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The aim of the present paper is to study the effect of inclined load, tem-
perature dependent, and rotation thermo-elastic solid with voids. The
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INTRODUCTION

The subject of generalized thermoelasticity has drawn the attention of researchers due to its rele-
vance in many practical applications. In contrast to the coupled thermoelasticity theory based on a
parabolic heat equation (Biot, 1956), which predicts an infinite speed of the propagation of heat.
The first generalization, for isotropic bodies, is because of (Lord & Shulman, 1967), introduced the
generalized thermoelastic theory withone relaxation period, which replaces the standard Fourier law
by posing a new law of heat conduction. The second generalization is known as the theory of tem-
perature rate dependent thermoelasticity, and was proposed by (Green & Lindsay, 1972).

A nonlinear theory of elastic material with voids was developed by (Cowin & Nunziato, 1983,
Nunziato & Cowin, 1979) developed a theory of linear elastic materials with voids. (Iesan, 1986)
developed a proposition of thermoelastic accoutrements with voids. lately, (Aoudai, 2010) deduced
a proposition of thermoelastic prolixity Material with voids. (Puri & Cowin, 1985) studied the geste
of aeroplane swells in a direct elastic material with voids. (Dhaliwal & Wang, 1995) developed a
heat flux dependent proposition of hermoelasticity with voids.

The effect of an inclined load on a functionally graded, temperature-dependent thermoelastic ma-
terial was analyzed by (Barak & Dhankhar, 2022).

(Abouelregal & Alesemi, 2022; Deswal et al., 2019; Othman et al., 2018) have studied many prob-
lems in inclined load thermoelastic materials. (Said, 2024) studied the Impact of rotation and in-
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clined load a nonlocal fiber-renforced thermoelastic half-space via simple-phase-lag model , (Said
et al., 2024) studied Effect of an inclined load on a nonlocal fiber-reinforced visco-thermoelastic
solid via a dual-phase-lag model.(Kumar & Ailawalia, 2005; Kumar & Gupta, 2010) studied variety
of issues arising from inclined loads in the micropolar elastic media. (Abouelregal & Zenkour,
2016) proposed a two-temperature theory, To examine the thermally insulated stress-free surface of
a thermoelastic solid half-space as a result of an inclined load. (Lata & Kaur, 2019) studied Efect of
rotation and inclined load on transversely isotropic magneto thermoelastic solid. (Deswal et al.,
2020) discussed disturbances in an initially stressed fber-reinforced orthotropic thermoelastic medi-
um due to inclined load. (Alharbi, 2021) introduced two temperature theory on a micropolar ther-
moelastic media under the efect of inclined load with voids.(Othman et al., 2023) studied Efect of
initial stress and inclined load on generalized micropolar thermoelastic with three-phase-lag model.
(Sheokand et al., 2024) discussed Infuence of variable thermal conductivity and inclined load on a
nonlocal.

The thermal stress in a material with temperature-dependent properties was studied extensively by
(Noda, 1986) . (Abbas, 2014) have used the eigenvalue approach in a three-dimensional generalized
thermoelastic interaction with temperature-dependent material properties. (Othman et al., 2013)
have investigated the generalized thermoelastic medium with temperature dependent properties for
different theories under the effect of gravity field. (Othman et al., 2014) studied the effect of rota-
tion on the problem of fiber-reinforced under generalized magneto thermoelasticity subject to ther-
mal loading due to laser pulse: a comparison of different theories.

Othman and (Othman & Edeeb, 2018) studied the effect of rotation and temperature dependent on
thermoelastic medium with voids under three theories. (Othman, 2011) discussed the state-space
approach to the generalized thermoelastic problem with temperature-dependent elastic medium and
internal heat sources.

BASIC EQUATIONS OF THE PROBLEM

We consider a homogeneousv oids thermoelastic half- space under the influence of rotation and
temperature dependent . All the considered quan- tities are functions of the time variable t and of
the coordinates x and z .

