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INTRODUCTION

Abstract

In this research, we investigate the existence of periodic solutions for a class of
neutral-type nonlinear dynamic systems with delay, described by the equa-
tion:* () = A x(t) + ZF_, @A (t.x(6_ (s e0) + 'L (D s)f (x(6_(s.£0)) ) As.
To address this problem, we adopt a contemporary framework for periodicity
based on shift operators, which extends traditional periodic concepts to a
broader class of time scales. This modern shift-based perspective proves par-
ticularly advantageous for time scales where the additivity condition

tXTETfor gl €T ang for a fixed I = © may not hold—a limitation
that precludes the use of classical periodicity in non-uniform or non-additive
time domains. Notably, this generalized notion of periodicity is well-suited for

non-standard time scales such as the quantum time scale a* and the Cantor-

like union Ug-,[3%%.23%]u {“}, which do not admit a regular periodic
structure in the conventional sense. To effectively examine the periodic behav-
ior of such systems, particularly those involving g-difference dynamics, we
construct a technical apparatus capable of analyzing periodic solutions under
the shift-based setting. Central to this approach is the transformation of the
differential system into an equivalent integral form, a step that necessitates
consideration of the transition matrix associated with the homogeneous Flo-

quet-type system: yA4(t) = A(D)¥(t) This integral reformulation enables the
application of Krasnoselskii’s fixed point theorem, a foundational result in
nonlinear operator theory, which facilitates the demonstration of fixed-point
existence—and thereby confirms the presence of nontrivial periodic solutions
within the system.

Keywords: Fixed point, Floquet theory, Krasnoselskii, periodicity, Shift op-
erators, transition matrix.

Since earlier times, distinguished recognition has been taken into account regarding the theory
of neutral functional equations including delays. This is as a result of its vital promise of its ap-
plications in branches such as applied mathematics. There is very little scientific work done that
deals with general time scales, but many studies focus on neutral differential equations on regu-
lar time scales, including discrete and continuous cases. A time scale is defined as a nonempty
arbitrary closed subset of real numbers. The importance of the existence of periodic solutions is
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particularly relevant to biologists due to their application in population models. (Kaufmann &
Raffoul, 2006) were among the first to define the concept of periodic time scales, requiring the
additivity conditiont£ T €T for all t €T and for a fixed T = 0, However, this condition ex-
cludes many important time scales of interest to biologists and scientists, which (Kaufmann &
Raffoul, 2006) framework could not address. (Adivar, 2013) later introduced the concept of
shift periodic operators to overcome these difficulties. Adivar’s notion is extensively used in
our work to establish the existence of periodic solutions. Further discussions on periodic solu-
tions on regular time scales can be found in (Bodine, 2003; Bohner & Peterson, 2001; Raffoul,
2005). Additionally, studies by (Adivar & Koyuncuoglu, 2013; Henriquez et al., 2012) explore
the existence of periodic solutions for systems of delayed neutral functional equations using
Sadovskii and Krasnoselskii's fixed point theorems. Time scales have also been applied to lo-
gistic equations modeling population growth. A detailed model construction is provided by
(May, 1973). The equation:
x% = —a(t)x? + f(t)

this work was funded by The Scientific and Technological Research Council of Turkey. For the
case T = R and the derivation of the analogous time scale equation, see (DaCunha, 2004)

x* = [a(t) S (f(H)x)]x.
is derived for the case T =R, with analogous time-scale equations discussed by (DaCunha,
2004). Another application is a variant of the hematopoiesis model (Weng & Liang, 1995):

x2(t) = —a(t)x(t) + al(t) j B(s)e_,(t,s)As
0

where x(t) represents the number of red blood cells at time tt, and t, @, 5,y € C(T,R)are T-
periodic, with B being a non-negative integrable function. This extends (Wazewska-Czyzewska
& Lasota, 1976) red cell system on E,

Throughout this paper, familiarity with time-scale calculus is assumed. For further reading, see
(Bodine, 2003; Bohner & Peterson, 2001).

This investigation examines the foIIowmg equation:

x(t) = A{t}x{t]+z QA (t,x(5_(s, I:}]}+j (D{t $)f (x(8_(s, t}}})ﬂs

The methodology follows that of (Makhzoum et al., 2023), where the authors study the nonline-
ar neutral dynamic system:

x3(t) = A x(t) + Q2(t, x(6_(s5,1))) + G(t, x(t),x(6_(5,t))),t €T
by applying results from (Adivar & Koyuncuoglu, 2013; DaCunha, 2004), the system is ana-
lyzed, and using Krasnoselskii's fixed point theorem, the existence of a nonzero periodic solu-
tion under suitable conditions is established.

