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INTRODUCTION

Chemotaxis refers to the directional movement of organisms in response to certain chemicals in their
environments, which plays an essential role in various biological processes such as wound healing,
cancer invasion, and avoidance of predators (Di Francesco et al., 2010). It has attracted considerable
attention due to its critical role in a wide range of biological phenomena. In 1970, (Keller & Segel,
1970) derived the following chemotaxis model

n, = V.(D(n)Vn) —V.(nS(m)Vc), x € Q,t >0,
¢t =Ac—c+n, xeQt>0  (1.1)

Where n(x, t)and c(x, t) represent the density of the bacteria and oxygen concentration at position x
and t > 0, respectively. The function S(n) measures the chemotactic sensitivity and D(n) is the
diffusion function. There are a large number of results about whether the solutions for the Neumann
boundary problem of (1.1) globally exist or blow up in finite time. One can refer to (Horstmann &
Winkler, 2005; Winkler, 2016; Zhang & Li, 2015) to find more related results. If we consider the
framework in which the chemical is produced by the cells indirectly, the corresponding chemotaxis
model becomes the following Keller-Segel system with indirect signal production:

n, =V.(D(n)vVn) —V.(nS(n)Vc), x € Q,t >0,
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Ve =Av—v—w, x€Nt>0,
we =Aw —w —v, x€Qt>0 (12)

In a bounded domain Q € R3 with smooth boundary, where the variables n, v, and w represent the
density of cells, the concentration of signal, and the concentration of the chemical, respectively. If N <
3,D(n) = 1and S(n) = y with y > 0, (Fujie & Senba, 2017) proved that the homogeneous Neumann
boundary problem of the system (1.2) possesses a unique and globally bounded classical solution. More
recent observations show that in certain cases of chemical movement in liquid environments, the
interaction between cells and liquids may be significant (see e.g. (Chae et al., 2014; Cieslak & Stinner,
2012; Shi et al., 2017) and references therein). It is also important to consider the biological situation
populations of bacteria may reproduce according to a logistical plan. It can be observed experimentally
that spatial patterns may arise spontaneously from initially almost homogeneous distributions of
bacteria (Dombrowski et al., 2004). When bacteria of the species Bacillus subtilis are suspended in the
fluid (Tuval et al., 2005). conducted a detailed experimental and theoretical study on the interaction of
bacterial chemotaxis, chemical diffusion, and fluid convection. In particular, by placing a water droplet
containing Bacillus subtilis in a chamber with its upper surface open to the atmosphere, they observed
that bacterial cells quickly get densely packed in a relatively thin liquid layer below the water-air
interface through which the oxygen diffuses into the water droplet. For such processes, a mathematical
model was proposed in (Wang et al., 2018; Winkler, 2012), where it is assumed that the main
responsible mechanisms are the chemical movement of bacteria towards the oxygen they consume and
the effect of gravity on the movement of the fluid by heavier bacteria, and the thermal transport of both
cells and oxygen through the fluid see also (Chae et al., 2012). However, in different situations,
bacterial migration is greatly influenced by changes in their environment (Cieslak & Laurengot, 2010).
If cells consume the chemical signal, (Tuval et al., 2005) explored the following chemotactic Navier-
Stokes system:

n; +u.Vn =V.(D(n)Vn) —V.(nS(x,n,c)Vc), x € Q, t >0,

¢ +u.Vc = Ac — nf(c), x €0, t>0,
u; + k(uw.Vu)u + Vp = Au + nVo, x€Qt>0,
V.u=0, XEQt>0 (1.3)

in a bounded domain Q c R3 with a smooth boundary, where f(c) measures the rate at which cells
consume oxygen, and S(x,n,c)denotes a tensor-valued (or scalar) chemotactic sensitivity. Here
u,p,@,and k € R denote the velocity field, the associated pressure of the fluid, the potential of the
gravitational field, and the strength of nonlinear fluid convection, respectively. By the chemical
consumption setting and the maximum principle of the parabolic equations, one can directly deduce
that c is uniformly bounded from the second equation of (1.3), which leads to it being more intensively
studied than the framework with signal production by the cells.(Lorz, 2010) discussed the local
existence of weak solutions to in a bounded domain in R%, d = 2,3. In the case of homogeneous
boundary conditions of Neumann type of n and c, and of Dirichlet type for u, (Winkler, 2014) showed
that the global weak solutions to (1.3). For more literature about this system, one can refer to (Hillen &
Painter, 2009; Winkler, 2017a) and the references therein for details. There are also more results about
chemotaxis systems with nonlinear chemotaxis sensitivity functions, for which we refer to (Bellomo et
al., 2015; Cieslak & Winkler, 2008, 2017; Hou & Wang, 2019; Li, 2019; Pan & Wang, 2021; Rosen,
1978; Tao & Winkler, 2012; Winkler, 2017b). (Hattori & Lagha, 2021a, 2021b) showed the global
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existence and asymptotic behavior of the solutions for a chemotaxis system with chemoattractant and
repellent in three dimensions. In this paper, we are concerned with the following initial value problem
of the Keller-Segel-Nevier-Stokes system with nonlinear diffusion:

