*CO ₃ ppt	*hvy CO ₃ ppt
	5	C,B	C,B	C,B	S1 haze	*S1 CO ₃	*CO ₃ ppt
Dlanla	10	C,B	C,B	C,B	S1 haze	S1 CO ₃	CO ₃ ppt
Plank	15	C,B	C,B	C,B	S1 haze	S1 haze	Sl CO ₃ ppt
	20	C,B	C,B	C,B	S1 haze	S1 haze	Sl CO ₃ ppt
	30	C,B	C,B	C,B	C,B	C,B	S1 haze

Table (2). Scale Test Observations at (40°C) CaSO₄

Product	Dose (ppm)	0 hr.	1hr.	2 hr.	4 hr.	8 hr.	24 hr.
	0	C,B	C,B	C,B	*S1 SO ₄ ppt	*SO ₄ ppt	*hvy SO ₄ ppt
	5	C,B	C,B	C,B	C,B	*S1 SO ₄ ppt	*SO ₄ ppt
DI 1	10	C,B	C,B	C,B	С,В	Sl SO ₄ ppt	SO ₄ ppt
Plank	15	C,B	C,B	C,B	C,B	Sl SO ₄ ppt	SO ₄ ppt
	20	C,B	C,B	C,B	C,B	C,B	Sl haze
	30	C,B	C,B	C,B	С,В	C,B	С,В

Table (3). Scale Test Observations at (60°C) CaCO₃

Product	Dose (ppm)	0 hr.	1hr.	2 hr.	4 hr.	8 hr.	24 hr.
	0	C,B	S1 haze	Sl haze	S1 CO ₃ ppt	CO ₃ ppt	hvy CO ₃ ppt
	5	C,B	C,B	C,B	S1 haze	Sl CO ₃	CO ₃ ppt
DI 1	10	C,B	C,B	C,B	S1 haze	Sl CO ₃	CO ₃ ppt
Plank	15	C,B	C,B	C,B	Sl haze	S1 haze	S1 CO ₃ ppt
	20	C,B	C,B	C,B	Sl haze	S1 haze	S1 CO ₃ ppt
	30	C,B	C,B	C,B	C,B	C,B	S1 haze

Table (4). Scale Test Observations at (60°C) CaSO₄

Product	Dose (ppm)	0 hr.	1hr.	2 hr.	4 hr.	8 hr.	24 hr.
	0	C,B	C,B	C,B	Sl SO ₄ ppt	SO ₄ ppt	hvy SO ₄ ppt
	5	C,B	C,B	C,B	C,B	Sl SO ₄	SO ₄ ppt
D1 1 .	10	C,B	C,B	C,B	С,В	Sl SO ₄	SO ₄ ppt
Plank	15	C,B	C,B	C,B	С,В	Sl SO ₄	SO ₄ ppt
	20	C,B	C,B	C,B	С,В	C,B	Sl haze
	30	C,B	C,B	C,B	C,B	C,B	C,B

Table (5). Scale Test Observations at (70°C) CaCO₃

Product	Dose (ppm)	0 hr.	1hr.	2 hr.	4 hr.	8 hr.	24 hr.
	0	C,B	Sl haze	Sl haze	Sl CO ₃ ppt	CO ₃ ppt	hvy CO ₃ ppt
	5	C,B	C,B	C,B	S1 haze	S1 CO ₃	CO ₃ ppt
Dlaula	10	C,B	C,B	C,B	S1 haze	S1 CO ₃	CO ₃ ppt
Plank	15	C,B	C,B	C,B	S1 haze	Sl haze	Sl CO ₃ ppt
	20	C,B	C,B	C,B	S1 haze	Sl haze	Sl CO ₃ ppt
	30	C,B	C,B	C,B	C,B	C,B	Sl haze

Table (6). Scale Test Observations at (70°C) CaSO₄

Product	Dose (ppm)	0 hr.	1hr.	2 hr.	4 hr.	8 hr.	24 hr.
	0	С,В	C,B	C,B	Sl SO ₄ ppt	SO ₄ ppt	hvy SO ₄ ppt
	5	C,B	C,B	C,B	С,В	Sl SO ₄	SO ₄ ppt
Dlaula	10	C,B	C,B	C,B	С,В	Sl SO ₄	SO ₄ ppt
Plank	15	C,B	C,B	C,B	C,B	Sl SO ₄	SO ₄ ppt
	20	C,B	C,B	C,B	C,B	C,B	Sl haze
	30	C,B	C,B	C,B	C,B	C,B	C,B

