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INTRODUCTION

Natural radioactivity originates from terrestrial radioactivity and cosmic radiation. Humans primari-
ly experience two types of exposure: internal exposure from inhaled radon-222 (??Rn) gas and its
decay products, and external exposure from gamma rays emitted by terrestrial radionuclides like
potassium—40 (40K) and the uranium (?38U) and thorium (?*2Th) series (Sivakumar et al., 2014).
Recent investigations in regions with high natural background radiation have raised awareness of
risk assessment due to inhabitants' exposures to long-term low-level radiation (Akpanowo et al.,
2020). These high radiation levels often stem from concentrated radio nuclides in granite rocks,
soils, sediments, and other geological materials frequently used in construction and infrastructure
(Abbasi, 2013). To accurately assess human exposure to natural radiation sources, it's crucial to un-
derstand public dosage limits and measure ambient background radiation levels from the ground,
air, water, food, and within buildings (Kovacs et al., 2017). Consequently, information about the

*The Author(s) 2025.* This article is distributed under the terms of the *Creative Commons Attribution-NonCommercial 4.0 Interna-
tional License* ([http://creativecommons.org/licenses/by-nc/4.0/ ]( http://creativecommons.org/licenses/by-nc/4.0/ )), which permits
unrestricted use, distribution, and reproduction in any medium, *for non-commercial purposes only*, provided you give appropriate
credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.



https://doi.org/10.54172/qk3sra74
http://creativecommons.org/licenses/by-nc/4.0/
http://creativecommons.org/licenses/by-nc/4.0/
mailto:jemila.mussa@omu.edu.ly
https://crossmark.crossref.org/dialog/?doi=/10.54172/qk3sra74/&amp;domain=pdf&amp;date_stamp=2008-08-14

Al-Mukhtar Journal of Sciences 23 (2): 60-67, 2025 page6l of8

concentrations of these radio nuclides in the environment is fundamental for estimating the level of
public exposure to ionizing radiations (Lee et al., 2019). Currently, there is limited information
available concerning the radioactive levels of building materials in Libya. Therefore, determining
the activity concentrations of these materials is necessary to evaluate potential radiological risks to
building inhabitants (Hanfi et al., 2022). This study aims to determine the natural radioactivity in
granite samples, commonly used as building materials in Al-Bayda, Libya, by utilizing a gamma
spectrometer to measure the activity concentrations of 22°Ra, 238U, 232Th, and “°K.

MATERIALS AND METHODS

Sampling Collected and Preparation

In this study, gamma-ray spectroscopy with a sodium iodide thallium-doped Nal (TI) detector with
a "1.5x1.5" crystal, model No. PM-9266B, serial No. WA00012638. The detector was encased
within a lead shield of sufficient thickness to minimize background radiation contributions from
cosmic rays and ambient laboratory sources. Gamma spectra acquisition and subsequent analysis
were performed utilizing the Cassy Lab software system. The activity concentrations of the 23U
and 2%2Th decay series and “°K were determined in 13 granite samples imported from India, which
are commonly used as building materials and decorative materials in the city of Al-Beida, Libya.
The solid samples were pulverized into a fine powder and passed through a standard 2 mm sieve,
and then the samples were dried at a temperature of 110°C for two hours in an oven used to remove
any moisture and achieve homogeneity. Before being analyzed using a gamma spectrometer, the
samples were weighed and placed in 250 cm? polyethylene containers, weighed, and stored for
more than 30 days to reach equilibrium in the radioactivity between 238U and 22Th and their corre-
sponding daughters. In order to ensure that the daughter remains in the sample and that the radon
gas is contained inside the volume, this step is necessary. For gamma analysis, these samples were
placed directly above the detector. The counting time for each sample was 7200 seconds. Figures 1)
show gamma ray spectroscopy.

Figure: (1). The gamma spectroscopy system.

