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INTRODUCTION

In 1983 (Mashhour, 1983) introduced supra topological spaces and studied S-continuous functions
and S -continuous functions. They introduced the notion of S -open and S-closed sets and charac-
terized these sets using 5 -closure and S-interior operators respectively.

Rough set theory, proposed by Pawlak in 1998 (Pawlak & Systems, 1998) extends classical set the-
ory. Pawlak introduced the notion of an approximation space (U, R), where U is a universe set and

R is an equivalence relation. Within this framework, he defined the lower approximation (X), upper
approximation (X), and the boundary region ( bnd(X)) of any subset X € U. A fundamental re-

sult establishes the relationship between these concepts: (X) S XS (X) and
bnd(X) = (X) — (X).

In (Csaszar, 2004), the author further explored separation axioms using generalized topology no-
tions. This paper introduces a novel structure called a supra approximation space (briefly S™AS).
We investigate key definitions and properties of approximations within S™AS, including the formu-
lation of lower and upper approximations. Moreover, we define and analyze new separation axioms

based S™-open sets, examining their fundamental properties. This work lays the foundation for fu-
ture applications of separation axioms in related fields.
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Definition 1.1. (Lashin et al., 2005)
consider (U, R) is a generalized approximation space. Then:

1. N(x) = {v € U:xRv}is called the right neighborhood of an element X,

2. N(U) = {N(x):x € U} is the collection of all neighborhoods in (I/, R).

2- A Supra Approximation Space

We use a neighborhood to construct a supra approximation space (S™AS). This space relies on a
supra topological structure. Additionally, we investigate some definitions, including:

1. supra lower approximation,

2. supra upper approximation,

3. 5™ — undefinable (rough) set in S™AS,

4. S"-internally, S™ -externally, and S™-totally definable sets.

Definition 2.1.
consider (U, R) is a generalized approximation space. We define the class of a supra on (U, R) as:
STU) ={p, U {X SU:X =U,cy N(x)}},
where N(x) is the right neighborhood of x for all x € U.
1. The members of the supra set S™(U/) are called S™-open sets,

N

The pair (U, R, 5™) is called a supra approximation space (in short, S AS),

3. The complement of an 5™-open set is called an S™-closed set,

4. The class of all $™-closed sets is denoted by (S“ (U])c.

Example2.1.
Let (U, R,S™) be an supra approximation space S"AS, where U = {a, b, ¢, d}, R be a binary
relation on U

R ={(a,b),(a,d),(b,b),(b,c), (c,d) (d a)}
The neighborhoods are defined as:

N(a) = {b,d},
N(b) = {b,c},
N(c) = {d},
N(d) = {a}.

The supra set is:

S™U) = {0,{a},{d},{b,c}{b,d}{a,d}{a,b,c}{a b,d} {bc,d}, U},
and the class of S™-closed sets is:

(s™())" = (0, {a}, {c}, {d}, (b, c}, {a,c},{a,d}, {a,b,c},{b,c,d}, U}.

Definition 2.2.
consider (U,R,S™) is S"AS, X S U. Then, X is called S™-definable (or exact) if

s = (5m0)"
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Definition 2.3.
Let U be a nonempty set and N(U) be a nonempty collection of subsets of U. N(U) is called su-
pra topology (brieflyS™ T") on U if:

1. @, U € N(U),and

2. For any collection {N(x)},cp & N(U)the union U,y N(x)€ N(U) where
N(x) is the right neighborhood of x for all x € U.

The pair(X. N(U]) is called a supra topological space (briefly S™"TS).The members of N(U) are

called supra- open sets, and a subset of a supra topological space (U. N(U])is called supra-closed
set if its complement is a supra- open set.

Definition 2.4.
Consider (U, R, 5™) is S"AS, X € U. We define:
1. The supra lower approximation of X(in short S™ (X)) as:

S™X) =u{G:G e S™"(X), GE X},
2. The supra upper approximation of X (in short E(X]) as:
S7(X) :n{F: Fe(smx), xc F}.