om—An+uVn=—xV.(nVe) + n(n —n_)

0iu —yAu + u.Vu + Vo = —nVeop (1.4)
di;c —Ac +u.Vec = —nc
Vu=0 t>0  x€R3

With initial data
(Tl, u, C)lt:o = (no(x):uo(x)’co(x))' X € R3' (15)

Where(no(x),uo(x), Co(x)) - (ne, 0,0) as |x| - oo. Here n = n(t,x),c= c(t,x),and u =
u(t,x) denote the bacterial concentration, the oxygen concentration, and the fluid velocity field
respectively. In addition, m = m(t,x) is unknown pressure and ¢ is the gravitational potential
function. The term —xV. (nVc) reflects the attractive movement of cells. While ny, = ny(x), uy, =
uy(x), and ¢, = cy(x), are the given functions, the constants y > 0, x > 0. Where n,, is a non-
negative constant. A simple model case can be obtained upon the choices Vo = const., x = 1.

This paper is organized as follows, the first section is this introduction, which describes of some of the
models used in chemotaxis, their rationale, and a very brief summary of the results obtained. In Section
2, We present notations and some assumptions that will be heavily used throughout the whole paper and
state our main result. In Section 3, we prove the local-in-time existence of a regular solution for three-
dimensional chemotaxis system with incompressible Navier-Stokes equations.

2. Main result

We first introduce some notations that we will use later in this paper. For 1 < P < oo, we denote LP
for the Lebesgue space on £, and the norms in the space LP(R?) are denoted by ||. ||, For any integer
N > 0, we use HN to denote the Sobolev space HN(R?). Set L? = H?, the norm of HN is denoted by
Il llyv. We set 0% = 9,10,20,* for a multi-index a = [a1, a;, @3] and length of a s |.| = a3 + a, +
as;. Cand C;, where i = 1,2, denote some positive (generally small) constant, where both C and C; may
take different values in different places. Let us denote the space

X(0,T) = {n — ne,u,c € ([0, T;H3(R?)) n c ([0, T]; HX(R®)), V(n — ne,), Vi,V c
€ L2([0, T]; H3(R®))}.

The main goal of this paper is to establish the existence of unique local solutions in three dimensions
around a constant state (n., 0, 0) for the above system (1.4). The main result of this paper is stated as
follows:

Theorem 2.1. There exists a positive number g, such that if
170, w0, Collnz < o,

then the Cauchy problems (1.4)-(1.5) of the Keller-Segel-Nevier-Stokes system admits a unique local
solution (n,u, ¢) with
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(n—ne,u,c) € X(0,7T).
The proof of the existence of local solutions in Theorem 2.1 by constructing a sequence of
approximation functions based on iteration and some basic energy estimates. Let U(t) = (n,u,c) be a
smooth solution to the Cauchy problem of the Chemotaxis system (1.4) with initial data U, =

(Mg, Uo, Co)-
We set:
n(t,x) = ne + o(t, x).

Then, the Cauchy problem (1.4) and (1.5) are reformulated as

0,0 — Ao + u.Vo + ne,o = —V.(a6Vc) — ne,Ac + Vo?
oou —yAu+u.Vu = =V — (0 + n,, )V

dic + —Ac +u.Vc = —(0 + ny)c

Vu=0 t>0,x€ RS (2.1)

with initial data
(o,u,¢)|¢=0 = (09, up, ¢o) = (0,0,0) as [x] > o, (2.2)

where g, = ng — N
3. Existence of local solutions

This section is devoted to the proof of Theorem 2.1. We construct the sequence (n/, u, ci)j20 by solving
iteratively the Cauchy problems on the following linear equations

It +uwl VIt = At — V. (V) + i (W —n)