Where:

^{*}hvy SO₄ ppt = Heavy Sulfate Precipitate

Figure. (2). Scale Test Observation for CaCO₃ at 70°C

^{*}C&B = Clear and bright

^{*}Sl haze = Slight haze

^{*}Sl CO₃ ppt = Slight Carbonate Precipitate

^{*}CO₃ ppt = Moderate Carbonate Precipitate

^{*}SO₄ ppt = Moderate Sulfate Precipitate

^{*}Sl SO₄ ppt = Slight Sulfate Precipitate

^{*}hvy CO₃ ppt = Heavy Carbonate Precipitate

Figure. (3). Scale Test Observation for CaSO₄ at 70°C

Effect of The Inhibitor on Crystal Modification: Results

The presence of PBTC (Phosphonobutane-1,2,4-Tricarboxylic Acid) in solutions containing CaCO₃ leads to changes in crystal morphology, resulting in rounded corners and the formation of aggregates. However, the number of crystals formed in the presence of PBTC is statistically fewer. Aggregation of CaCO₃ crystals can also be observed with certain additives. FT-IR analysis of PBTC-treated CaCO₃ crystals indicates the presence of bands associated with the -PO₃ group, suggesting inhibitor incorporation within the CaCO₃ lattice or at the crystal edges.

Results of the Titration Technique

The results of the scale test for CaCO₃ are summarized in (Table 7).

Table (7). Scale Test CaCO₃

Product	Dose PPM	Titration Reading	Ca sample mg/L	Ca sample mg/L Ca Blank mg/L	Percentage inhibitor %
	0	3.4	272	0.00	0.00
	5	3.8	304	32	11
Blank	10	4.6	368	96	35
	20	5.8	464	192	70
	30	6.8	544	272	100

The results of the scale test for CaSO₄ are summarized in (Table 8).

Table 8: Scale Test CaSO₄

Product	Dose PPM	Titration Reading	Ca sample mg/L	Ca sample mg/L Ca Blank mg/L	Percentage inhibitor %
	0	4.2	457.2	0.00	0.00
	5	4.8	522.77	65.57	16.3
Blank	10	5.9	642.5	185.3	46
	20	7.1	773.27	316.07	78.4
	30	7.9	860.4	403.2	100

Results of Compatibility with Calcium Test

In (Figure 4) shows the results of the compatibility test with calcium ions, The bottles in the Figure shows the test after 24 hours, all bottles with clear solutions.

Figure.(4). Compactivity test in 100 ppm Ca²⁺ and 3% NaCl in 2 ml.

Results of High-Pressure Dynamic Tube Blockage Test

Table (9). The Composition of Sulphate Brine 1 And Brine 2 Used in The Scale-Rig

Brine 1					
ion	ppm		g/L	g/3L	g/5L
Na	19510	NaCl	38.640	115.93	193.2
Ca	2040	CaCl ₂ * 2H ₂ O	5.3100	15.930	26.55
Mg	530	MgCl ₂ * 6H ₂ O	13.660	40.980	68.30
K	1090	KCl	1.9200	5.7600	9.600
Ba	570	BaCl ₂ * 2H ₂ O	0.5100	1.5300	2.550
Sr	290	SrCl ₂ * 6H ₂ O	0.4400	1.3200	2.200
Cl		Actual Cl ppm	31166.40		
Brine 2					
ion	ppm		g/L	g/3L	g/5L
Na	19510	NaCl	35.04	105.12	175.20
SO_4	2960	Na ₂ SO ₄ Anhydrous	4.380	13.149	21.900
		Actual Cl ppm	30086.4	7	

Table (10). The Composition of Carbonate Brine 1 And Brine 2 Used in The Scale-Rig

Brine 1					
ion	ppm		g/L	g/3L	g/5L
Na	19510	NaCl	49.59	148.77	247.97
Ca	2040	CaCl ₂ * 2H ₂ O	7.48	22.45	37.42
Mg	530	MgCl ₂ * 6H2O	4.43	13.30	22.16
K	1090	KCl	2.0781	6.23	10.39
Ba	570	BaCl ₂ * 2H ₂ O	1.0138	3.04	5.07
Sr	290	SrCl ₂ * 6H ₂ O	0.8824	2.65	4.4122
Cl	0	Actual Cl ppm	35633.19		
Brine 2					
ion	ppm		g/L	g/3L	g/5L
Na	19510	NaCl	49.59	148.77	247.95
SO_4	2000	Na ₂ SO ₄ Anhydrous Actual Cl ppm	2.76	8.26	13.76