Since the medium is rotating uniformly with an angular velocity £ = 2nwhere nis a unit vector
representing the direction of the axis of the rotation, the equation of motion in the rotating frame of
reference has two additional terms (Schoenberg & Censor, 1973): centripetal acceleration
02 A (2 Au)due to time varying motion only and Corioli's acceleration 242 A, then the funda-

mental equations of the generalized thermoelasticity are

e, =5, +u;;) i,j=13 (1)

0 =[ley +b¢_ﬂ(1+00%)r]5ij tue;, (2)

then the equation of motion in a rotating frame of reference is

oy = plu; +{2x2xu}; +2(2xu);], i,j=13. (3)

Where o; are the components of stress tensor, €; are the components of strain, 4, 4 are the lame's

constants, £ =(31+2u)a, such that ¢ is the coefficient of thermal expansion, J; is the Kroneck-
erdelta,and i, j =x,z.
The displacement components have the following form u = (u,,0,u,).
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The dynamical equations of an elastic medium are given by

0 oT .
)V G ) S b S plae g SV =l - O -20205], @)
1 Vg + (L +p )a—e+b a¢ - p1+y T)V%:P[ﬂs—ﬂzusﬂﬁdll ®)
The equation of v0|ds is
o¢ o%¢
aVip—be—&p— a)ob—+m(1+uo—)T p;(at—, (6)
The heat conduction equation,
KV =pCe (L+7, g)f + Ty (L+no7y g)é +mTo(1+n,7 §)¢ (7)
The components of stress tensor are
S T WL I L BV SRR Vs (®)
TN Ta T ot
o A2 i D g ps ST, ©
674 ot
a
—1(8“1 ) (10

Egs. (4) and (7) are the field equations of the generalized linear thermoelasticity for a rotating me-
dia, applicable to the coupled theory, three generalizations, as follows:
1. The coupled (CD) theory, when

Ng =7y =, =0.
2. Lord-Shulman (L-S) theory, when
N =1 vy,=0, 75 >0.
3. Green-Lindsay (G-L) theory, when
Ng =0, vy=7y>0.

Where K is the thermal conductivity, p is the density, C¢ is the specific heat at constant strain,
7,, 0 are the thermal relaxation times, n;, n, are parameters, ¢ is the change in the volume

fraction field, T, is the reference temperature is chosen so that |(T —T)/T,|C 1,
i,j=x,z.a,b,&,@,m, y are the material constants due to the presence of voids.

Assume that

A=28M)  u=pf @)  &=&ET), m=myf(T), b=byf@) k=kof ()
B=pfT).

Where f (T') is a given dimensionless function of temperature such that f (T ) =1—05*T0 (a* is an
empirical material constant). In the case of temperature independent modulus of elasticity,

f(T)=1
In order to facilitate the solution, the following dimensionless quantities are introduced :
* 0_ a) Z I T
(X )——(X Z) (ul,ug)— (ul,u ) 0' ——0' ¢_ 1 o¢ T'=
1 ﬂO C]_ TO

S o) +2 . ¢l . L.
t=at, Q'= ,szﬁ[’ 'uo,a)lzpCEl,UOZa)luo, 7, =1,

2 p k (12)
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From Eq. (12) in to Egs. (4)-( 7) we get