Calculations of Radioactivity Concentration Level

Concentration of activity (A) The rate at which an isotope decays is known as the radioactivity of a
radioactive source. The quantity of radiation produced over time can be thought of as "radioactivi-
ty. Gamma spectroscopy measurements of each peak were used to determine the radioactivity lev-
els of the different radionuclides that had been identified. The formula below was used to determine
the associated activity (A) (Orosun et al., 2020).
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(1)
Where: CPS: the energy-related net counts per second.

I: is the probability of gamma ray emission at the energy peak, &: the absolute efficiency at pho-
topeak energy, M: the sample's mass in kg, T: is the sample spectrum collection time (sec).

Calculations of Radiological Parameters

Radium Equivalent

The equivalent radioactivity, the radiation index evaluates a material's suitability for construction
using the assumption that the gamma dose rates produced by 370 Bgkg™of 2%°Ra, 259 Bq kg-1 of
232Th, and 4810 Bq kg-1 of “°K are equal. To determine the radium equivalent activity, use the for-
mula:

Raeq=Ara + ( 1.43 An)+ (0.077 Ax) (2

Where: Ara, ATh, and Ax, represent the specific activity concentrations of 2°Ra, 2*2Th, and “°K, for
safe use building materials should not exceed 370 Bq kg-1 (Agora and Hashim, 2015; Ahmed Etal.
,2022).

Gamma Radiation Level Index

Gamma radiation index I, is used to estimate the level of gamma radiation hazard associated with
the natural radionuclides in building materials. It is identifying materials that may be hazardous to
health when used for the construction of buildings. 1, calculated using an equation based on
(Mahmoud et al., 2020):

A A A
| = 2Fa Th e (3)
¥ 150 100 1500

Alpha Index
There is an association between alpha particle indices and radon inhalation from construction mate-
rials. The index of alpha is calculated using the relation (El-Feky et al., 2022):
— ARa_
& ag0 (4)
Internal Hazard Index

The internal radiation hazard index (Hin) provides an estimate of radon exposure and its daughter
product, which is defined as (Alaboodi et al., 2020).

Cra | CTh Cy
L =242 4L 2 ] 5
i 185 259 + 4810 — ( :]

The External Hazard Index Hex
The external hazard index Hexis the assessment of the hazard of y-radiation. The Hex values are de-
tected via the following formula (Najam et al., 2015):
— %Ra (A1 | 4K
Hex = 3707250 T2ar0 = 1 (6)
Gamma Absorbed Dose Rate

The absorbed dose rate Dr (nGyh?) due to terrestrial gamma rays at 1 m above the
ground according to the activity concentrations of 2?°Ra, 2%2Th, and “°K in the granite samples, was
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determined using the equation (Mansor et al., 2020):
Dr =0.462 Ar.t 0.604 An + 0.042 A (7

The Annual Effective Dose Rate

In order to establish the annual effective dose rate in the air, the conversion coefficient between the
absorbed dose in the air and the effective dose received by an adult must be considered. This value
for environmental exposure to gamma rays with moderate energy is 0.7 SvGy?, according to UN-
SCEAR(2000). The occupancy factor for indoor measurements is about 0.8, as is the case for
building materials, and the indoor annual effective dose equation becomes:

Ein (MSuy™!) = De(nGyh?) x 8760 (hy!) x 0.8 x 0.7 (SuGy?) x 10® (8)

There is about a 0.2 outdoor occupancy factor. Equation (9) gives the outdoor annual effective
dose equivalent (Darwish et al., 2015)

Eout(mSvy?) =Dr (nGyh-1) x 8760 (hy!) x0.2 x0.7 (SvGy') x 106 9)

Excess Lifetime Cancer Risk (ELCR)
A person's risk of acquiring cancer increases with radiation exposure during their lifetime. ELCR
was determined from the formula below :

ELCR =EoX DL X RF (10)
Where, according to the ICRP (2012), RF is a constant risk factor that is distributed to the commu-
nity at a rate of 0.05 Sv (Taskin et al., 2009), DL is the life expectancy (70 years), and Eout is the
outdoor annual effective dose equivalent (Yalcin et al., 2020).