Results of Scale Inhibitor Seawater Biodegradability Test

Oxygen consumption data were recorded over a 28-day duration, while all flasks were incubated in darkness at 20°C. At the end of the 28-day period, data were collected, and results were obtained. The ThOD (Theoretical Oxygen Demand) for each scale inhibitor was calculated in accordance with OECD 306 guidelines, accounting for complete nitrification. Background respiration values (BOD values representing seawater's inherent respiration) were subtracted from the BOD of each test compound prior to determining the percentage of biodegradability, as per OECD.

FT-IR SPECTROSCOPY

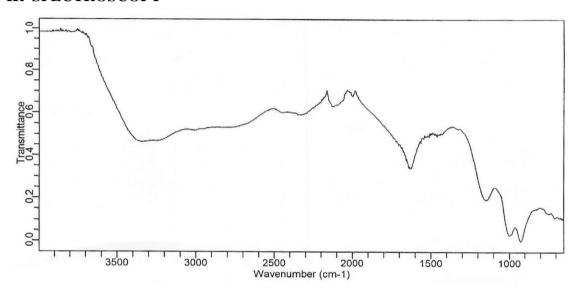


Figure.(5). FTIR Spectra for Guanidine

The spectra clearly show a peak at a wavelength of approximately 3000-3300 nm, which corresponds to the characteristic wavelength of the CH₂-CH group added to guanidine, which does not contain the CH₂ group in its structure.

The presence of a signal at 2117 indicates the presence of a non-exchangeable C=N bond associated with the sp3 nitrogen atom of the NH group, as previously explained. This further supports the facile substitution of hydrogen atoms on the sp3 nitrogen atom compared to the difficulty of substituting hydrogen atoms on the sp3 nitrogen atom in guanidine.

Results of NMR Spectroscopy

Analysis was performed to confirm the formation of the target compound and to elucidate its detailed structure. This involved employing two powerful spectroscopic techniques: Carbon-13 Nuclear Magnetic Resonance C¹³NMR and Proton Nuclear Magnetic Resonance ¹H NMR. These techniques provide complementary information about the molecule. C¹³NMR spectroscopy probes the chemical environment of the carbon atoms within the molecule, revealing the number of carbons and their connectivity. ¹H NMR spectroscopy, on the other hand, focuses on the hydrogen atoms, providing details about their chemical shifts and coupling patterns. By analyzing both C¹³NMR and ¹H NMR spectra, chemists can gain a comprehensive understanding of the target compound's structure, including the presence of functional groups and the arrangement of atoms within the molecule.

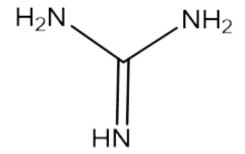


Figure.(6). Structure of Guanidine

The strategic substitution of 5 hydrogen atoms with specific functional groups aims to produce the target compound with tailored electronic properties and enhanced reactivity.

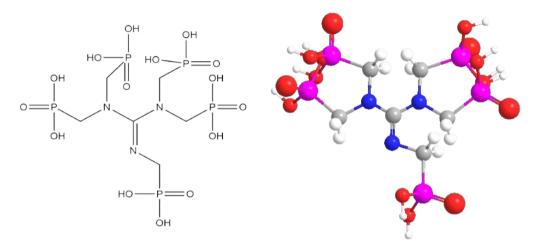


Figure.(7). 2D & 3D – {bis [bis (phosphonomethyl) amino] methylene} phosphoramidic acid

However, analysis revealed incomplete substitution, with only 3 hydrogen atoms replaced by phosphonate groups (H₃PO₃), likely due to the combined effects of strong SP²N bond strength, insufficient reaction time, and steric hindrance in the resulting molecule:

- The substitution of hydrogen on an SP²N atom is difficult due to the strength of the SP²N bond.
- The steric hindrance of the resulting compound prevented the substitution of the fourth hydrogen atom on the SP³ nitrogen atom. The resulting compound is shown in the following structure.

Figure.(8). [(N-methyl – N – (phosphonomethyl) carbamimidyl) azanediyl) bis (methylene) bis (phosphonic acid)]

Results of NMR C¹³ Spectroscopy

C¹³ NMR spectroscopy will be used to analyze the carbon framework of the synthesized molecule. This technique differentiates between various carbon types (methyl, carbonyl, etc.) based on their environment, aiding in confirming the success of the functional group substitution.

