Doi: https://doi.org/10.54172/31ke1w34

Research Article ⁶Open Access

Some Approximation Spaces via Supra Topology

Fatma. A. Toumi 1*, Nadiy. A. Altoumi 2

*Corresponding author: f.toumi@zu.edu.ly, Department of Mathematics, Faculty of Education, Al-Zawia University, Libya.

² Department of Mathematics, Faculty of Education, Al-Zawia University, Libya.

Received:

11 April 2025

Accepted:

28 April 2025

Publish online:

30 April 2025

Abstract

This paper introduces a new space based on a generalized neighbourhood system using the concept of a supra topology, termed a supra approximation space (briefly S^n AS). We investigate several properties of S^n AS and compare its advantages with those of the classical neighbourhood approximation space. Furthermore, we define and study a novel class of separation axioms using S^n -open in a supra approximation space (S^n AS). Finally, we explore some of their properties in the context of information system, particularly in approximation process of approximation and definability.

Keywords: Neighbourhood System; Rough Set Theory; Approximation Space; Supra Topology; Topological Space: T_0 : T_1 And T_2 .

INTRODUCTION

In 1983 (Mashhour, 1983) introduced supra topological spaces and studied S-continuous functions and S*-continuous functions. They introduced the notion of S-open and S-closed sets and characterized these sets using S-closure and S-interior operators respectively.

Rough set theory, proposed by Pawlak in 1998 (Pawlak & Systems, 1998) extends classical set theory. Pawlak introduced the notion of an approximation space (U, R), where U is a universe set and R is an equivalence relation. Within this framework, he defined the lower approximation (\underline{X}) , upper approximation (\overline{X}) , and the boundary region (bnd(X)) of any subset $X \subseteq U$. A fundamental result establishes the relationship between these concepts: $(\underline{X}) \subseteq X \subseteq (\overline{X})$ and $bnd(X) = (\overline{X}) - (\underline{X})$.

In (Császár, 2004), the author further explored separation axioms using generalized topology notions. This paper introduces a novel structure called a supra approximation space (briefly S^n AS). We investigate key definitions and properties of approximations within S^n AS, including the formulation of lower and upper approximations. Moreover, we define and analyze new separation axioms based S^n -open sets, examining their fundamental properties. This work lays the foundation for future applications of separation axioms in related fields.

The Author(s) 2025. This article is distributed under the terms of the *Creative Commons Attribution-NonCommercial 4.0 International License* ([http://creativecommons.org/licenses/by-nc/4.0/] (http://creativecommons.org/licenses/by-nc/4.0/]), which permits unrestricted use, distribution, and reproduction in any medium, *for non-commercial purposes only*, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Definition 1.1. (Lashin et al., 2005)

consider (U, R) is a generalized approximation space. Then:

- 1. $N(x) = \{y \in U : xRy\}$ is called the right neighborhood of an element x,
- 2. $N(U) = \{N(x) : x \in U\}$ is the collection of all neighborhoods in (U, R).

2- A Supra Approximation Space

We use a neighborhood to construct a supra approximation space (S^nAS). This space relies on a supra topological structure. Additionally, we investigate some definitions, including:

- 1. supra lower approximation,
- 2. supra upper approximation,
- 3. S^n undefinable (rough) set in $S^n AS$.
- 4. S^n -internally, S^n -externally, and S^n -totally definable sets.

Definition 2.1.

consider (U,R) is a generalized approximation space. We define the class of a supra on (U,R) as: $S^{n}(U) = \{\phi, U, \{X \subseteq U: X = \bigcup_{x \in U} N(x)\}\},\$

where N(x) is the right neighborhood of x for all $x \in U$.

- 1. The members of the supra set $S^n(U)$ are called S^n -open sets.
- 2. The pair $(U_{\iota}R_{\iota}S^{n})$ is called a supra approximation space (in short, $S^{n}AS$),
- 3. The complement of an S^n -open set is called an S^n -closed set,
- 4. The class of all S^n -closed sets is denoted by $(S^n(U))^c$.

Example 2.1.