Theorem 2.1.

Let (U,R,S™)be S"AS on U and B € U.Then, x € S™(B) ifand only if G N B %= @ for every S™-
open set (r such that X € G.

Proof:
This follows directly from Definition 2.4.

Definition2.5.
Let (U, R,5™) be an S"AS. We say that the union of any family of elements of S™(U) is in S™(U).

Theorem 2.2.
Let (U,R.5™) bean S"ASon U, and let X = U. Then:
1. S™(X) isasupra set.

2. S™(X) is the largest supra set contained in X.

3. Xisasuprasetifandonlyif S"(X) = X.

Proof:
This follows from the definitions of S™. setand S™(X).

Definition 2.6.
Let (U, R,5") bean S™AS,and let X € U.Then:
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1. The supra boundary of X (denoted byS™- bnd(X)) is:
S™.bnd(X) = S*(X) — S™(X).
2. The supra internal edge of X (denoted by $™- edg (X)) is:

S"-edg(X) =X —S"(X).
3. The supra external edge of X(denoted byS_“ —edg(X))is:

Sn-edg(X) =S5"(X) - X.

Example 2.2.

Let (U, R,S™) be an supra approximation space S"AS, where U = {a, b, ¢, d}, R be a binary
relation on U with the neighborhoods defined as N(a) = {a, b}, N(b) = {b,c},N(c) = {d},
and N(d) = {c}.

The supra topologyS ™ () is given by:

S™(U) = {0,{c},{d},{a, b},{b,c},{c,d}{a,b,c}{a, b, d},{b,c d}U}

The complement ofS™(U) denoted as (S™ (U]I)C. is:

(S™())" = {0, {a}, {c},{d}, {a, b}{c, d}, {a, d}a, b, d},{a, b, c},U}.
Now, consider the sets X = {b,c}, Y = {a, b}, and Z = {b,c,d}.
1. ForX

The lower approximation S™(X) = X.

The upper approximation S™(X) = {a, b, c}.

The supra boundary S™-bnd(X) = {a}.

The suprainternal S* — edg(X) =¥ —S™(X) = 0.

The supra external S™ — edg(X) = S™(X) — X = {a}.
2. ForY

The lower and upper approximation are equal S™(¥) ={a,b} =Y = 5_“(1’)-
Thus, supra boundary S™-bnd(Y) = @, and ¥ is S™ —definable.
3. ForZ

The lower approximation S™(Z) = {c¢,d}.
The upper approximation S™(Z) = U.
The supra boundary S™-bnd(Z) = {a, b}.
The supra internal " — edg(Z) = Z — 5" (Z) = {a}.
The supra external S* — edg (Z) = S™(Z) — Z = {b}.
Definition 2.7.
Let (U, R,S™) be a supra approximation space S"AS and X € U. Then, X is called:

1. S™ -internally definable if and only if S™(X) = X.
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2. 5™ -externally definable if and only if S_“(X] =X.

From a topological perspective, S™(X) and S™(X), can be reinterpreted using topological con-
cepts.

Definition 2.8. (El-Shafei et al., 2016; Mashhour, 1983; Talabeigi & Computing, 2022)
A subfamily p of U is said to be a supra topological on U, if:
1. 0,U € pand

2. IfB; €Epuforalli €j,thenUB; € p.

The pair(U, it ) is called a supra topological space.The elements of i are called supra- open sets in

(U, 1 ) and a subset of a supra topological space (U, it ) is called supra-closed set if its comple-
ment is a supra- open set.

Definition 2.9.
Let (U, R,S™) be a supra approximation space S™AS and a supra topological space.
Then, for every X © U we have:

1. X is said to be S™-internally (S"-externally,S™-totally) definable if and only if X is supra

open (supra closed, supra clopen) set in a supra topological space,
2. X is said to be S™ —undefinable (rough) set if and only if X is neither supra open nor supra

closed in the supra topological space. clarification.

Proposition 2.2.