oe o¢ o.0T _, .0%u, au
vau, +h & oo the ZEh (e u ) T =h [6'(2 — Q% 2_0?3], (13)
2 o¢ o.0T _ 82u3 ) ouy
vy +h— h, 22 —hg (1+ uo—)—— h, [ - 2%y +20—1 —1], (14)
Loz 2 oz
B 2
VZp—nse—hgp—h, a_?"'hs(l"‘”o =T =hg &_f (15)
8.0 d d
& VT —hy(L+ Ny, 5)5¢= 1+ —)£+52(1+noz'0 a%)ge (16)
Also, the constitutive Egs. (8)-( 10) reduces to
ou ou 2 ou
Or =hl b 2+ = S = hi L+ vy —)T (17)
ou ou 2 ou o
o, = h”[axl + 623]+? 823 + o~ g+ 0o T, (18)
1 ou, ou
o, =——+=2]. 19
Aoz ox (19)
Where
+ b,c2 T A" pc? b, x.
hlzﬂo IUO, h2= 0*21 , hazﬂOO’ h4= pC11 h5 h_é:O ,
My Ho®y X My My 0(0 aoa)l
_ a)loclz _ meT %, _ pcflo _ mocl2 _ Koa)l
hy=—% M=, Ng=""", Ny= o, 6= 55—
Ay, a, Q, A pCeam” 1, A pcCe
2
__ B = hy,——2% o _Polo o1 _ 1
“TACce ™ Ay v A o’ o v Ay fT) A-aTy)

Introducing the displacement potentials R(x,z,t) and y(x,z,t) which related to the displace-
ment components by the relations:

u=R,+y,, Us; =R, -y . (20)
e=V’R, and (% _May vz, (21)
By substituting from Eq. (21) in Egs. (13)-( 16), this yields
2
[AL+h,)V? —h, (% — Q*)R —2h, 2y +h,¢—hy L+ v, %)T =0, (22)
OR 8%
2h _QE+[V2 —h4(F—QZ)]W=O, (23)
“ V2R (V2 —hy —h, 2 _h i)¢+h(1+u 9 -0 (24)
5 6 7 8t 9 6t 8 0 ot !
op 6 aT o, oe

VAT —hy(1+ nyzy — 1+Nn,7y —) — 25

& hyo ( TO@'[) =(1+ ) +&,( Toﬁt)ﬁt (25)
5] o2 NG

~ &2 (S + ot E)VZR — hyy (1 + g7, E)Egb + & VT —(1+7, 050) 5 =0 (26)

The Method of Solution of The Problem

The used analytical method to obtain the exact expressions for the physical variables is the normal
mode analysis. The solution of considered physical variables can be decomposed in terms of normal
mode as following form

[Row.T g0y, FFoflx,2,t) =[Rp"\T ¢ 0y, F F, 1(2)expli (et +ax)],  (27)
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Where @ is the complex time constant, i =J-1 and a is the wave number in x-direction and
Ry T *,¢*,a;; ,F", and F,” are the amplitudes of the field quantities..
Using Eq. (27) in Egs. (22)-( 26), lead to

(D? =S,)R™ =Sap” +S,¢ —ST" =0, (28)

SR +(D*-S;) v =0, (29)

(- AD? +Sg)R™ +(D?* =Sg)¢p +S,,T =0, (30)

S, (D?—a%)R™ =S¢ +(D?—=Sy3)T " =0. (31)

Using Egs. (20) and (27) in Egs. (17)-( 19), we get

oo = hy(D? —a’)R" +%iauf o —hy (L4 i )T, (32)

o5 = h,(D? —a®)R" + % Dul + hyyd — by (L7 )T, (33)
x> 1 x> . *>

Oy =T[Du1 +iausg]. (34)

Where,

S,a% —h, (0* + Q%) hs (1+i vyw)
’ 83 = - SS =<
Sl Sl Sl Sl

— &, (iw—Nnyzyw?) hy, (i — nyzyw?)