Let (\bar{U}, R, S^n) be an supra approximation space $S^n AS$, where $U = \{a, b, c, d\}$, R be a binary relation on U

$$R = \{(a,b), (a,d), (b,b), (b,c), (c,d), (d,a)\}.$$

The neighborhoods are defined as:

$$N(a) = \{b, d\},\$$

$$N(b) = \{b, c\}.$$

$$N(c) = \{d\},\$$

$$N(d) = \{a\}.$$

The supra set is:

$$S^{n}(U) = \{\emptyset, \{a\}, \{d\}, \{b, c\}, \{b, d\}, \{a, d\}, \{a, b, c\}, \{a, b, d\}, \{b, c, d\}, U\},\$$

and the class of S^n -closed sets is:

$$(S^n(U))^c = \{\emptyset, \{a\}, \{c\}, \{d\}, \{b, c\}, \{a, c\}, \{a, d\}, \{a, b, c\}, \{b, c, d\}, U\}.$$

Definition 2.2.

consider (U, R, S^n) is $S^n AS$, $X \subseteq U$. Then, X is called S^n -definable (or exact) if $S^n(X) = (S^n(X))^c$

Definition 2.3.

Let U be a nonempty set and N(U) be a nonempty collection of subsets of U. N(U) is called supra topology (briefly $S^n T$) on U if:

- 1. \emptyset , $U \in N(U)$, and
- 2. For any collection $\{N(x)\}_{x\in U}\subseteq N(U)$, the union $\bigcup_{x\in U}N(x)\in N(U)$ where N(x) is the right neighborhood of x for all $x\in U$.

The pair (X, N(U)) is called a supra topological space (briefly S^nTS). The members of N(U) are called supra- open sets, and a subset of a supra topological space (U, N(U)) is called supra-closed set if its complement is a supra- open set.

Definition 2.4.

Consider (U, R, S^n) is $S^n AS, X \subseteq U$. We define:

1. The supra lower approximation of X(in short $S^n(X)$) as:

$$\underline{S}^n(X) = \cup \{G: G \in S^n(X), G \subseteq X\};$$

2. The supra upper approximation of X (in short $\overline{S^n}(X)$) as:

$$\overline{S^n}(X) = \cap \{F : F \in (S^n(X))^c, X \subseteq F\}.$$

Theorem 2.1.

Let (U, R, S^n) be S^n AS on U and $B \subseteq U$. Then, $x \in \overline{S^n}(B)$ if and only if $G \cap B \neq \emptyset$ for every S^n open set G such that $x \in G$.

Proof:

This follows directly from Definition 2.4.

Definition 2.5.

Let (U, R, S^n) be an $S^n AS$. We say that the union of any family of elements of $S^n(U)$ is in $S^n(U)$.

Theorem 2.2.

Let $(U, R. S^n)$ be an S^n AS on U, and let $X \subseteq U$. Then:

- 1. $S^n(X)$ is a supra set.
- 2. $S^n(X)$ is the largest supra set contained in X.
- 3. X is a supra set if and only if $\underline{S}^n(X) = X$.

Proof:

This follows from the definitions of S^n set and $\underline{S}^n(X)$.

Definition 2.6.

Let (U, R, S^n) be an $S^n A S$, and let $X \subseteq U$. Then:

1. The supra boundary of X (denoted by S^n - bnd(X)) is:

$$S^n bnd(X) = \overline{S^n}(X) - S^n(X)$$

2. The supra internal edge of X (denoted by \underline{S}^n - edg(X)) is:

$$\underline{S}^n \cdot edg(X) = X - \underline{S}^n(X).$$

3. The supra external edge of $X(\text{denoted by }\overline{S^n} - edg(X))$ is:

$$\overline{S^n}$$
- $edg(X) = \overline{S^n}(X) - X$.

Example 2.2.

Let (\bar{U}, R, S^n) be an supra approximation space $S^n A S$, where $U = \{a, b, c, d\}$, R be a binary relation on U with the neighborhoods defined as $N(a) = \{a, b\}$, $N(b) = \{b, c\}$, $N(c) = \{d\}$, and $N(d) = \{c\}$.

The supra topology $S^n(U)$ is given by:

$$S^{n}(U) = \{\emptyset, \{c\}, \{d\}, \{a, b\}, \{b, c\}, \{c, d\}, \{a, b, c\}, \{a, b, d\}, \{b, c, d\}U\}.$$

The complement of $S^n(U)$, denoted as $(S^n(U))^c$, is:

$$\left(S^n(U)\right)^c = \{\emptyset, \{a\}, \{c\}, \{d\}, \{a,b\} \{c,d\}, \{a,d\} \{a,b,d\}, \{a,b,c\}, U\}.$$

Now, consider the sets $X = \{b,c\}$, $Y = \{a,b\}$, and $Z = \{b,c,d\}$.