RESULTS

The specific activity concentration values are recorded in Table (1). The values for radionuclides
varied from 40.96+1.47 to 205.48+0.13, 52.25+1.53 to 182.65+2.36, 49.72+1.17 to 144.32+1.51,
and 49.41+1.18 to 271.75+2.74 Bq kg™ for 2°Ra, 228U, 2%2Th, and “°K, respectively, with an aver-
age of 119.88+1.61, 121.94+2.49, 97.17+1.85, and 169.97+2.46 Bq kg™, respectively, as shown in
Figure (2).

Table (1):The specific activity concentrations (Bgkg™) of the radio nuclides in the investigated samples.

Sample No. 25Ra 238y 232Th 40K
Gl 100.98+1.74 86.00+1.78 116.46+1.36 126.27+1.87
G2 40.96+1.47 52.25+1.53 55.39+1.22 111.17+1.76
G3 117.93+1.80 116.95+1.78 69.34+1.13 131.76+1.91
G4 134.17+1.86 182.65+2.36 63.93+1.05 57.64+1.27
G5 144.05£1.90 94.22+1.88 127.29+£1.56 52.15+1.21
G6 136.99+1.88 127.98+2.06 112.78+1.47 82.35+£1.52
G7 165.94+1.98 156.7+£2.27 65.98+1.14 49.41+1.18
G8 127.81+1.84 119.69+2.04 90.61+1.32 116.66+1.80
G9 60.02+1.56 72.87+1.71 72.51+1.83 111.17+1.76
G10 135.58+1.44 160.31+1.38 144.32+1.51 68.62+0.71
Gl1 205.48+0.13 182.24+9.94 100.44+7.39 223.71+£12.39
G12 122.87+1.82 99.36+1.99 105.30£1.92 271.75x2.74
G13 65.67+1.59 94.32+1.68 49.72+1.17 126.27+1.87
Average 119.88+1.61 121.94+2.49 97.17£1.85 169.97+2.46

P.L.
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Figure (2). The specific activity concentrations of granite samples.
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The average values of activity concentrations of radionuclides in the samples under study exceeded
the globally recommended limit values of 50, 50, and 50 Bgkg™ for radionuclides ?*°Ra, 2%U, and
232Th, respectively (UNSCEAR, 2010). However, the calculated mean value for “°K was lower than
the 500 Bgkg™ worldwide mean (UNSCEAR, 2010). The radiological hazards caused by exposure
due to radionuclides were presented in Tables (2).

Tables (2): The radiological hazard parameters in investigation samples.

Sample Hazard indices Dr Ein Eout ELCR
No. R » - ™ ™ (nGy.h1)  (msv.yl)  (msv.y?) %103
Gl 320.08 112 0.57 1.17 0.86 142.24 0.70 0.17 0.57
G2 128.72 0.45 0.20 0.46 0.35 57.04 0.27 0.06 0.23
G3 256.87 0.89 0.59 1.01 0.69 114.42 0.56 0.14 0.46
G4 284.98 0.98 0.67 1.13 0.77 127.12 0.62 0.16 0.51
G5 309.21 1.07 0.59 1.16 0.83 136.36 0.67 0.17 0.55
G6 309.04 1.06 0.68 1.20 0.83 137.29 0.67 0.17 0.55
G7 308.86 1.07 0.83 1.28 0.83 139.14 0.68 0.17 0.56
G8 266.37 0.92 0.64 1.06 0.72 118.68 0.58 0.14 0.48
G9 192.05 0.67 0.40 0.73 0.51 85.33 0.42 0.10 0.34
G10 359.50 1.24 0.68 1.34 0.97 159.38 0.78 0.19 0.64
Gl1 338.09 117 0.89 1.39 0.91 151.94 0.74 0.19 0.61
G12 294.37 1.03 0.61 1.13 0.79 131.78 0.65 0.16 0.53
G13 146.49 0.51 0.33 0.57 0.40 117.74 0.58 0.14 0.48