Sio =hg@+ivyw), Sy = , S = ,
& &
ga’ +iw—r,0° d
& dz

Eliminating y"(x), ¢ (x) and T (x) between Egs. (28)-( 31), this lead to the following eighth
order ordinary differential equation satisfied with R (x):
[D®-B,D°+B,D*-B,D*+B,]R" (2) =0. (35)
Where
B, =S;3+S¢+S,+S,-AS5,-5:5,,,
B, =SS5 +5,051, +S;5,3+S:5¢ +S5,5,3+S5,5¢ +5,5;, +5,S;-A5,S,5
_8488 +S4810811 _A584S7 _ASSSSIZ _85811";12 _8589811 _858 7811’
B3 =575¢513+57510512 +555¢513 +55510515 5557513 +5,5789 +5556543
+535659 ~S 455513 +54510511:8° —AsS 457513545755 +5,57510511
—S55651 —S5505118° —AsS55751, —S55751:8° —S5575¢511,
B4 =5,5750S13+5,57510512 +S53565¢513 +S356510512 —S 45579513 +5,4575105118°
—5.5,55;, —S55,5¢5,,a%.
Equation (34) can be factored as
[(D* —k{)(D* —k3)(D* —k3)(D* ~k)IR™ (2) =0. (36)
The solution of Eq. (35) which is bounded as z — oo, is given by:
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4
R => M e, (37)
n=1
4
v =Y H M e 7, (38)
n=1
4
¢ =D HyMe™n?, (39)
n=1
4
T" =Y HyM e 2. (40)
n=1

The solutions of the characteristic equation of equation (35) are krf(n =1,2,3,4)and
M, (n=1234), are some parameters.
Substituting from equations (37) and (38) in (20) to get

4
Uy = D HygpM e 07, (41)
n=1
. 4
ug= > HgM e ¥n?, (42)
n=1

From Egs. (37)-( 42) in (32)-( 34) to obtain the following expressions for the stress tensor compo-
nents

4
Oyx = ZHGnM ne—knz' (43)
n=1
* 4 k
O = ZHmM n87 nz’ (44)
n=1
* 4 k
O = D Hg,M e %, (45)
n=1
Where,
P H, = 18s(hsky +Sg) +Sig(ky ~S, ~SgHy)
) n i)
(knz_s7) [Ss(knz_sg)"'s4810]
2
_ _ + .
H3n:kn 82 SSHln S4H2n’ H4n:ia_an1n,’ H5n:_(kn+|aH1n)'

Ss
Hen = hyy(iaH 4y —k Hs,) +2iaH 4, +hipH oy —hys(L+ivpe)Hy,,
Hay = hyy(i8H 4y =k hs, ) = 2K hg, +hypHoy —hys(+ivg@)Hg, . Hgy = (-KoHy, +iaHg,).

BOUNDARY CONDITIONS
We consider an inclined load p acting in the direction who make an angle 6 with
the direction of the x-axis:

v, :FIel(a)tJrax):_(Pcose)el(amax), - ZFZeI(aHaX):—(PSInH)eI( +ax)’

99 _ 0, T=f(xt) (46)
oz
By Substituting the expression of the variables considered into the above boundary conditions (46),

we can obtain the following equations satisfied by the parameters
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4

Y HyM, =F=- (Pcos&)ei(““ax), (47)
n=1

4 .

> HgaM, = F, = (Psing)g ' ***), (48)
n=1

4

> —kyHpM, =0, (49)
n=1

4 ot i(ateax)

ZHBnMn_f e : (50)
n=1
Solving Egs. (47 - 50) for M (n =1,2,3,4) by using the inverse of matrix method as follows:

-1
M, H,, H, H ., H., Fl
M, . Ha, Heg, Heg, He, F
= 2 (51)
Ms _k1H21 _lezz _k1H23 _k1H24 0
M4 H31 H32 H33 H34 f *

Numerical Results
Copper material was chosen for purposes of numerical evaluations and the constants of the problem
were taken as follows:

A=776x10°N.m?, 1=386x10"kg.m*s? K =386w.m*k™, a, =1.78x10°k *,
p=894kg.m>,  C_=3831Jkg 'k  T,=293K.
B =268x10°N /m*deg, @ =3.58x10"/s.