Preliminaries

This section introduces basic definitions and properties of shift operators, drawn from (Adivar,
2013; Adivar & Raffoul, 2010). The notation [&. 5]t to indicate the set [@.2] N'T shall be used.
The intervals [2.)r. (2 bz, and (a.b)t are defined as such

Definition 1: Shift Operators
Let T* be a nonempty subset of the time scale T, including a fixed number t; € T*. We define shift
operators & that map from [t,, o2); X T* to T* and satisfy the following properties:
1. Monotonicity: The functions & .are strictly increasing with respect to their second argu-
ments. If (T, t) and (Ty, 1) are in the domain D, then Ty < t < u implies
§,(T, t) < 6.(Tyu).
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2. Inverse Relationship: If (T,.1) and (T,, u) are in D_with T, < T,, then
§_(T.u) = 6_(T,.uw). Similarly, if (T,,1) and (T,, u) are in D with T, < T,, then
5+ (Tlr H’) = 5+ (T:,Iij.

3. Identity Property: If t € [t;,00)4, then (t,t,) € D, and 6. (t.t,) = t. Moreover, if
t € T*, then (t,. t) € Dy and 8, (¢, t) =t.

4, Inverse Operations: If (s,t) € D, then (5,8.(5,t)) € Dzand §z(5,6. (s, t)) =t

5. Commutativity: If (s, t) € D,and (w, 8. (s.t)) € D, then (s, d¢(u. t)) € D, and

S3(w,8,(5t)) = 6,(58z(ut)).
Given these properties, &is called the forward shift operator, and &_is called the backward shift
operator. Both operators are associated with the initial point t; on T".

Example 1: Shift Operators on Various Time Scales
The following table shows the shift operators & (s, t) on some time scales:

Time Scale T Initial Point g Subset T* §_(s.t) G, (s.t)
R 0 R t—s t+s
Z 0 E t—s t+s
q': u {0} 1 q: t/s st
N1/ 0 N1/2 Jiz —s? Jt2 s

Lemma 1: Properties of Shift Operators
Let d.be the shift operators associated with the initial point t;. Then we have the following proper-
ties:

1. S_(t,t) =t, forall t € [ty,00),.
2. §_(tyt) =tforallt € T,
3. If (s.t) € D, then §.(s,t) = uimplies 6_(s,u) = t. Conversely, if (s,u) € D_, then

d_(s,u) =t impliesd (st) = u.
8,.(t.6_(sty)) =38_(s,t) forall (s,t) € D with t = t,,.
§.(wt) =348, (t,w) forall (wt) € ([t o0)g X [ty 00)r) ND,.
G.(st) € [ty )7 forall (s.t) € D with t = t,.
8_(s.t) € [t,00) forall (s,t) € ([£5,0) 7 X [5,00)7) N D_.
If &, (s,") is A-differentiable in its second variable, then 6? (s) = 0.
§,(6_(u.5).6_(s5,v)) = 6_(wv) forall (s,v) € ([ty, )7 X [5,00)7) ND_and

© oo No oA

(w.s) € ([to, ) X [w,00)7) ND_,
10. If (s,t) € D_and 6_(s,t) = t,, thens = t.

Definition 2: Periodicity in Shifts

Let T be a time scale with shift operators & .associated with the initial point t; € T*. The time scale
T is said to be periodic in shifts &.if there exists a p € (t,, )4+ such that (p, t) € Dz for all

t € T*. The smallest such p is called the period of T.

Example 2: Periodic Time Scales
The following time scales are not additive periodic but are periodic in shifts &
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(V£ \P)? ift >0
1. T,={+n%n € I}, with §,(P,t) = { +P ift = 0,P=1,t, =0,
—(W—tE+VP)?* ift<o
2. T, = g% with§, (P,t) = Pt P =gq,t, = 1.
3. ']I':i = U:'zez [22?1!22?z+1:|, with £+(P,t] — Pilt,P =4, tl} =1.
|-ln|t.-'u'_—t||+ln|P.-'|'_—P||*|
q In g !
4. T, = {qun g >1,n€ E} U {0,1}, with ﬁi(F,!t) = [ln|t,-'|'_—t|l|r-|l-l;l|P.-'|'_—P||:|
1+I.j L
p=—"1_
1+gq

Corollary 1: Periodic Shifts
Let T be a time scale that is periodic in shifts 5 with period P. Then we have:
§.(P,a(t)) =a(8.(P.,t)) forall t eT*

Example 3: Non-Periodic Time Scale

The time scale T = (—o0,0] U [1, o0) cannot be periodic in shifts &.. If there were a p € (t,, ©0) 4
such that 6. (p.t) € T*, then the point §_(p.0) would be right scattered. However, §_(p.0) < 0,
which leads to a contradiction since every point less than 0 is right dense.