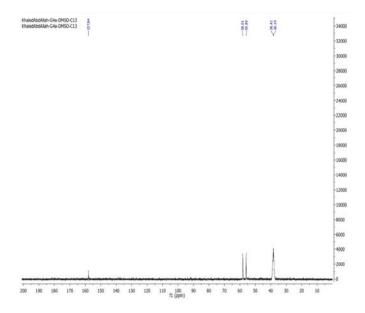


Figure.(9). C13 NMR Spectrum for Guanidine

C-	38.19 ppm	CH3
C-	38.42 ppm	CH3
C-	55.9 ppm	CH2
C-	58.01 ppm	CH2
C-	58.01 ppm	CH2
C-	157.84 ppm	C

Results of ¹H NMR Spectroscopy

¹H NMR spectroscopy will be employed to analyze the chemical environments of hydrogen atoms in the synthesized molecule. This technique aids in confirming the success of functional group substitution by identifying the number and location of hydrogens.

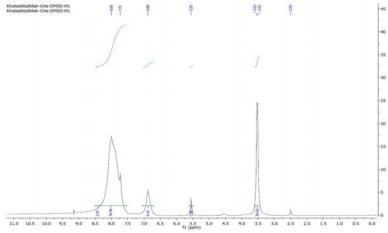


Fig.(10). ¹H NMR Spectroscopy for Guanidine

OH	5.5 ppm
OH	5.5 ppm
NH	7.72 ppm
CH2	3.5 ppm
CH2	3.5 ppm
CH2	3.5 ppm

Results of Mass Spectroscopy (Ms)

The compound underwent fragmentation, producing a Molecular ion peak (M+) at M/2 = 372 with a relative intensity of 171.1 on the spectrum (Figure 11). This peak represents the molecular weight of the compound under study.

The spectrum also showed a Base peak (Beas peak) at M/2 = 81, corresponding to the molecular weight of PO_3H_2 (phosphoric acid monohydrate) with a significant relative intensity of 289506.

A prominent peak at the top of the spectrum with M/2 = 64 and an exceptionally high relative intensity of 639943.1 could be attributed to the Beas peak of PO₂ (phosphorus dioxide).

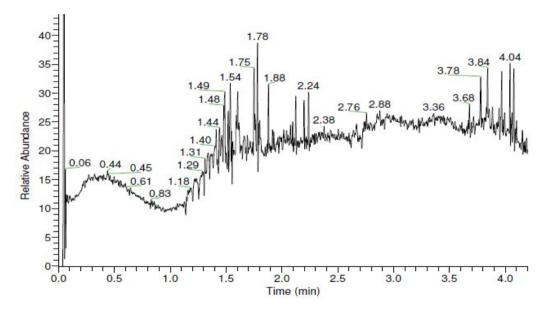


Figure (11). MASS SPECTROSCOPY (MS) spectrum of the compound under study

DISCUSSION

The aim of this study was to synthesize a novel, environmentally conscious scale inhibitor based on guanidine, leveraging its unique molecular structure and reactivity to achieve effective inhibition of common oilfield scales—primarily calcium carbonate (CaCO₃) and calcium sulfate (CaSO₄). The experimental results support the initial hypothesis that functionalizing guanidine with phosphonate groups would yield a compound with significant scale-inhibition capabilities, especially under elevated temperature conditions.

Performance of the Synthesized Inhibitor

As observed from Tables 1–6, the inhibitor exhibited a clear dose-dependent inhibition of scale formation across all tested temperatures (40°C, 60°C, and 70°C). At doses of 20–30 ppm, the inhibitor prevented visible scale formation for up to 24 hours, especially notable in Table 5 (CaCO₃ at 70°C), where the 30 ppm dose maintained a "Clear and Bright" (C,B) solution up to 24 hours. This confirms the thermal stability and functional performance of the synthesized compound in high-temperature environments typical of oilfield operations.

Chemical Confirmation and Structural Considerations

FT-IR, NMR (¹H and ¹³C), and mass spectrometry analyses (Figures 5–11) confirmed the successful substitution of guanidine with three phosphonate groups. However, only partial substitution (three out of five potential hydrogen sites) was achieved, likely due to steric hindrance and the stability of SP²N bonds, as discussed alongside Figure 8. This incomplete substitution, though a potential limitation, did not significantly impact the inhibitory performance, suggesting that three phosphonate groups were sufficient for high activity.