Average  269.43 0.93 0.59 1.04 0.72 124.49 0.60 0.13 0.50
P.L 370 1 1 1 1 84 1 0.07 0.29

The results of the Raeq values calculated for the granite samples ranged from 128.72 to 359.50 Bq
kg™, with an average value of 269.43 Bgkg™. The obtained values in this study are lower than the
world-recommended value of 370 Bgkg™ (UNSCEAR, 2010). The values obtained of 1, for sam-
ples ranged from 0.45 to 1.24, with an average value of 0.93. These results indicate that the gamma
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radiation index exceeded the recommended value of 1 (UNSCEAR, 2010) for most samples. For Iq,
the result ranged from 0.20 to 0.89 with an average value of 0.59. Consequently, the value of the
internal hazard index ranged from 0.46 to 1.39, with an average value of 1.04. The values of most
samples exceed the recommended limit of 1 (UNSCEAR, 2010), and some individual samples also
showed values above this limit. Also, the values of the external hazard index ranged from 0.35 to
0.97, with an average value of 0.72. The results showed that Hex values for all studied samples are
lower than unity (UNSCEAR, 2010). On the other hand, the absorbed dose rate ranges from 57.04
to 159.38 nGyh™, but the average absorbed dose rate value for granite samples was 124.49 nGyh™.
This average is higher than the world-recommended value of 84 nGyh™ (UNSCEAR, 2010), with
the exception of sample G2, which showed a lower value. The values of the indoor annual effective
dose varied from 0.27 to 0.78 mSvy™t, with an average value of 0.60 mSv y~*. The average values
for all measured samples were less than the 1 mSvy™ limit (UNSCEAR, 2017, and Muyiwa et al.,
2020). The outdoor annual effective dose ranged from 0.06 to 0.19 mSvy~t with an average value of
0.13 mSvy™. These values of Eout are higher than the recommended value of 0.07 mSvy™ (UN-
SCEAR, 2010). The recorded values for ELCR range from 0.23 to 0.64 with an average value of
0.50. For all samples, these values were higher than the recommended world value of 0.29 x
1073 (UNSCEAR, 2010). The current study will be compared with some previous studies, as shown
in Tables (3)

Table (3): Comparison of radiological hazard indices in present work with those in other countries of the world.

Hazard index Annual effective
Dr dose (mSvy) ELCR Ref.

Raeq | | H H (nGyh™?) E £ %1073
(Rﬁl(ﬂ'l\ Y a n ex Iin out
251.87 0.87 048 0.94 0.67 111.62 0.54 0.13 0.45 Present work
1016.92  8.29 - 3.03 275 534.42 - - - (Sroor, 2013)

487 1.87 i i 12 261 i ) i (Obaid et al., 2015)

176 0.67 0.19 0.58 0.48 160 - - - (Imani et al., 2021)

CONCLUSIONS

This study systematically assessed the natural radioactivity levels in granite samples utilized as
building materials in Al-Beida, Libya. The investigation revealed that while “°K activity concentra-
tions were below globally recommended values, the concentrations of 2?°Ra, 228U, and #2Th ex-
ceeded established acceptable limits. Regarding radiological hazard parameters, most samples ex-
hibited higher than world-average recommended values for the gamma radiation index (1,), internal
hazard index (Hin), absorbed dose rate, and lifetime cancer risk. Consequently, the outdoor annual
effective doses for all studied granite samples were also higher than the world-recommended value.
These results are crucial for enhancing the database on natural radioactivity in Libyan construction
materials, which will facilitate further risk assessment and contribute to awareness efforts for miti-
gating hazardous material exposure.
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