Definition 3: Periodic Function in Shifts
Let T be a P-periodic time scale in shifts. A real-valued function f defined on T* is periodic in
shifts &.,if there exists a T € [P, @)+~ such that:
(T.t) € D, and f(61(t)) = f(t) forall t €T
where §1(t) = 8.(T,t). The smallest such T is called the period of f.

Example 4: Periodic Function
Let T = E with initial point t; = 1. The function:
. In |t ) .
f(t) =sin (ln (HEJH ,tE R =R {0}

is 4-periodic in shifts & .since:

flt-4Y) ift=0 (ln |t] + 2In (1/2) ) . ( In |t] )

8. (4t)) = = = —— 742

f(6:(%:1)) { nz) 7 " \may T

fle/4Y)  ift<o
=f(t)

Definition 4: A-Periodic Function in Shifts
Let T be a P-periodic time scale in shifts. A real-valued function f defined on T* is A-periodic in
shifts if there exists a T € [P, oo )+ such that:

1. (T.t) € D .forall t € T".

2. The shifts 5 are A-differentiable with rd-continuous derivatives.

3. F(8T())65T (¢) = F(¢) forall t € T*, where §1(t) = 6,(T,t).
The smallest such T is called the period of f.

Example 5: A-Periodic Function
The function f(t) = % is A-periodic on g* with period T = gq.
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Theorem 1: Integral of A-Periodic Function
Let T be a time scale that is periodic in shifts §.with period P € (t,, )4, and let f be a A-
periodic function in shifts & with period T € [P, o). Suppose f € C,.;(T). Then:

L: f(s)hs = J-Silzr}f(s]&s.

d+leg)

Unified Floguet Theory with Respect to New Periodicity Concept
In this section, we list some results from [2] for further use.

Homogeneous Case
Consider the regressive time-varying linear dynamic initial value problem:
x4(t) = A(£)x(¢), x(t,) = x4

where 4: T* — R™*" is A-periodic in shifts with period T. If the time scale is additive periodic, then
§2(T,t) = 1, and A-periodicity in shifts becomes the same as periodicity in shifts.
The solution of the system can be indicated by the equality:

x(t) = P,(t tp)xg
where @, (t, t,), called the transition matrix for the system, is given by:

3 E Ty
D, (L 1) =I+J- ﬂtri)m:l"'J A(ry) A(T) ATy ATy + -
E-|:| r-|:| r-|:|

The matrix exponential e,4(t. t;) is not always identical to &,(t, t;) due to:

A(t)e (t, ty) = e (t. ty)A(L)
being true in any case. However, the equality:

A(D)P4(t tp) = 2,4(¢. ) A(D)
is seldom not. It is clear from the above that the condition e4(t, t,) = ®,(t, t,) holds only if the
matrix A satisfies:

e r
ﬁl[t]j A(r)Ar = j A(T)ATA(L)
for the following result, the set:
P(t,) = {51"3'(1", t) k=012 }
is defined, and the function:

mit)
o(t) = Z 5_(897(T.6),67 (T.t5)) + 6(t)
=1
where:
. (k)
m(t) = nnn{k EN:6.(T.ty) = t}
and:

0 ift € P(t,)
(&) = {—5_(;5'1’“'1*”(1";[,)) ift € P(z,)
For an additive periodic time scale, we always have @(t) =t — t;.
Theorem 2: Matrix Exponential Equation Solution

For a nonsingular, 7 x 1 constant matrix M, a solution R: T — C™*" of the matrix exponential
equation:
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ex(81(ty).ty) =M

. 1 M UTB(e(e))-8(s)] _
t] = lim s
[ ] Ep— cr(t) —5

where I is the n X n identity matrix and @ is as defined above.

can be given by:

Lemma 2: Unique Solution of Dynamic Matrix Initial Value Problem
Let T be a time scale and P € R(T*, R"*") be a A-periodic matrix-valued function in shifts with
period T. Then the solution of the dynamic matrix initial value problem:

Y&ftj =P(t)Y(1),Y(t,) =Y,
is unique up to a period T in shifts. That is:

Pp (t, tu) =, [5-{(‘:):5-{(‘:0))
forall t € T,

Corollary 2: Periodic Matrix Exponential
Let T be a time scale and P € R(T*, R"*") be a A-periodic matrix-valued function in shifts. Then:

ep(t to) = ep(81(2),61(ty))

Theorem 3: Floquet Decomposition
Let A be a matrix-valued function that is A-periodic in shifts with period T. The transition matrix
for A can be given in the form:

@,(t,T) = L(t)ez(t, T)L™ (1), forall t, 7T € T*
where R: T — C""" and L(t) € L, (T*,R"*") are both periodic in shifts with period T and inverti-
ble.