The voids parameters are
7 =1753x10"m?, £=1475x10"N /m?, b =1.13849x10"N /m?,
a=3.688x10°N, m=2x10°N/m®deg, «,=0.0787x10°N /m3s.
The comparisons were carried out for
X =05, 0=30, 0=¢,+i¢, ¢,=1 &=-1.1 P=0.9 f =10,¢7,=1s, v,=1.5
a=01 Q=1 0<z <4
The computations are carried out for a value of time t = 0.01s. The variations of the
thermodynamic temperature T, the fraction field ¢, the displacement components
with distance in three theories, for these cases
(i) Figure s 1-5in the absence €2 =0 and presence (2 =1of the rotation, in the
presence of a temperature dependent and & = 30..
(ii) Figure s 6-10 for the absence & =0 with and presence o = 0.00051
while 2 =1.
(iii) Figure s 11-15 for different values of the Inclined load dependent properties in
the case of two different values of @ =30, 15. while £ =1.
Figure s 9 and 10 display the 3D surface curves for the stress components within the framework of
the (G-L) theory. Different Figure s can be used to examine how different variables affect the verti-

cal component of displacement. During wave propagation, all physical quantities are in motion;
hence the vertical displacement has a significant impact on the curves that are produced.
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Figure 1 illustrates thatthe distribution of the horizontal displacement u, begins from a positive
value in the case of (2=0,1). In the context of the three theories, we notice that the distribution of
u, is increased with the decreasing of the rotation for z > 0, the distribution of u, is inversely pro-
portional to the rotation.
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Figure (1). Variation displacement distribution U, in the absence and presence of rotation
Figure 2 demonstrates that the distribution of the temperature T always begins from zero and sat-
isfies the boundary conditions (which is the same point) in the case of @2 =0,1) in the context of

the three theories, and we notice that the rotation has a small effect in the distribution of tempera-
ture T.
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Figure (2). Variation of the thermal temperature T in the absence and presence of rotation

Figure 3 explains the distribution of the change in the volume fraction field ¢ in the context of
three theories in the case of 2=0, and =1, it observed that rotation has a great effect on the
distribution of ¢, while the distribution of ¢ is decreasing with the increase of the rotation value for
z >0.

3 3.5 4

Figure (3) . Variation of volume fraction field ¢ in the absence and presence of rotation
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Figure 4 depict the distribution of the stress tensor components o,, in the context of the three theo-
ries for £2=0,and t£2=1,, it observed that the distributions of o,, is inversely proportional to the
rotation while they decreasing with the increase of the rotation value for z > 0.

2’5 3 a5 a
Figure (4). Variation of the stress distribution &, in the absence and presence of rotation.
Figure 5 exhibits that the distribution of the stress o,, begins from the negative value (which is the

same point) in the case of £2=0,1 in the context of the three theories, and we notice that o,, satis-
fies the boundary condition z =0 .

Lt S
S S~ | - cD
0.2 4, o0, N Q=0 ———— g [
T \\/ L-S
e, Y& 7| ssssssas G-L
0.1 ‘.. " ..7:}’..‘//
4 ..\\ .
ok 7 N -
K = ~ ____----
GX ’.I R P T T Tl o
—20.1 III N
.
-0.2 |- ,”.’ -
,.l Q=1
-0.3 ;I -
3
-0.4 i -
0.5 c c 3 3 3 3 3
o 0.5 1 1.5 2 2.5 3 3.5 4
z

Figure (5). Variation of stress distribution g,, in the absence and presence of rotation.
Figure 6 explain the distributions of the displacement components u, in case of (" = 0.00051,0)
in the context of the three theories, it noticed that the distribution of u, is decreasing with the in-

crease of ¢ forz >0.
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Figure (6). Variation displacement distribution U, in the absence and presence of o
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Figure 7 shows that the temperature distributes always begins from the positive values and satisfies

the boundary conditions at z = 0. In the context of the three theories, the values of the temperature
T decrease in the range 0 <z <4. A coincidence of all the curves can be observed when there is a
rise in the distance z to reach zero at infinity.

e I I e I c c
o 0.5 1 1.5 2 2.5 3 3.5 4

Figure (7). Distribution of the temperature T in the absence and presence of .
Figure 8 depicts the distribution of change in the volume fraction field ¢ in the case of
o =0.00051,anda” =0 in the context the three theories, the distribution of ¢ is increasing with

the increase of ¢ for z >0.

a*=0.00051

Figure (8). Variation of the volume fraction field ¢ in the absence and presence of o ".