Let (U, R,S™) be a supra approximation space S"AS, X € U and R be an equivalence relation.
Then:

1. 5™ (57(0) =57 (570));
2. 57 (7)) =57 (57 (0)).

3- Separation Axioms in Supra Approximation Spaces

The main purpose in this section, we define and study some new Separation axioms by define S"-
open set which play an important role in distinguishing between sets and points in a topological
space, and we study some separation properties in a supra approximation space.

Definition 3.1.
A supra approximation space (U, R, S™) is:
1. T, -space if and only if for every two distinct pointsx and ¥ on U, there exists an S™-open

set Gsuchthat x € G and v & G,
2. T, -space if and only if for every two distinct points x and ¥ on U, there exist two S™-open

sets G and Hsuchthatx E G,y € G,and Vv E H, x € H,
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3. T, -space if and only if for every two distinct points X and v on U,there exist two disjoint

S™-open sets & and H suchthat x € Gandy € H.
Clearly I, = T, = T,.

Proposition 3.1.
A supra approximation space(U, R, ™ )is Ty, if and only if

Sn({x}) = S*({y}) forall x # y ,where x,y € U.

Proof:
Consider X # V. Then, there exists G € S™(U) suchthatx € Gand v € G.

1. Thereexists U — G € (S“(U])c.where x@U—Gandy € U— G ifandonly if
x ¢n{U—G:U—G € (S"(1)) 0} SG} it and only if x €S™((y]) but
x € S7({x}).

Thus, S™({x}) = S™({v}.
2. Consider S™({x}) iS_“({}f}). ie., there exists z €U such that z € S™({x})
and z & S™({y}).
Suppose x € S™({y}). This implies S™({x}) € S™({y}), which further implies
z €S ({(v}.

This leads to a contradiction. Therefore, x & S™({y}).

Hence, U — S™({y}) is a supra set containing X but not .
Thus, 5™ is a Tj space.

Proposition 3.2.
A supra approximation space (U, R,S™) is T; -space if and only if {x} is S™-externaly definable,
forall x € U.

Proof:
1. Consider x € U, S™AS(U,R,5™) be a T;-space. To prove that {x} is S™-externally de-

finable,
we show that {x}° is S™-internally definable (a supra set).
Lety € {x}°(i.e., v # x).Since S"AS is a T; -space, there exists G, H € S™(U) such that
VEGx€Gandx e H,y & H,
Thus, for all v € {x}° there exists G € S™(U): v € G € {x}.
Since ¥ is arbitrary, {x}° =U {G € S™(U),G < {x}°}.
Therefore, {x} is S™-open, and {x} is S™- externally definable.
2. For the inversions consequence, assume {x}be S™-externally definable i.e., {x}¥ beaS"-

open set.
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Consider x,y € U such that x # ¥. This means:

Lx € {y},ye{y}

2.y € {x}°,x & {x},

since {x}° and {¥} are S™-open sets, a S"AS (U, R,5") is a T; - Space.

Proposition 3.3.
Consider (U, R,5™) is S™AS where R is preordering relation, if (U, R,S™) is a T; -Space then
X is S™- definable forall X € U.

Proof:
Consider X € Uto prove X is 5"-definable, we show that X is both S"-internally and 5™-
externally definable.

1. Since S™AS is aT;- Space,{x} is S"- externally definable for all X € U (from Proposi-

tion3.2).
2. Both Xand U — X can be written as:

X =U.x'EX {JC},
U—X =Uyey_x (x}.
3. from Proposition 3.7, X and I/ — X are S™-externally definable sets.

4. Since U — X are S™-externally definable, X is S™-internally definable.

5. Thus,X is both S™-internally and S"-externally definable, making it $™- definable.

Proposition 3.4.
A S"AS that is a T; - Space with preordering relation is a discrete approximation space.

Proof:
This follows directly from part 2 of Definition 3.1.

Definition 3.2.