Theorem 4: Periodic Solution Existence
There exists an initial state x(t,) = x, # 0 such that the solution of the homogeneous system is T-
periodic in shifts if and only if one of the eigenvalues of the matrix:

Er (51 (to)ity) = @, (5-{ (to)itg)

Nonhomogeneous Case

Consider the nonhomogeneous regressive nonautonomous linear dynamic initial value problem:
(1) = A(£)x(t) + F(t),x(t,) = x,

where 4: T* = R"™" and F € C,,(T*, R") n R(T*,R"). We suppose both 4 and F are A-periodic

in shifts with period T,

Theorem 5: Periodic Solution of Nonhomogeneous System
For any initial point t; € T* and for any function F that is A-periodic in shifts with period T, there
exists an initial state x(t,) = x, such that the solution of the nonhomogeneous system is T-periodic
in shifts if and only if there does not exist a nonzero z(t,) = z, and t, € T* such that the T-
periodic homogeneous initial value problem:

z8(t) = A(t)z(t), z(t,) = z,
has a solution that is T-periodic in shifts.

For more details about Floguet theory based on the new periodicity concept on time scales, we refer
readers to (Adivar & Koyuncuoglu, 2013).
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Main Result

Consider a time scale T that is periodic under shift operators with period T = 0. Denote by P the
space of all n-dimensional vector functions x(t) defined on T, which are periodic under shifts with
period T'. This space, equipped with the norm

X|| = max x(t)|,
Il = max ()]
forms a Banach space. Here, | - | denotes the standard Euclidean norm on R”,
For an n X n matrix-valued function A(t) = [a,;(t)], we define its norm as follows:

lAll=sup |A(2)],

teleg.only

where the matrix norm [A(t}[ is given by

|A(t)| = maxz |la;(1)]

1<i=n

Now, consider the delay dynamic system defined on T :
p

X(0) =A@®) + ) Q(ExE () + |

13

D(t,5)f(x(87(5,1)))As. (1)

We assume that the coefficient matrix A belongs to the class of right-dense continuous functions
C,(T*,R"""), and the mappings @;, D, and f are also right-dense continuous.
We impose the following structural conditions:
(a) Matrix Function Periodicity:
A(S7 (D)) (65)4(t) = A(r), VLt e T".

(b) Functional Invariance of

Q:Q (8£(1).x(67 (5,67 (1)) = Q(£.x(67 (s, 1)).
(c) Integral Kernel Compatibility:

6 (87(6),x(87().x(67(5,65(1)))) - (69)2(0) = 6(t.x(£),x(6 (s, 1))).

We also assume that there exists some t € T* such that

Q(t,0) + G(t,0,0) # 0. (2)
Moreover, the associated homogeneous system
z%(t) = A(D)z(t) (3)

is non-critical, meaning that the only periodic solution in shifts §7is the trivial one.

Lemma 3

Assume that conditions (a)-(b) and inequality (2) are satisfied. Then, a function x(t) € Py is a solu-
tion of system (1) with initial condition x(t,) = x, if and only if it satisfies the integral representa-
tion:

x(t) = Z @ [:t,x[:’i'_ (s: tjj) + 'i’A(t: to] (q’;l(a-{ (tu-)rtu-) - fj_l

x [ | O it

Proof

Let x(t)e Pr denote a solution of (L) such that X(fa) = Xg_ and let €a(t to) represent the state tran-
sition matrix associated with system (3). The necessity component of the proof follows directly

A(IL)Z Q(wx(6_(su)))+ J-_u (D(u, s)f(x(8_(s, uj))) As laul, "
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from established properties of such systems. To address the sufficiency condition, we proceed by
utilizing equation (1), which allows us to derive the required relationship

[x[tj - Z Qi(t,x(8_(s, tj))]

i=1
P

= A(t) (x(rJ - Qtx(6 (s, t)))) +A(tjz Q:(tx(8_(s1))
-I-J_ (D(t,s)
since &, (t,t, )@ (t, t,) = I, we have
0= (0,(t,t) @7 (t,1,))" = 24 (t.tg) 25 (1, 1) + @a(0(1),1) (@72 (115))" =