Wt + .Vt = yAW T — Vit — nive
0,/ + W VI + Acitt = —nf /Tt (3.1)
Vutl=0 t>0, x€R3,

with initial data

(nj+1,uj+1,Cj+1)|t=0 = (ng,Up, Cp), X ER3, (3.2)

for j > 0,where (n° c%u®|;—0 = (N, 0,0) is set at initial step. Now, we set n/ = o/ + n,, then
(3.1)-(3.2) can be rewritten as

(0;07% + W . VoI* + ng,o/™ = Ag/*t — V. (0/VcI*t) — ng,Ac/*t + Vo2

0,/ +uw VeIt + At = — (07 + ng, )/t

4 . , . , ) .
At +uw VWt = yAwtt — Vit — (67 + n,, ) Ve

\V.u/t1=0 t>0, «x€R3 (3.3)

with initial data
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(Gj+1,Cj+1,uj+1)|t=0 = (09, co, ) — (0,0,0) (34)

as |x]—> o, for j=0. In what follows, let us write Aj=(af+1,uf+1,cf+1)j>0andAo=

(09, Ug, Co), where A = (0,0,0). Next, we prove that (Ai)jZO is a Cauchy sequence in the Banach
space C([0,T;];H3) for T, > 0 suitable small. At last, by taking the limit and continuous argument, we
prove that (o, u, ¢) is a local solution to (2.1)-(2.2). Now, we can state the following result:

Theorem 3.1.

Suppose ||Aqllys < &, for small constants & >0, T, > 0,B; > 0. Then for each j >0, Al €
C([0,Ty)]; H3), is well defined and

Sup ”Aj(t)”HN <B 1 (3-5)

0<t<T,
Moreover, (Al')]-20 is a Cauchy sequence in Banach space C([0, T;]; H?), the corresponding limit
function denoted by A belongs to C([0, T,]; H?) with

sup [[A(®I[gy < B, (3.6)
0<t<T,
and A = (o,u,c) is a solution to the Cauchy problem (2.1)-(2.2) over [0, T;]. The Cauchy problem
(2.1)-(2.2) admits at most one solution A€ C([0, T,]; H%), which satisfies (3.6).

proof .

We begin by focusing our attention on the proof of (3.5), which will be given by an inductive argument.
The trivial case is j = 0 since A° = ( 0,0,0) by the assumption at initial step. Suppose that (3.5) holds for
some j= 0 where is small enough. To prove (3.5) holds for j+1, we need some energy estimates on
(O'j+1, cj“,uj“).

Applying 0% to both sides of the first equation of (3.3), multiplying by d%6’*1, and integrating over R3
with |a| < 3, we obtain

1d

. 2 . . : 2
- o~j+1 a Jj+1 qo ~j+1 a~j+1
T R3|6 o/t dx + [z 0%Ac7* 0“0/ dx + n, R3|6 o1 dx,

= — faa(ui_vciﬂ) 0%+ dx — J‘G“V. (GjVCj+1) 9%+ dx
]R3 ]R?’

g, [os 0%ACH 0% dx + [, 0%t %07 dx.
By using integration by parts, we have
1d j+1]2 j+1]2 j+1]2
e |6°‘0] | dx + |6°‘VG’ | dx + ng, |6°‘01 | dx,
R3 R3 R3

= — j a“(ui_ Vo-l"l'l) 0%t dx — f aoc(o-]'VCHl) 0%V t! dx
R3

R3

g, [ 07V 99V dx + [, 0% %% dx. (3.7)
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By using the Cauchy inequality the terms on the right-hand side are bounded by
. . 2 . . .
Cllwllallve™ s + Cllo s [V s (1967 ]
1 (Ve 674 ) + Clloile 19672l + 10l (38)
Then, by taking the summation over |a| < 3, we have
. 1 . .
gl e +5 190 s + 0 [l

< clve |, + clla oDIE [9(e, I + el (39)
By the same way, for (3.3), on c/*!, one has

2dt J.111{3|60(C]-I-1| dx + fR3|V6°‘C]+1| dx + ne, fRslaacl+1| dx

- j@“(uj.ch“) 0%citldx — f@“(ajcj“) 9%cit1dx .
3

The terms on the right-hand side of the previous inequality are bounded by
. . 2 . . .
¢ [[wlls 19T s +ello s 96 H s Nl s
Thus, we have
sa 18 s + S 1ver* s + 22l < cllh oD Ive* I (3:10)