1. For **X**

The lower approximation $\underline{S}^n(X) = X$.

The upper approximation $\overline{S^n}(X) = \{a, b, c\}$.

The supra boundary S^n -bnd(X) = $\{a\}$.

The supra internal $\underline{S}^n - edg(X) = Y - S^n(X) = \emptyset$.

The supra external $\overline{S^n} - edg(X) = \overline{S^n}(X) - X = \{a\}.$

2. For **Y**

The lower and upper approximation are equal $\underline{S}^n(Y) = \{a, b\} = Y = \overline{S}^n(Y)$.

Thus, supra boundary S^n -bnd(Y) = \emptyset , and \overline{Y} is S^n -definable.

3. For **Z**

The lower approximation $\underline{S}^n(Z) = \{c, d\}$.

The upper approximation $\overline{S^n}(Z) = U$.

The supra boundary S^n - $bnd(Z) = \{a, b\}$.

The supra internal $S^n - edg(Z) = Z - S^n(Z) = \{a\}.$

The supra external $\overline{S^n} - edg(Z) = \overline{S^n}(Z) - Z = \{b\}.$

Definition 2.7.

Let (U, R, S^n) be a supra approximation space S^n AS and $X \subseteq U$. Then, X is called:

1. S^n -internally definable if and only if $\underline{S}^n(X) = X$.

2. S^n -externally definable if and only if $\overline{S^n}(X) = X$.

From a topological perspective, $\underline{S}^n(X)$ and $\overline{S}^n(X)$, can be reinterpreted using topological concepts.

Definition 2.8. (El-Shafei et al., 2016; Mashhour, 1983; Talabeigi & Computing, 2022)

A subfamily μ of U is said to be a supra topological on U, if:

- 1. \emptyset , $U \in \mu$ and
- 2. If $B_i \in \mu$ for all $i \in j$, then $\bigcup B_i \in \mu$.

The pair (U, μ) is called a supra topological space. The elements of μ are called supra-open sets in (U, μ) and a subset of a supra topological space (U, μ) is called supra-closed set if its complement is a supra-open set.

Definition 2.9.

Let (U, R, S^n) be a supra approximation space S^n AS and a supra topological space.

Then, for every $X \subseteq U$ we have:

- 1. X is said to be S^n -internally (S^n -externally, S^n -totally) definable if and only if X is supra open (supra closed, supra clopen) set in a supra topological space,
- 2. X is said to be S^n –undefinable (rough) set if and only if X is neither supra open nor supra closed in the supra topological space. clarification.

Proposition 2.2.

Let (U, R, S^n) be a supra approximation space $S^n AS, X \subseteq U$, and R be an equivalence relation. Then:

1.
$$\underline{S^n}\left(\underline{S^n}(X)\right) = \overline{S^n}\left(\underline{S^n}(X)\right);$$

2.
$$\overline{S^n}\left(\overline{S^n}(X)\right) = \underline{S^n}\left(\overline{S^n}(X)\right)$$
.

3- Separation Axioms in Supra Approximation Spaces

The main purpose in this section, we define and study some new Separation axioms by define S^n open set which play an important role in distinguishing between sets and points in a topological
space, and we study some separation properties in a supra approximation space.

Definition 3.1.

A supra approximation space (U, R, S^n) is:

- 1. T_0 -space if and only if for every two distinct points x and y on U, there exists an S^n -open set G such that $x \in G$ and $y \notin G$,
- 2. T_1 -space if and only if for every two distinct points x and y on U, there exist two S^n -open sets G and H such that $x \in G$, $y \notin G$, and $y \in H$, $x \notin H$.

3. T_2 -space if and only if for every two distinct points x and y on U, there exist two disjoint S^n -open sets G and H such that $x \in G$ and $y \in H$.

Clearly
$$T_2 \Longrightarrow T_1 \Longrightarrow T_0$$
.

Proposition 3.1.

A supra approximation space (U, R, S^n) is T_0 if and only if $\overline{S^n}(\{x\}) \neq \overline{S^n}(\{y\})$ for all $x \neq y$, where $x, y \in U$.