(A(£) 2, (8 t)) @7 (8, 8,) + @4 (ot
that is,

(@31 (5t))" = —@3 (o (t), t)A(D). (5)
If x(t) is a solution to (1) with the condition x(t,) = x,, then

; o A ; o
{d{,{ Yeen (x{r) - Z QI.I::. x5 _(s, r:.ju])} = (d:; Y, rnj:]ﬁ (x('tj - Z QI.(r.x('c?_('s-. t] jj)
[= =1

=1
. . 4
+e7H o).ty (.r('tj - z Qi(t.x(8_(s, rjj])

=1

/ P
= —& 7o), tpA(L) (x:'tj - Z @i, x(6_(s. tjj])

=1L

' .ﬂ
+&7 o)ty [.ﬂl('i‘j (.rl:'t:l - Z QI.I:E. xé_(s, rjj]j

=1

a t
+A('tjz @it x(6_(s.0))) + +f (D('r. sjf{x('o‘_('s.rjjj].ﬁs ]
i=1 =

p £
= 7Y a(t). ty) [A:'rj.z Qi(t. x(6_(s.8))) ++ j (Dtr. $)f (x(8_(5.1))) s l
i=1 =

By integrating the last equality from t; to t, we arrive at

x(t) = Z Q; [t,x(é'_ (s, t]]) + @40t t,) (xa - Z Q; [th(&— [s,tu,]]))
i=1 : i=1

A(ujz Q. [u,x[f':?_(s,u)]) N J-

i
i=1 -

+a,(et) "o (o, t)

(D (u, s)f[:x (6_(s uj))) As ] At
(6)

Since x(8(t,)) = x(ty) = x,,(6) implies
x(ty) — E:;l Q; [:to:x(ﬁ— (s, to)j) =%, (541:(%),%) (xu- - Z:Ll Q; (tmx(ﬁ_ (s,to))))
+2,(610),t) [ 27 (o), t) [AG T2, 0 (wx(5-(sw)) - (D)

+ 1 (D) ((5_(sw)))as] du
substituting (7) into (6) yields
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x(t) =X, Q(tx(6_(st))+ @, (tt,)(1 - cbﬂ[ﬁf[tu,] t)) " @, (67(t,),t,)
X f:z*"t”) @ (o(u),t,) [A(TL)Z?Zl Q(u, x(8_(s.1) )-I- [ ( (u,8)f(x (8_(s, uj)]) As] }&u (8)
+0,(tt,) f:n & (o(u),t,) [ﬁl(uj I, 0 [u x(8_(sw))+ [° ( (u,5)f (x(6_ (s,u)j))ﬂs }&u.
In order to show that (8) is equivalent to (4) we use:
-1 _ -1
(- 9,6t te)) = (2,870, 1) (8 (6X(ty) 1) - 1)
= ('i’;l[ﬂ[tn):tn] - fJ'l'i’El(ﬁI(th,tn)
to get

= Z Q; [t,xté‘_ (s tjj) T, (t, tl}j (‘?’_Jliﬁf (tl}j!tl}j - fj_i‘?’ﬂ__l (‘ﬂ- (tﬁj!tﬁj¢A (‘F-{(tujrtuj

g4 (5o
XJ. & o (u).t,)
E,

o

A(H)ZQE[TL,X(&_(S,M))) J. (D(u s]f[x su)])) s ]ﬁlu

t P u
+,(t. t,) J & (o (u), ty) |A(w) Z Q:(w.x(6_(s))) + J [D(u, s) f(x(6_(s, uj))) As ]ﬁlu,
ty i1 —oa
Furthermore, we have the equality that follows:

P

%(8) Z )+, (6, 8,) (#7167 (0),£g) = 1)

=1

500z,
[ e
o

o

X

A(u) Z Q. [u,x(n’i_ (s,uj)) + -f (D (u, sjf[x (8_(s, uj))) As ]ﬂu
ERGIOIS] L EORS

_Jr 7 (a(u), t,) A(ujz Q:(wx(6_(su)) + f‘ (D (u,5)f(x (6 (s,ujj))ﬂs du]

thus, x(t) can be stated as follows
P

A(u) Z Q. [u,x(ﬁ_ (s,uj)) + J._u (D (u, sjf(x(ﬁ_(s,uj))) As ].du

:Z Q; [MEﬁ_Es,t)JH b, (1)) (85 (81 (tp) 1) — D)7

ACA)
[ e
t

H7 @) | 4ot

tp

X

A(uqui [u,x(ﬁ_(s,tj))-l—f (D(t,s)f[x[ﬁ_(s,t)))]&s] ]ﬁlu
A(H)ZQi[t,x(ﬁ_(s,t)))-l-f (D(t,sjf[x(ﬁ_(s,tj)))ﬂs] ].du].