Similarly, for the (3.3); on w*!, we get that

o f|6°‘u’+1| dx+y f|V6°‘u’+1| dx =

— [ 0%(Wl. VUit ). 0% dx + [, 0%(Vol@). 0w dx.
Where the right-hand side of the previous equation is bounded by
. 2 12 1 12
Cllwllys IVl + Cllolle +5 V0
Then, after taking summation over |a@| < 3 and using the Cauchy inequality, one has
sa ot + 2 (v, <clloffld +cluill g ve ] i @1y

Then the linear combination (3.9)+(3.10)x d+(3.11) leads to

sa (o™l +alle [l + w2 )
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+C1||V(O.j+1’ o+l ’uj+1)||12_13 + C2||0j+1' Cj+1”;3

2

<C ||($j||;3 + C||Gj,Cj,uj||;3||V(O'j+1, cit1 ,uj+1)||H3,

(3.12)

By choosing d > 0 large enough. Further, after Integrating (3.12) over [0, t] for all t €[0, T, ], we have
t t
[l + & [I7am ©lds+c, [0 ok,
0 0

< CllAoll%s + € [AG)|ds + C [N, VA6 .ds, (3.13)

for some positive constants C; and C,. From the inductive assumption, the previous inequality can be
re-estimated as

t t
(42l + € [ 7A@ Iads + € [0, s
0 0

< Ce? + CBIT, + CB? [||vA* (5)||” . ds, (3.14)
for any 0< t < T;. Now, we take the small constants &; > 0, B; > 0 and T; > 0. Then, we get
j+1 2 j+1 2 j+1 j+1]|? 2
A1 O] ;5 + Co[[VAH©®)| s + Col|0™*, s < BE, (3.15)
forany 0 < t < T;. This implies that (3.5) holds for j + 1, Hence (3.5) is proved for all j > 0.

Next, we define

2

e ) = a5, + o2, +

Where the constant d > 0 is given in (3.12). Similar to prove (3.12), we have

[EA* (1) — E(A* (5))| =

[L - EA* (1) dr |

<C fst”Aj(‘t)”;dr +C fst(l + ”Aj(‘[.')||2HS)||VAj+1(T)||12_I3dT +C, fot”Gj“, cj+1||2HsdT,

< CB2(t—s) + C(1 +B,2) [[VA @, dv + C, [0, o[, dv, (3.16)

forany 0 <s <t < Ty. Here, The time integral on the right-hand side from the above inequality is
bounded by (3.15), and hence E(AI*1(t)) is Continuous in t for each j> 0. By the same argument, we

) ) 2 . 2 ] .

can  infer  that both [|cI*| s, and [[W**|| ', are  continuous  in &
; . . . ; 2

From the continuity of E (A7**(t)),we can also infer the continuity of [lo™**|| ;. Therefore,

. 2 . -
||AJ+1(t)||H3 is continuous in time for any j > 1.
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For this step, we prove that the sequence (Aj)]_>0is a Cauchy sequence in the Banach space

C([0, T,]; H3), which converges to the solution U = (o, u, ¢) of the Cauchy problem (2.1)-(2.2), and
satisfies (3.6). Let us take the difference of (3.3) for j + 1 and j so that it gives

0:(01*t = 0l) — A(G*! — 0)) + ne (9t — 0)) = —W. V(6! — &) — (W — W) Vo

=9.(0V(* = ) = V.((0 = V) = ng,[A(I* = )] — (60+D2 — o7?)
0:(Jt — ) — AT = ) + g, (I = )

= —uw. V(" = d) = (W —-u1).vd - (= J) — (6 = d71)d),

A (Wt —u) —yA(Wtt — ) = —V(Wt — 1) — W V(W = W) — (W — ). VU
V.(Wtt—uw)=0, t>0x€eRS.

By using the same energy estimates as before, we have
2 . : . .
L@t = D] 9 = o + |07 = D
< ¢[|l(w - w0l = )L 1V, D) s

+C||(O'j,uj)||23”V(Gj+1 —ol,d* — CJ')||2H3+noo||V(cj+1 - cj)||i13 (3.17)

Ny, . . 1 . .
~ Sl - cl)ll S [t = ehllys +5 Ve = Dl <

cll@ s [Vt = )|+ C V(@ — o u —w |2, [V}, (3.18)

1d j+1 j ’ j+1 j 2
sglle =l +Lvwn - w,

< cflulflis 9@t = w)l5, + cll = b5, V]l
+C|lod - Gj_1||;3. (3.19)

We combine the equations (3.17)-(3.19) to obtain
LEE(AM = A) + 2|V — M) + 22 [ = D[ + na| @ = D)