Proof:

Consider $x \neq y$. Then, there exists $G \in S^n(U)$ such that $x \in G$ and $y \notin G$.

1. There exists $U - G \in (S^n(U))^c$, where $x \notin U - G$ and $y \in U - G$ if and only if $x \notin G \setminus \{U - G : U - G \in (S^n(U))^c : \{y\} \subseteq G\}$ if and only if $x \notin \overline{S^n}(\{y\})$ but $x \in \overline{S^n}(\{x\})$.

Thus, $\overline{S^n}(\{x\}) \neq \overline{S^n}(\{v\})$.

2. Consider $\overline{S^n}(\{x\}) \neq \overline{S^n}(\{y\})$, i.e., there exists $z \in U$ such that $z \in \overline{S^n}(\{x\})$ and $z \notin \overline{S^n}(\{y\})$.

Suppose $x \in \overline{S^n}(\{y\})$. This implies $\overline{S^n}(\{x\}) \subseteq \overline{S^n}(\{y\})$, which further implies $z \in \overline{S^n}(\{y\})$.

This leads to a contradiction. Therefore, $x \notin \overline{S^n}(\{y\})$.

Hence, $U - \overline{S^n}(\{y\})$ is a supra set containing x but not y.

Thus, S^n is a T_0 space.

Proposition 3.2.

A supra approximation space (U, R, S^n) is T_1 -space if and only if $\{x\}$ is S^n -externally definable, for all $x \in U$.

Proof:

1. Consider $x \in U$, $S^n AS(U, R, S^n)$ be a T_1 -space. To prove that $\{x\}$ is S^n -externally definable,

we show that $\{x\}^c$ is S^n -internally definable (a supra set).

Let $y \in \{x\}^c$ (i. e., $y \neq x$). Since S^n AS is a T_1 -space, there exists $G, H \in S^n(U)$ such that $y \in G, x \notin G$ and $x \in H, y \notin H$.

Thus, for all $y \in \{x\}^c$ there exists $G \in S^n(U)$: $y \in G \subseteq \{x\}$.

Since y is arbitrary, $\{x\}^c = \bigcup \{G \in S^n(U), G \subseteq \{x\}^c\}$.

Therefore, $\{x\}^c$ is S^n -open, and $\{x\}$ is S^n - externally definable.

2. For the inversions consequence, assume $\{x\}$ be S^n -externally definable i.e., $\{x\}^c$ be a S^n -open set.

Consider $x, y \in U$ such that $x \neq y$. This means:

$$1. x \in \{y\}^c, y \notin \{y\}^c;$$

$$2. y \in \{x\}^c, x \notin \{x\}^c;$$

since $\{x\}^c$ and $\{y\}^c$ are S^n -open sets, a S^n AS (U, R, S^n) is a T_1 -Space.

Proposition 3.3.

Consider (U, R, S^n) is S^n AS where R is preordering relation, if (U, R, S^n) is a T_1 -Space then X is S^n -definable for all $X \subseteq U$.

Proof:

Consider $X \subseteq U$ to prove X is S^n -definable, we show that X is both S^n -internally and S^n -externally definable.

- 1. Since S^n AS is aT_1 Space, $\{x\}$ is S^n externally definable for all $X \subseteq U$ (from Proposition 3.2).
- 2. Both X and U X can be written as:

$$X = \bigcup_{x \in X} \{x\},$$

$$U - X = \bigcup_{x \in U - X} \{x\}.$$

- 3. from Proposition 3.7, X and U X are S^n -externally definable sets.
- 4. Since U X are S^n -externally definable, X is S^n -internally definable.
- 5. Thus, X is both S^n -internally and S^n -externally definable, making it S^n definable.

Proposition 3.4.

A S^n AS that is a T_1 - Space with preordering relation is a discrete approximation space.

Proof:

This follows directly from part 2 of Definition 3.1.

Definition 3.2.

Let (U, R, S^n) be S^n AS. The relation T_2 on U is defined by:

 xT_2y if and only if there exists $G, H \in S^n(U)$ such that $x \in G, y \in H$ and $G \cap H = \emptyset$. This relation is renamed (a separating relation).

Definition 3.3.

Let (U, R, S^n) be an S^n AS, and let T_2 be a separating relation on U. Then $X^{T_2} = \{ y \in U : yT_2x, \forall x \in X \}$ is called the separating set of X.