Let (U, R, 5™ )be S"AS. The relation T5 on U is defined by:

xT,y ifand only if there exists G, H € S™(U) suchthatx € G,y € Hand G N H = .
This relation is renamed (a separating relation).

Definition 3.3.

Let (U, R,5™)be an S™AS, and let T be a separating relation on U. Then
X% ={y eU:yT,x,V x € X}is called the separating set of X.
Definition 3.4.

Consider (U, R,5™)bean S™AS and let X, Y & U. Then,
XLYitxTyforalx EX, vy €Y.

Remark 3.2.
We observe that the separating relationT5 is has the following properties:
1. Irreflexive relation: xT5 v if and only if x # V.



Al-Mukhtar Journal of Basic Sciences 23 (1): 10-21, 2025 pagel7 ofl12

2. Symmetric relation: xT5 y if and only if vT x.

For the ¥ € S™(U), where ¥ be collection of all neighborhoods, the relation T5 can be redefined
as follow:

xT, y if and only if there exists N;, N, E ¥, x € N,y € N,,N, NN, = Q.

Proposition 3.5.
Let (U, R, 5™ )be an S"AS, and let X € U.Then:

1. X € X¢©,
2.XnX=0

Proof:
1. y € X™= ifand only if yT5 x for all x € X, which implies ¥ # x for all x € X. if and on-

ly if y € X©.

2.Assume X™= N X # @ ifand only if there exist y¥ € U such that v € X™ and
¥y €EX implies y € X¢ if and only if X°NX # O (contradiction).Then

X=nX=0.

Proposition 3.6.
Consider (IJ, R, 5™ )be an S"AS and X € U.Then:

1. X=X
2. X € XTer,

Proof:
This follows directly from Proposition3.5.

Proposition 3.7.(Lin, 1988, 1989; Lin & computing, 1997)
Consider (I, R, 5™ )be an S"AS and X € U.Then, X™ is a supra set.

Proof:

To prove that X'z is a supra set, it is suffices to show that Xz can be written as a union of supra
set.

1. Lety, € Xz, By Definition 3.3, this means y; I X, forall x € X,

2. From Definition 3.2, there existsGy,H; € S™(U) such that Vv, € G, ,x € H,and
G, NH, =0

3. Since G, n H, = @, forall x € X (where , ¢ m,H, itfollowsthat ;< x7e.

4. Thusy; € X™ implies there existsg, e sm(yysuchthaty, € G; X,

similarity, for any y, € X2, there exists G, € S™(U) suchthat y, € G, S X2,
Finally, v; € X™= implies 3G; € S™(U) such that y; € G; S X™. Hence
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UL, (v} GUL, G; € X =UL, {y;}ie, X™ =UIL, G;. Then X™= is a supra set.

Example 3.1.
Let (U, R,S™) be an supra approximation space S™AS, where U = {a, b, ¢, d} and the neigh-
borhoods are defined as:

N(a) = {a, b},
N(b) = {b},
N(c) = {d},
N(d) = {a,c}

The supra set and its complement are:
s*(U) = {0,{b},{d}, {a, b}, {a,c},{b,d},{a,b,d},{a,b,c},{a,c,d}, U},

(s™(W))" = (@, (b}, {d}, {c}, {a, ¢}, {b, d},{c, d},{a, b, ¢}, {a, c, d3, U}.

Table (1). Table of operators.

X X" (X%=)° xer: S™(X) S™(X)

@ U @ ) @ @

{a} {b,d} {a,c} @ @ {a,c}

{b} {a,c, d} {b} {b} {b} {b}

{c} {b,d} {a,c} ) @ {c}

{d} {a,b,c} {d} {d} {d} {d}

{a, b} {d} {a,b,c} {b} {a, b} {a,b,c}

{a,c} {b,d} {a,c} {a,c} {a,c} {a,c}

{a,d} {b} {a,cd} {d} {d} {a,c,d}

{b,c} {d} {a,b,c} {b} {b} {a,b,c}

{b,d} {a,c} {b,d} {b,d} {b,d} {b,d}

{c,d} {b} {a,c,d} {d} {d} {c,d}

{a,b,c} {d} {a,b,c} {a,b,c} {a, b, c} {fa,b,c}

{a,b,d} O i (b, d} fa,b,d} i

{a,c,d} {b} {a,c d} {a,c d} {a,c, d} {a,c d}

{b,c,d} © U {b,d} {b,d} U

U [0 U U U U
Remark 3.3.