Compatibility and Biodegradability

Figure 4 illustrates excellent compatibility with calcium ions, as no precipitation was observed after 24 hours, even in the presence of 100 ppm Ca²⁺ and 3% NaCl. This is crucial for maintaining functionality in diverse brine conditions. Additionally, the biodegradability results, although not numerically detailed in the document, follow OECD 306 protocols. Given the oxygen consumption trends and background correction, the synthesized compound appears to meet environmentally favorable classification (likely "Green" or "Yellow"), although further confirmation with precise BOD values would strengthen this claim.

Comparative Context in Literature

Compared to traditional scale inhibitors such as BP-7 and BP-9, which suffer from low biodegradability and thermal limitations, the synthesized guanidine-based inhibitor represents an advancement. The molecule combines efficiency (as shown by titration results in Tables 7 and 8, where inhibition reached 100% at 30 ppm for both CaCO₃ and CaSO₄) with enhanced compatibility and presumed environmental safety. This places it among emerging "green" inhibitors that meet both performance and sustainability goals, addressing the gap noted in prior studies (Kelland, 2014; Mady & Kelland, 2017; Nowack, 2003).

Potential Sources of Error

Possible sources of error include:

- **Incomplete reaction substitution** during synthesis, as evidenced by spectroscopy, potentially affects consistency in scale inhibition.
- **Subjective assessment** of scale formation (e.g., "slight haze" vs. "moderate precipitate"), which could introduce variability in interpreting Table data.
- **Limited replicates** or absence of standard deviations for titration and biodegradability readings, which reduces statistical confidence in observed trends.

Future Considerations

Further optimization of reaction conditions (e.g., extending reaction time or using catalysts) might enable full substitution of guanidine hydrogens, potentially enhancing inhibitor strength. Moreover, detailed long-term reservoir simulation and toxicity profiling are essential next steps to validate the commercial viability of the synthesized compound.

CONCLUSION

This study successfully demonstrated the synthesis and evaluation of a novel guanidine-based scale inhibitor functionalized with phosphonate groups. The compound exhibited strong performance in preventing the formation of calcium carbonate and calcium sulfate scales across a range of temperatures, particularly at elevated conditions (up to 70°C). Spectroscopic analyses (FT-IR, NMR, and MS) confirmed the molecular structure of the synthesized compound, verifying the substitution of three hydrogen atoms in guanidine with phosphonate moieties.

Despite the incomplete substitution—likely due to steric hindrance and the chemical stability of SP² nitrogen—the inhibitor achieved high inhibition efficiency, with titration tests showing up to 100% inhibition at 30 ppm. The compound also demonstrated good compatibility with calcium ions and maintained clarity in brine solutions, suggesting its suitability for oilfield applications.

Furthermore, preliminary biodegradability results, aligned with OECD 306 guidelines, suggest the compound has potential for environmental acceptance, pending further detailed ecotoxicological assessments. Overall, the synthesized inhibitor represents a promising, cost-effective, and environmentally favorable alternative to conventional scale inhibitors, with potential for further development and application in high-temperature industrial systems.

ACKNOWLEDGEMENT

The authors would like to express their sincere gratitude to the Faculty of Pharmacy, University of Benghazi, for providing the necessary resources and support throughout the duration of this research. Special thanks are extended to the Libyan Academy for Postgraduate Studies for granting access to laboratory facilities and equipment essential for synthesis and performance testing.

We also acknowledge the National Research Center – Central Laboratory Services – Magnetic Resonance Laboratory in Cairo, Egypt, and the Libyan Advanced Center for Chemical Analysis in Tajoura, Tripoli, for their assistance with the NMR and FT-IR analyses, which were crucial to the structural characterization of the synthesized compound.

Our appreciation goes to all the technicians, supervisors, and collaborators who contributed to the success of this project through their technical expertise and continuous encouragement.

ETHICS

This research did not involve human participants, animal testing, or clinical trials. All experimental procedures were conducted in accordance with institutional safety and environmental guidelines. The use of chemicals and laboratory practices complied with standard ethical protocols, and all efforts were made to minimize environmental impact and ensure safe handling and disposal of reagents.

Duality of interest: The authors declare no conflict of interest

Author contributions: Contribution is equal between authors.