Definition 3.4.

Consider (U, R, S^n) be an S^n AS and let $X, Y \subseteq U$. Then,

 XT_2Y if xT_2y for all $x \in X$, $y \in Y$.

Remark 3.2.

We observe that the separating relation T_2 is has the following properties:

1. Irreflexive relation: xT_2y if and only if $x \neq y$.

2. Symmetric relation: xT_2y if and only if yT_2x .

For the $\Psi \subseteq S^n(U)$, where Ψ be collection of all neighborhoods, the relation T_2 can be redefined as follow:

 xT_2y if and only if there exists $N_1, N_2 \in \Psi$, $x \in N_1, y \in N_2, N_1 \cap N_2 = \emptyset$.

Proposition 3.5.

Let (U, R, S^n) be an S^n AS, and let $X \subseteq U$. Then:

- 1. $X^{T_2} \subseteq X^C$.
- 2. $X^{T_2} \cap X = \emptyset$

Proof:

- 1. $y \in X^{T_2}$ if and only if yT_2x for all $x \in X$, which implies $y \neq x$ for all $x \in X$. if and only if $y \in X^c$.
- 2.Assume $X^{T_2} \cap X \neq \emptyset$ if and only if there exist $y \in U$ such that $y \in X^{T_2}$ and $y \in X$ implies $y \in X^c$ if and only if $X^c \cap X \neq \emptyset$ (contradiction). Then $X^{T_2} \cap X = \emptyset$.

Proposition 3.6.

Consider (U, R, S^n) be an S^n AS and $X \subseteq U$. Then:

- 1. $X^{cT_2} \subseteq X$
- 2. $X \subseteq X^{T_2c}$.

Proof:

This follows directly from Proposition 3.5.

Proposition 3.7.(Lin, 1988, 1989; Lin & computing, 1997)

Consider (U, R, S^n) be an S^n AS and $X \subseteq U$. Then, X^{T_2} is a supra set.

Proof:

To prove that X^{T_2} is a supra set, it is suffices to show that X^{T_2} can be written as a union of supra set.

- 1. Let $y_1 \in X^{T_2}$. By Definition 3.3, this means $y_1 T_2 x_r$ for all $x \in X$.
- 2. From Definition 3.2, there exists $G_1, H_1 \in S^n(U)$ such that $y_1 \in G_1, x \in H_1$ and $G_1 \cap H_1 = \emptyset$.
- 3. Since $G_1 \cap H_1 = \emptyset$, for all $X \in X$ (where $X \in H_1$), it follows that $G_1 \subseteq X^{T_2}$.
- 4. Thus $y_1 \in X^{T_2}$ implies there exists $G_1 \in S^n(U)$ such that $y_1 \in G_1 \subseteq X^{T_2}$.

similarity, for any $y_2 \in X^{T_2}$, there exists $G_2 \in S^n(U)$ such that $y_2 \in G_2 \subseteq X^{T_2}$. Finally, $y_i \in X^{T_2}$ implies $\exists G_i \in S^n(U)$ such that $y_i \in G_i \subseteq X^{T_2}$. Hence

$$\bigcup_{i=1}^{n} \{y_i\} \subseteq \bigcup_{i=1}^{n} G_i \subseteq X^{T_2} = \bigcup_{i=1}^{n} \{y_i\} \text{ i.e., } X^{T_2} = \bigcup_{i=1}^{n} G_i.\text{ Then } X^{T_2} \text{ is a supra set.}$$

Example 3.1.

Let (U, R, S^n) be an supra approximation space $S^n AS$, where $U = \{a, b, c, d\}$ and the neighborhoods are defined as:

$$N(a) = \{a, b\},\$$

$$N(b) = \{b\},\$$

$$N(c) = \{d\},\$$

$$N(d) = \{a, c\}.$$

The supra set and its complement are:

$$S^{n}(U) = \{\emptyset, \{b\}, \{d\}, \{a,b\}, \{a,c\}, \{b,d\}, \{a,b,d\}, \{a,b,c\}, \{a,c,d\}, U\}, \\ \left(S^{n}(U)\right)^{c} = \{\emptyset, \{b\}, \{d\}, \{c\}, \{a,c\}, \{b,d\}, \{c,d\}, \{a,b,c\}, \{a,c,d\}, U\}.$$

Table (1). Table of operators.