If we let u = 8T (1), we get



Al-Mukhtar Journal of Basic Sciences 23 (3): 124-138, 2025 page 133of 15

(1) 2 )+ a(6:80) (857 (0T (60) 1) = )
55e,) u
X J &, (o(u), t,) A[:IL]ZQE u,x(8_(s, IL]))-FJ (D[u s)f(x(6_(s, u]))) As |Au
L 81(0) 8T a (@) T(h
+471 61, 1) I J,,, #eem Z@E "(@)x(6-,87()))

+ U’j [D(ﬂ,S]f(x(ﬁ_(s,ﬁf(ﬂ))))ﬂs lafr(ﬂ)ﬂli”

And
P

x(t) =ZQe(t,xE5_(S,tJ)) +¢A(trtu)(¢;1_1(5ﬂtu):tuj _”_1

i=1

AN
J. &, (o(u),t,) |A
t

340

X

(u)Zoz- (62(8_(s,8)))+ f r (05 (x(6_(s.£))) ) 5] ]au

+&71 (610t t, alribjlaﬁfﬂ,[,ﬁlﬂ A x(6_(s, -I-iDﬂ,s x(0_(s,)) ) JAs |Au].
( (r)r)Lw (al87(@).t,) (J;Q( (5-(s.)) L( (6,5)f (x(5_(5,2)) ] ]
Since

1 (81(t0) ta) s (o(8I(0)),ty) = B (61(t0) te) E1 (81 (a(1h)), tn)
we have

P, (0, 05 (20) )24 (80, Z(0(1))) = 24 (80,65 (t0)) s (81 (ko). 0 (1))
= ‘;’A (tI}: J[ﬂ’])
Substituting the final equality into the previous expression yields the following result:
2]

x(t) = Z @ [tx{ﬁ_ (Srt]j) + 'i’A[t: tu) (¢£1(51(ta):tuj - 1j_1

i=1

55(1) ? u
X [J &7 a(u), ty) |A(w) Z Q:(u, x(6_(sw))) + f_ (D (u,s)f(x(6_(s, u])}) ﬁs] e’_"n.u] ,

as required. We now present Krasnoselskii’s fixed point theorem, which will serve as a key tool in
establishing the existence of a periodic solution

Theorem 6 (Krasnoselskii)
Let M be a closed convex nonempty subset of a Banach space (B. || - ||). Suppose that B and C
maps M into B such that

1. x,y € Mimplies Bx + Cy e M,
2. C is compact and continuous.
3. B is a contraction mapping.

Then there exists z € M with z = Bz + Cz.

In preparation for the next result define the mapping H by
(Ho)(t) = (Bo)(t) + (Co)(t)

where
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(Bo)(®):= ) Q(t.x(0_ (1))

and
(Co)(t) =D4(t, tu)(¢£1(5£(tu)rtuj -1 %

8¢ — u
[fr +(2) & (o(u), t,) [}1 (W) 2, @ (wx(6_(su)))+ [7 (D(u, s)F(x(8_(s, u]))) As ] ﬂu] (11)
Lemma 4
Assume that conditions (a)—(b) and (2) are satisfied. Define the operator C as in Equation (11).

Suppose further that there exist positive constantsE,, E,, E;, and N such that the following ine-
qualities or properties hold:

P 10:(tx) = Q,(63)| < Eyllx =y Il If () — FO)| £ Eallx —y Il [ ID(t,u) |du < By (12)

and
r(‘ﬁ-{(tuj - tu) (||'4||51 + 5253) = N(13)
hold, then
IE 01l < r(8T(te) — o) [[ACI ., @ x(6_(s))) +
1 L. (PC9)F((5-(s)0))as|

where
= LR ( ) 19a(0(0, ) (93181 (20, t0) = DI (e, rﬁjl—l). 14)
te|rg. 8L legh], Nus[e 8L led]
2. C is continuous and compact.