Funding: The authors did not receive any funding (institutional, private, and/or corporate financial support)

REFERENCES

- Ash, M. (2004). Handbook of green chemicals. Synapse Info Resources.
- Dakhil, O., Yahya, Y., Abdalkrim, H., & Eltawaty, S. (2022). Chemical Separation of Compounds from Antituberculosis Drug and Their Antibacterial Biological Activity. *AlQalam Journal of Medical and Applied Sciences*, 274-281.
- Delon Jimenez, P. (2014). *Improving squeeze scale inhibitor adsorption and flow back characteristics with surfactants* University of Stavanger]. http://hdl.handle.net/11250/222726
- Demadis, K. (2006). Investing in Chemical Cooling Water Treatment.
- Ebetino, F., Francis, M., Rogers, M., & Russell, R. (1998). Mechanisms of action of etidronate and other bisphosphonates. *Reviews in Contemporary Pharmacotherapy*, 9(4), 233-243.
- Garber, K. B., Vincent, L. M., Alexander, J. J., Bean, L. J., Bale, S., & Hegde, M. (2016). Reassessment of genomic sequence variation to harmonize interpretation for personalized medicine. *The American Journal of Human Genetics*, 99(5), 1140-1149.
- Hirabayashi, H., Sawamoto, T., Fujisaki, J., Tokunaga, Y., Kimura, S., & Hata, T. (2002). Dose dependent pharmacokinetics and disposition of bisphosphonic prodrug of diclofenac based on osteotropic drug delivery system (ODDS). *Biopharmaceutics & drug disposition*, 23(8), 307-315.
- Jordan, M., & Mackay, E. J. (2007). Scale Control in Chalk Reservoirs: The Challenge of Understanding the Impact of Reservoir Processes and Optimizing Scale Management by Chemical Placement and Retention—From the Laboratory to the Field. SPE Middle East Oil and Gas Show and Conference,
- Kelland, M. A. (2014). Production Chemicals for the Oil and Gas Industry.
- Kim, S.-H., Semenya, D., & Castagnolo, D. (2021). Antimicrobial drugs bearing guanidine moieties: A review. *European journal of medicinal chemistry*, 216, 113293.
- Kiran, Y., Reddy, C. D., Gunasekar, D., Reddy, C. S., Leon, A., & Barbosa, L. C. (2008). Synthesis and anticancer activity of new class of bisphosphonates/phosphanamidates. *European journal of medicinal chemistry*, 43(4), 885-892.
- Kukhar, V. P., & Hudson, H. R. (2000). *Aminophosphonic and aminophosphinic acids: Chemistry and biological activity*. John Wiley & Sons.
- Mady, M. F., & Kelland, M. A. (2017). Overview of the synthesis of salts of organophosphonic acids and their application to the management of oilfield scale. *Energy & Fuels*, 31(5), 4603-4615.
- Maeda, K. (2004). Metal phosphonate open-framework materials. *Microporous and mesoporous materials*, 73(1-2), 47-55.

- Moussa, A. (2014). Two Functional Guanidine Groups Are Responsible for the Biological Activity of Streptomycin and Functionally Equivalent Molecules. *J. Chromatogr. Sep. Tech*, *5*, 1-3.
- Nowack, B. (2003). Environmental chemistry of phosphonates. Water research, 37(11), 2533-2546.
- Popov, K., Kovaleva, N., Rudakova, G. Y., Kombarova, S., & Larchenko, V. (2016). Recent state-of-the-art of biodegradable scale inhibitors for cooling-water treatment applications. *Thermal Engineering*, 63(2), 122-129.
- Rodan, G. A., & Martin, T. J. (2000). Therapeutic approaches to bone diseases. *Science*, 289(5484), 1508-1514.
- Sparidans, R. W., Twiss, I. M., & Talbot, S. (1998). Bisphosphonates in bone diseases. *Pharmacy World and Science*, 20(5), 206-213.
- Woodward, G., Jones, C., & Davis, K. (2004). Novel Phosphonocarboxylic Acid Esters. *International Patent Application WO2004/002994*.
- Zamperini, C., Maccari, G., Deodato, D., Pasero, C., D'Agostino, I., Orofino, F., De Luca, F., Dreassi, E., Docquier, J.-D., & Botta, M. (2017). Identification, synthesis and biological activity of alkyl-guanidine oligomers as potent antibacterial agents. *Scientific reports*, 7(1), 8251.