< clal — A1, + A7, [[veatt — AN, + cllal — A, VAT, (3.20)

By integrating over [0, t] for any 0 < t < T, from (3.20), we obtain
t t
j+1 iyl 2 j+1 it |I? Do [11ecitt _ ¢iy|[?
a7+t — A7) yat G [V(A*(s) — A()) || ;s ds += [t = N[ o ds
0 0

+C, f”(o”l — o), dtt — cj)”;ds
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t
< CA+BAT swp |4 ©) =A@, +CBy f [va*i(s) - A ads,
0

0<t<T,

which by smallness of B;and T,implies that there is a constant C; < 0, there exists a constant 6¢(0,1),
such that forany j > 1

swp (A A ©®,2 <6 suwp (A ©) 42D,

0<ts<T, 0<t<T,
which implies that (A')}5, is a Cauchy sequence in the Banach space C([0, T, ]; H3(R?)).
By the property of Banach space, we have the limit function

i
A=A"+lim Z(Ai+1 — )
j=0

1—>00

exists in C([0, T, ]; H3(R?)), and satisfies

sup 1ADlyz < sup lim inf |4/ . <B:.  (3:21)
0<ts<T, ostsT,/ %
Finally, we show that the Cauchy problem (2.1)-(2.2) admits at most one solution in
C([0, T, ]; H3(R®)). Suppose that there exist two solutions 4,4 in C([0, T,]; H3(R3)) which satisfy
(3.6). Let 6 =0,(x,t) —0,(x,t), % = uy (x,t) —u,(x,t),and ¢ = ¢, (x,t) — c,(x,t)
solves

00 + N6 —AF =u.VG—UVay, +V.(0,VE) —V.(6Vc,) — (0, + 0,)6
0, U +yAll = —u,V-i —tuaV-u; —dVep
0; € —AC +ny,C =—u,V-¢—u.Vey + ¢y + 04C. (3.22)
Multiplying & to both sides of the first equation of (3.22) and integrating over R3, we have

Js G 0:Gdx+ng, [36 Gdx — [5G AGdx=[ 3 GV.(6Vc)dx + [, V. (0,VE)dx + [, 0 uy.VEdx
— Jgs G W.Vopdx — [, 6 (01 + 0;)Fdx.

Then, after using integration by parts and the Cauchy inequality, we obtain

d_, PR
1512 + e G112 151

< cllVeylls f (1612 + [V&|2)dx
]R3

+ clloyllye j (V]2 + Ve dx
]R3

+ Cllulllef3(|6-|2 +|V6|%)dx + CIIV02I|L°<>f3(I5I2 + |@]*)dx
R R

(o1 + o)l fal 6] dx. (3.23)
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For the estimate of #, multiplying @ to both sides of the second equation of (2.1) and taking
integrations in x, we obtain

Js W0 tidx+y [, T Afidx =
— Joa W (AV - u)dx -[a @t . (upV - W)dx + [ . (V) dx

By using integration by parts and the Cauchy inequality, we have

d

112 ~112 112 112 112
S iz +vIIVillsz < cllV -yl e llEll 2 +Hlup | o (Tl 21V @l 72

+cllVoll o (I1Ell72 + 1161172)-

Since L® norms of o, ut, ¢t where i = 1, 2 are bounded, we have

d  _ - - _
m”u”iz + c||Vu||iz < C”O’”iz + C”u”iz (324)

Similarly, as above, we estimate ¢ as follows:

d
Z—dtllfllfz + CIIVElZ + noll€llzz < c(llelf + 116112 + Nl@ll72).  (3.25)

Then, after taking the linear combination of all estimates, we obtain

d

= (161172 + N1l + llell7z) + 2. (611 + NelFz)

+ 2 ((IVE 122 +1IVEl 2 + IVENZ) < C(I16N17 + NIEl22 + [1Ell%). (3.26)
By applying Gronwall’s inequality to the above equation, we have

sup (161172 + 18ll72 + NlEllF) < e (116017 + 11017 + 1E(0)I72).
0<t<T;

Since the initial data of (&, i, ¥,Ww) are all zero for T > 0, that implies the uniqueness of the local
solution.

CONCLUSION

In this paper, we prove the existence of local solutions for Navier Stokes system modeling cellular
swimming in fluid drops in three dimensions. We show the existence of local solutions by the energy
method. We divided the proof into four steps, using integral by parts, Cauchy —Schwarz inequality, and
Gronwall's inequality to prove these steps.
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