X	X^{T_2}	$(X^{T_2})^c$	X^{cT_2}	$\underline{S}^n(X)$	$\overline{S^n}(X)$
Ø	U	Ø	Ø	Ø	Ø
{a}	{b, d}	$\{a,c\}$	Ø	Ø	{a, c}
{b}	$\{a,c,d\}$	{b}	{b}	{b}	{b}
{c}	$\{b,d\}$	$\{a,c\}$	Ø	Ø	{c}
{d}	{a, b, c}	{d}	$\{d\}$	{d}	{d}
$\{a,b\}$	$\{d\}$	$\{a,b,c\}$	$\{b\}$	$\{a,b\}$	$\{a,b,c\}$
{a, c}	{b, d}	$\{a,c\}$	$\{a,c\}$	{a, c}	$\{a,c\}$
$\{a,d\}$	{b}	$\{a,c,d\}$	$\{d\}$	{d}	$\{a,c,d\}$
$\{b,c\}$	$\{d\}$	$\{a,b,c\}$	{b}	{b}	$\{a,b,c\}$
{b, d}	$\{a,c\}$	$\{b,d\}$	$\{b,d\}$	{b, d}	{b, d}
$\{c,d\}$	$\{b\}$	$\{a,c,d\}$	{d}	{d}	$\{c,d\}$
$\{a,b,c\}$	$\{d\}$	$\{a,b,c\}$	$\{a, b, c\}$	$\{a,b,c\}$	$\{a,b,c\}$
$\{a,b,d\}$	Ø	U	$\{b,d\}$	$\{a,b,d\}$	\boldsymbol{U}
$\{a,c,d\}$	$\{b\}$	$\{a,c,d\}$	$\{a, c, d\}$	$\{a,c,d\}$	$\{a,c,d\}$
{b, c, d}	Ø	U	{b, d}	{b, d}	U
U	Ø	U	U	U	U

Remark 3.3.

By comparing the lower approximation operation $\underline{S}^n(X)$ and X^{cT_2} , it follows that $\underline{S}^n(X)$ provides the best lower approximation. This can be observed in the sets $\{a,b\}$, $\{a,b,d\}$ from the previous example. Similarly, by comparing the upper approximation $\overline{S}^n(X)$ and $(X^{T_2})^c$, it follows that $\overline{S}^n(X)$ provides the best upper approximation, as seen in the sets $\{c\}$ and $\{c,d\}$.

Proposition 3.8.

A (U, R, S^n) be a supra approximation space $(S^n AS)$. Then, (U, R, S^n) is a T_2 -Space if and only if $X^{T_2} = X^c$, for all $X \subseteq U$.

Proof:

From Proposition 3.5 we have $X^{T_2} \subseteq X^c$ for all $X \subseteq U$. Now, let $y \in X^c$. Then, $y \neq x$, for all $x \in X$, which implies there existence of $G, H \in S^n(U)$ such that $x \in G, y \in H$, and $G \cap H = \emptyset$ This means yT_2x for all $x \in X$, which is equivalent to $y \in X^{T_2}$. Therefore, $X^c \subseteq X^{T_2}$, and we conclude that $X^{T_2} = X^c$.

Proposition 3.9.(Al-Shami, 2016, 2017)

Let (U, R, S^n) be a supra approximation space $(S^n AS)$, and $X \subseteq U$. Then, X is S^n -definible if and only if $(X^{T_2})^c = (X^c)^{T_2}$.

Proof:

- 1. First part: Assume $X \subseteq U$ is S^n -definible. Let $y \neq x$ where $x \in X$ and $y \in X^c$. Since X and X^c are supra sets, xT_2y for all $x \in X$, $y \in X^c$. By Definition 4.3, we have $y \in X^{T_2}$ and $x \in (X^c)^{T_2}$ which implies $X^{T_2} = X^c$. Therefore $(X^{T_2})^c = X = (X^c)^{T_2}$.
- 2. Second part: Assume $(X^{T_2})^c = X = (X^c)^{T_2}$. By proposition 3.7, if $(X^c)^{T_2} = X$. Then X is a supra set. Additionally, if $(X^{T_2})^c = X$ and X^c be a supra set, then X be S^n -definable set.

Proposition 3.10.