Proof

Define the operator C as given in Equation (11). It can then be expressed in the following
equivalent form

(Co)(t) = A(trto)('ﬁil(ﬁf(tﬁjrta)_I)_l

3]
X [J. &7 (a(u).ty)

+ J_“ (D(u, s)f(x(8_(s, uj)))ﬂs l&ul

Since (Ce)(t) € P+, we have

A(u) Z Q,(w, x(6_(s,u)))

b

a+|r}
I (Co)(. r a e l J [@4(a(w), t) (@71 (8 (). t5) — DR (2, 85)] ™ [Z Qi(lt,x(ﬁ_(&ltjj)

i=1

Au

. f (o, s)f[ﬂﬁ-(sr”))))ﬁs

< s (s, o) @76 )10 ~ DR ol
L T uEg

t.d,(t)

80t
ITIH J J
rna+'rn

N - |
5r(é‘_{(tuj—tc,)HA(.]ZQE(.,:([:’J"_[S,.]))-I-J (D(.,s)f(x(ﬁ_(s,.))))ﬂs I,
I - I

i=1

Au

A(u) ZQE u, x( suj)) J ( (u,s)f[x(ﬁ_(s,uj))]ﬂs
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This concludes the proof of part (i). To establish the continuity of the operator €, suppose that
¢ and v are elements of PGiven any £ = 0, there exists a § = 0 such that

& (eg)
I (Ce)() —(CP)() I = FJ- [NANE, Il ¢ — Il +H(E2E3) Il @ — 1 l]Au

<r(6I(ty) —ta)NANE +EE)le—yll<e
By selecting & = /N, we establish the continuity of the operator C
To demonstrate that C is compact, we define the set D: = {¢ € P;:||¢|| < R}, where R >0 is a
fixed constant. Consider a sequence {¢, }, of T-periodic functions in shifts such that {¢,} € D.
Furthermore, using estimates (12) and (13), we obtain the following bounds

D10l = ) 1@(6) — 0t,0) + 0, (5.0)

< ) 1Q(t.x) — @ (t.0)| + |Q;(t, 0)]

el
i=1

< Eyllxll +a

|F )| = 1(f(x) — F(0) + F(0))]
= 1f(x) = FOO) + 17 (0)]
< Ellx|l + B
where @ = |Q,(t,0)|and 8 = |f(0)|. If we consider |[(C¢,)()- I, we have
1(C,) (Il = r(81(t,) — t)IAII(E, g, ]l + @) + E;E5ll ¢, Il + B]
where 7 is as in (14). Since {¢,, } € D, we obtain I (C¢,) (). | = L, where
L=v(81(ty) — to)UIAIE, @, |l + @) + E,E5 I, Il + B].
We now compute the delta derivative(Ce, )*(t) and demonstrate that the sequence {C¢,} is
uniformly bounded.

and

o

4. olwen6 )+ [ @ws

=1

£l (e
(Co )88 = @20t £)( @7 (67 (5), 1) — D=2 x [ o (o(u). ty)
L

AGIED ). (67 9a(6- (. 67))

=1

r
+b, (a(t), to (D7 HET (), £,) — D71 x| @7 e (5T (£)). £5) +J (D(u, 5)

o

r
—a o (t). t) A{t]z Q,-{t.:pﬂ(ﬁ_{s.t]]}+[ (D{t.s]f{qhﬂiﬁ_{s.t]]})ﬂs].

: -

=1

This along with (a-c) and

'i}z?[:t: t-I]l:] = A[t]'i)fl[:tr tl}):
implies
(Co, () =AENCe Nt)+ @, (a(), g, 2T ET (k) 1) — D1

il t
x [ (@7 e (aT (). t5) — BT e (£) £5)) [A(E) Z 9t @, (6_(s.60)) + f (D@ ) f(enl6_(s.t0))) As ]] .
=L -

Substituting
e o (81().ty) — 27 (o(t),ty) = (221 (61(tn). ta) — D2Z (o (1), t,)

in (15), we obtain

(Ce,)2(t) = A(t)(Ce,) (8) + A(D) Z Q:(t. e, (5_(s. 1)) + f_ (D(t. ) f(@.(6_(5.1)))) As
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Therefore, the sequence (C¢, )*(t)is bounded. This implies that {C¢, } is not only uniformly
bounded but also equicontinuous. Consequently, by the Arzela—Ascoli theorem, the im-
age C(D) is relatively compact, and hence compact in the space Pr

Lemma 5

Let the operator B be defined as in Equation (10). If condition (12) holds with E;<(<I, then B is a
contraction mapping.

Proof

Assume that B is given by Equation (10). Then, for any ¢, € Pz, we have the following estimate:
1B = ENOI=_ mex | 1(B0)@) ~ (B¥)(0)

te[

te[eq 8L (e

= max ]HZ (2. 0(8-(s 1)) — @ (t.w(6_(s 1))

= Elle—vll

< {lle—vll
This shows B is a contraction mapping with contraction constant ¢.