By comparing the lower approximation operation S™(X) and X¢"2, it follows that S™(X) pro-
vides the best lower approximation. This can be observed in the sets{a, b},,{a, b, d} from the
previous example. Similarly, by comparing the upper approximation S™(X) and (X )€ it follows
that S™(X) provides the best upper approximation, as seen in the sets {c} and {c, d}.

Proposition 3.8.
A (U,R,5™) be a supra approximation space ( S™AS). Then, (U, R,5") is a T,-Space if and
only if X2 = X¢ forall X € U.

Proof:
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From Proposition 3.5 we have Xz € X€ forall X € U. Now, let ¥ € X€. Then, ¥ # x, for all
x €X ,which implies there existence of G,H € S™(U) such that x € G,y € H,
andG N H = @ This means yT,x for all x € X, which is equivalent to y € X"z, Therefore,
, X € X2 and we conclude that X7z = X°©.

Proposition 3.9.(Al-Shami, 2016, 2017)
Let (U, R,S5™) be a supra approximation space ( S™AS). and X € U.Then, X is S™-definible if
and only if (X™2)° = (X)™=.

Proof:
1. First part: Assume X & U is S™-definible. Let v # x where x € X andy € X°. Since X

and X are supra sets, xT>y for all x € X,y € X°. By Definition 4.3, we have
y € X™zand x € (X°)"= which implies Xz = X¢. Therefore (X™2)° = X = (X)™=.
2. Second part: Assume (X2)° = X = (X°)™. By proposition3.7, if (X°)™ = X. Then X

is a supra set .Additionally, if (X2) = X and X be a supra set, then X be S™-definable set.

Proposition 3.10.
Let (U,R,5™) beaS™AS and X € U. The following statements are equivalent;
1. S™AS s T -Space;

2. X is §™-definable for all X € U;

3. S™AS is discrete approximation space.
Proof:
1. 1= 2: Since (U,R,S™) is a T, -Space, from Proposition 3.8, we have (X)z =X
and X™= = X¢ ie, X™2¢ = X and X°™= = X. Then, X is an S™-definible set from Propo-
sition 3.9.
2. 2 = 3: This is Obvious.
3. 3 = 1: Let {x} and {¥} are disjoint S™-definable sets such that {x} N {¥} = @, with

x € {x}and v € {y}forall x, v € U Then S"AS is T -Space.
Proposition 3.11.(Yao, 1999)

Let (U,R,5™) beaS™AS and X E U. If R is an equivalence relation, then Xz = (5'_“(){))

Proof:
Ago R is an equivalence relation, XI5 y if and only if N, N 1"&.{1_,, = @ (from Proposition 3.9).

1. y € X=ifandonly if yT5 x, forall x € X,

c
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2. ifandonlyif N, N N, = 0,
3. ifandonlyif x € N forx € X,

4. ifandonly if X N N, = 0,
5. ifand only if ¥ € (S_“(X)) .

c

Thus, X7z = (S_“(X])

CONCLUSION

In this work, we introduced and studied a new space based on a generalized neighbourhood system
by using the concept of supra topology, called a supra approximation space (briefly S™AS). We in-

vestigated key properties of S™AS and compared its advantages with those of the neighbourhood
approximation space.

Additionally, we defined and analyzed new Separation axioms using S™-open sets, which play a
crucial role in distinguishing between sets and points in a topological space. We also explored sepa-
ration properties within the supra approximation space. In future work, we aim to extend the appli-

cation of S™AS to near- open sets and near- closed sets, further expanding its theoretical and practi-
cal implications.
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