Let (U, R, S^n) be a S^n AS and $X \subseteq U$. The following statements are equivalent:

- 1. S^n AS is T_2 -Space;
- 2. X is S^n -definable for all $X \subseteq U$;
- 3. S^n AS is discrete approximation space.

Proof:

- 1. $1 \Rightarrow 2$: Since (U, R, S^n) is a T_2 -Space, from Proposition 3.8, we have $(X^c)^{T_2} = X$ and $X^{T_2} = X^c$, i.e., $X^{T_2c} = X$ and $X^{cT_2} = X$. Then, X is an S^n -definible set from Proposition 3.9.
- 2. $2 \implies 3$: This is Obvious.
- 3. $3 \Rightarrow 1$: Let $\{x\}$ and $\{y\}$ are disjoint S^n -definable sets such that $\{x\} \cap \{y\} = \emptyset$, with $x \in \{x\}$ and $y \in \{y\}$ for all $x, y \in U$ Then S^n AS is T_2 -Space.

Proposition 3.11.(Yao, 1999)

Let (U, R, S^n) be a S^n AS and $X \subseteq U$. If R is an equivalence relation, then $X^{T_2} = \left(\overline{S^n}(X)\right)^c$.

Proof

Ago R is an equivalence relation, xT_2y if and only if $N_x \cap N_y = \emptyset$ (from Proposition 3.9).

1. $y \in X^{T_2}$ if and only if yT_2x , for all $x \in X$,

- 2. if and only if $N_x \cap N_y = \emptyset$,
- 3. if and only if $x \notin N_v$ for $x \in X$,
- 4. if and only if $X \cap N_v = \emptyset$,
- 5. if and only if $y \in \left(\overline{S^n}(X)\right)^c$.

Thus,
$$X^{T_2} = \left(\overline{S^n}(X)\right)^c$$
.

CONCLUSION

In this work, we introduced and studied a new space based on a generalized neighbourhood system by using the concept of supra topology, called a supra approximation space (briefly S^n AS). We investigated key properties of S^n AS and compared its advantages with those of the neighbourhood approximation space.

Additionally, we defined and analyzed new Separation axioms using S^n -open sets, which play a crucial role in distinguishing between sets and points in a topological space. We also explored separation properties within the supra approximation space. In future work, we aim to extend the application of S^n AS to near-open sets and near-closed sets, further expanding its theoretical and practical implications.

Duality of interest: The authors declare that they have no duality of interest associated with this manuscript.

Author contributions: Contribution is equal between authors.

Funding: No specific funding was received for this work.

REFERENCES

- Al-Shami, T. J. J. o. a. s. i. t. (2016). Some results related to supra topological spaces. 7(4), 283-294.
- Al-Shami, T. J. J. o. A. S. i. T. (2017). On supra semi open sets and some applications on topological spaces. 8(2), 144-153.
- Császár, Á. J. A. M. H. (2004). Separation axioms for generalized topologies. 104.
- El-Shafei, M., Abo-Elhamayel, M., & Al-Shami, T. J. J. o. P. R. i. M. (2016). On supra R-open sets and some applications on topological spaces. 8(2), 1237-1248.
- Lashin, E., Kozae, A., Khadra, A. A., & Medhat, T. J. I. J. o. A. R. (2005). Rough set theory for topological spaces. 40(1-2), 35-43.
- Lin, T. (1988). Neighborhood systems and relational databases. Proceedings of the 1988 ACM sixteenth annual conference on Computer science,

- Lin, T. (1989). Neighbourhood system and approximation in database and knowled base systems. Proc. of The Fourth International Symposium on Methodologies of Intelligent System,
- Lin, T. J. A. i. m. i., & computing, s. (1997). Neighborhood systems-A qualitative theory for fuzzy and rough sets. 4, 132-155.
- Mashhour, A. J. I. J. P. A. M. (1983). On supratopological spaces. 14, 502-510.
- Pawlak, Z. J. C., & Systems. (1998). Rough set theory and its applications to data analysis. 29(7), 661-688.
- Talabeigi, A. J. A. J. o. M., & Computing. (2022). Extracting some supra topologies from the topology of a topological space using stacks. *3*(1), 45-52.
- Yao, Y. (1999). Rough sets, neighborhood systems and granular computing. Engineering solutions for the next millennium. 1999 IEEE Canadian conference on electrical and computer engineering (Cat. No. 99TH8411),