Theorem 7
Suppose that all the hypotheses of Lemma 2.1 are satisfied. Let r be defined as in Equation (14),
and set &: = [|Q,(t,0)[l and B: = || f(0)]]. Let J = 0 be a constant satisfying
EJ+ta+ T"(S; (to) —to)[IAll(a + EJ) + (E,E3)] + Bl = .
Then, Equation (1) admits at least one solution in the set
M:={¢ € Pr:|l¢ll = J}.
Proof. From Lemma 4, we establish that:
o The operator C is both continuous and compact on Py.
o The operator B acts as a contraction mapping on E.
To invoke Krasnoselskii's fixed point theorem, we must verify the bound || By + C¢|| < J for all
¢, € M. For arbitrary ¢, € M, we derive:
1B(0) + CH(0) Il <Ey||9]l +

+r [ﬂ (to)

+(E.E )l + Bll(e + Eyllgll)
<EJ+ta
+r('5-r+ (tu) - tu) (1Al (e + EJ)
+(EyE3)] + F]
=/
This demonstrates || By + C¢|| = J uniformly for all ¢,y € M. Krasnoselskii's theorem guarantees
existence of z € M satisfying:
z=FBz+4+C=z
This fixed point = represents a completing the proof.

Theorem 8
In addition to the assumptions of Lemma 2.1, suppose further that

E, + r(d‘?; (tu) - tuj(||ﬂ~||£r1 + E; Ea) < 1L
Then, Equation (1) possesses a unique solution that is T-periodic in shifts §7.
Proof. Define the operator H = E + C. Then,
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IH¢ — Hyll < [E, + r(67 (t,) — to)(IAIIE, + E,E3)]ll¢ — vl
which is a strict contraction. Hence, by the Banach fixed point theorem, H has a unique fixed point
in Pr.
. The proof is complete. The following result is a generalization of (Raffoul, 2005).

Corollary 3

Assume that conditions (a)-(c) and (2) hold. Let a: = [|@;(t,0)Il and B: = || £(0)||. Suppose that
there exist positive constants Ej, E5, E5 such that certain bounds or Lipschitz-type conditions are
satisfied. Then, under these assumptions, the existence of a periodic solution can be established.

7 t
Z 1Q: (&%) — Qi(&. )| = Eqllx — ¥l If (%) = F()| = Esllx — _1_,=||,f |D(t,w)|Au < Ej

and
Ej +a +r(81(t) — ) [IIAl (e + E;N) + (E3E3 ) + Bl <]
holds for all x, v, z,w € M. Then (1) has a solution in M. Moreover, if
Ef + r(85(ty) — to) (IAIlES + ESE5) < 1
then the solution in M is unique.

e 4
> 1063 — 063 = Efllx—yil 176 — £ < Eslle =, | 1D(e.0) 1w = 3
i=1 o

and
Ey] +a+r(61(ty) — to)l|All(e + E3)) + (EZE) + Bl =]
holds for all %, 3. z.w & M_Then (1) has a solution in M. Moreover, if
E; +r(61(ty) — to)(JAI|E] + EZEZ) < 1
then the solution in M is unique.

CONCLUSION

This study investigated the existence of periodic solutions for neutral nonlinear dynamic systems
with delay on time scales by introducing a novel periodicity framework based on shift operators. By
generalizing the concept of periodicity beyond the traditional additive setting, this work provides a
more flexible foundation for analyzing a broader class of dynamic models, especially those arising
in biological and applied sciences. We redefined periodicity using shift operators, allowing the
treatment of dynamic equations on time scales that do not conform to classical additive structures.
This approach overcomes the limitations of earlier methodologies and expands the analytical reach
to more general time domains. Utilizing Krasnoselskii’s fixed point theorem in conjunction with
Floquet theory, we established sufficient conditions for the existence of periodic solutions. The
formulation relies on integral representations and operator-theoretic techniques that enable rigorous
handling of systems with delay. The results have direct relevance to delayed population dynamics
and hematopoiesis models, providing effective tools to characterize and predict periodic behaviors
in systems with memory and feedback mechanisms. In summary, this study contributes to the deep-
er understanding of periodicity in dynamic systems on general time scales and sets the stage for fu-
ture work on hybrid, discrete-continuous, and other non-standard systems. The framework devel-
oped has the potential to enhance modeling accuracy in disciplines such as biology, engineering,
and economics, where periodic phenomena play a critical role.
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