_,inthe case of (a" =0.00051,0)of the (G-L)
theory, begins from one positive values and satisfies the boundary conditions at z =0, and The
values of distribution o,, begins from negative values from two theories (CD,LS) and satisfies the
boundary conditionsat z =0.

Figure 9 depicts that the distribution of the stress o

a*=0.00051 ====1L-s

I e e e e c e
0.5 1 1.5 2 2.5 3 3.5 4

Figure (9). Variation of the stress distribution o, in the absence and presence of o .
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Figure 10 explains the distribution of the stress component o,, begins from zero and obeys the
boundary condition and oscillates like a wave.
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S o
Xz
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z

Figure (10). Distribution of the stress o, in the absence and presence of .

Figure 11 expresses the distribution of the displacement component u, in the case of
(6 =30,0 =15) and in the context of the three theories; it noticed that the distribution of u, is de-
creasing with the increase in € in the range0 <z <4 then converges to 0.

0.1

0.05 - §
1

-0.051y

-0.1

-0.15

c c c e c c c
o 0.5 1 1.5 2 2.5 3 3.5 a

Figure (11). Horizontal displacement distribution U, for different values of 0

Figure 12 shows the distribution of the temperature T in the case of (6 =30,0 =15)and in the con-

text of the three theories, it depicts that different values of angle has a low effect on the tempera-
ture.

e e e e e e e
o 0.5 1 1.5 2 2.5 3 3.5 4
z

Figure (12). Horizontal displacement distribution U, for different values of €
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Figure 13 depicts the distribution of change in the volume fraction field ¢ in the case of
(60 =30,60 =15) and in the context the three theories, the distribution of ¢ is increasing with the
increase of @ for z >0.
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Figure (13). Distribution of the volume fraction field ¢ for different values of 0

Figure 14 and 15 show the distributions of stress components o, ,and o,,,in the case of
(0 =30,6 =15)and in the context of the three theories. It noticed that the distribution of stress
components increases with the increase of &, while, the distribution of stress component o,, , de-

Xz !
creases with the increase of @ .

. I I3 I3 I3 I I3 I
o 0.5 1 1.5 2 2.5 3 3.5 a4
z

Figure (14). Distribution of the stress component o,, for different values of 0

Figure (15). Distribution of the stress o, for different values of &
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3D curves are representing the complete relations between physical quantities and both factors of

distance as shown in Figure ure s 16-18, in the presence, temperature dependent o =0.00051, of

rotation =1 and Inclined load dependent & =30 in generalized thermoelastic medium with
pours Material in the context of the (G-L) theory. These Figure ure s are very important to study
the dependence of these physical quantities The curves obtained are highly dependent on the dis-
tance from origin, and all the physical quantities are moving in the wave propagation.

Figure (16). 3D variation of the displacement U; with the variation of x , z .

0.01

0.005

-0.005

-0.01
10

Figure (17). (3D) variation of the displacement of the displacement component ¢ with the variation of x , z

UZZ

ol N KB O B N W

=]

Figure (18). (3D) variation of the stress distribution &,, with the variation of x , z .
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CONCLUSION

We can conclude that the curves of the physical quantities with (CD) in most of the Figure ure s are
lower in comparison with those under (L-S) theory and (G-L) theory due to the relaxation times.
The values of all the physical quantities converge to 0 by increasing the distance z and all the func-
tions are continuous. . The rotation and the inclined load play a significant role in the distribution of
all the physical quantities.
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