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 Abstract 

In this paper, we are concerned with the Cauchy problem for the three-
dimensional chemotaxis system with an indirect signal production 
mechanism involving a diffusive partial differential equation. Which 
describes the motion of bacteria, Eukaryotes, in a fluid. Precisely, for the 
Chemotaxis-Navier–Stokes system modeling cellular swimming in fluid 
drops. We established the existence of local solutions to the compressible 
chemotaxis equation. We proved the local existence of the Cauchy 
problem (1.1)-(1.2) in ℝ3 with the small initial data by using  the energy 
method. 

 Keywords: Chemotaxis system, Energy method, nonlinear 
diffusion. 

INTRODUCTION 

Chemotaxis refers to the directional movement of organisms in response to certain chemicals in their 
environments, which plays an essential role in various biological processes such as wound healing, 
cancer invasion, and avoidance of predators (Di Francesco et al., 2010). It has attracted considerable 
attention due to its critical role in a wide range of biological phenomena. In 1970, (Keller & Segel, 
1970) derived the following chemotaxis model  

𝑛𝑛𝑡𝑡 = ∇. (D(𝑛𝑛)∇𝑛𝑛) − ∇. (𝑛𝑛S(𝑛𝑛)∇𝑐𝑐),   𝑥𝑥 ∈ Ω, 𝑡𝑡 > 0, 

𝑐𝑐𝑡𝑡 = ∆𝑐𝑐 − 𝑐𝑐 + 𝑛𝑛,                   𝑥𝑥 ∈ Ω, 𝑡𝑡 > 0.       (1.1)  

Where 𝑛𝑛(𝑥𝑥, 𝑡𝑡)𝑎𝑎𝑎𝑎𝑎𝑎 𝑐𝑐(𝑥𝑥, 𝑡𝑡) represent the density of the bacteria and oxygen concentration at position 𝑥𝑥 
and 𝑡𝑡 > 0, respectively. The function S(𝑛𝑛) measures the chemotactic sensitivity and 𝐷𝐷(𝑛𝑛) is the 
diffusion function. There are a large number of results about whether the solutions for the Neumann 
boundary problem of (1.1) globally exist or blow up in finite time. One can refer to (Horstmann & 
Winkler, 2005; Winkler, 2016; Zhang & Li, 2015) to find more related results. If we consider the 
framework in which the chemical is produced by the cells indirectly, the corresponding chemotaxis 
model becomes the following Keller-Segel system with indirect signal production: 

𝑛𝑛𝑡𝑡 = ∇. (𝐷𝐷(𝑛𝑛)∇𝑛𝑛) − ∇. (𝑛𝑛𝑛𝑛(𝑛𝑛)∇𝑐𝑐),   𝑥𝑥 ∈ Ω, 𝑡𝑡 > 0, 
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  𝑣𝑣𝑡𝑡 = ∆𝑣𝑣 − 𝑣𝑣 − 𝑤𝑤,                                𝑥𝑥 ∈ Ω, 𝑡𝑡 > 0,      

           𝑤𝑤𝑡𝑡 = ∆𝑤𝑤 − 𝑤𝑤 − 𝑣𝑣,                         𝑥𝑥 ∈ Ω, 𝑡𝑡 > 0.      (1.2)     

In a bounded domain Ω ∈ ℝ3 with smooth boundary, where the variables 𝑛𝑛, 𝑣𝑣, and 𝑤𝑤 represent the 
density of cells, the concentration of signal, and the concentration of the chemical, respectively. If 𝑁𝑁 ≤
3,𝐷𝐷(𝑛𝑛) ≡ 1 and 𝑆𝑆(𝑛𝑛) = 𝜒𝜒 with 𝜒𝜒 > 0, (Fujie & Senba, 2017) proved that the homogeneous Neumann  
boundary problem of the system (1.2) possesses a unique and globally bounded classical solution. More 
recent observations show that in certain cases of chemical movement in liquid environments, the 
interaction between cells and liquids may be significant (see e.g. (Chae et al., 2014; Cieślak & Stinner, 
2012; Shi et al., 2017) and references therein). It is also important to consider the biological situation 
populations of bacteria may reproduce according to a logistical plan. It can be observed experimentally 
that spatial patterns may arise spontaneously from initially almost homogeneous distributions of 
bacteria (Dombrowski et al., 2004). When bacteria of the species Bacillus subtilis are suspended in the 
fluid (Tuval et al., 2005). conducted a detailed experimental and theoretical study on the interaction of 
bacterial chemotaxis, chemical diffusion, and fluid convection. In particular, by placing a water droplet 
containing Bacillus subtilis in a chamber with its upper surface open to the atmosphere, they observed 
that bacterial cells quickly get densely packed in a relatively thin liquid layer below the water-air 
interface through which the oxygen diffuses into the water droplet. For such processes, a mathematical 
model was proposed in (Wang et al., 2018; Winkler, 2012), where it is assumed that the main 
responsible mechanisms are the chemical movement of bacteria towards the oxygen they consume  and 
the effect of gravity on the movement of the fluid by heavier bacteria, and the thermal transport of both 
cells and oxygen through the fluid see also (Chae et al., 2012). However, in different situations, 
bacterial migration is greatly influenced by changes in their environment (Cieślak & Laurençot, 2010). 
If cells consume the chemical signal, (Tuval et al., 2005) explored the following chemotactic Navier-
Stokes system: 
 

𝑛𝑛𝑡𝑡 + 𝑢𝑢.∇𝑛𝑛 = ∇. (𝐷𝐷(𝑛𝑛)∇𝑛𝑛) − ∇. (𝑛𝑛𝑛𝑛(𝑥𝑥,𝑛𝑛, 𝑐𝑐)∇𝑐𝑐),   𝑥𝑥 ∈ Ω, 𝑡𝑡 > 0, 

𝑐𝑐𝑡𝑡 + 𝑢𝑢.∇𝑐𝑐 = ∆𝑐𝑐 − 𝑛𝑛𝑛𝑛(𝑐𝑐),                                       𝑥𝑥 ∈ Ω, 𝑡𝑡 > 0,      

𝑢𝑢𝑡𝑡 + 𝜅𝜅(𝑢𝑢.∇𝑢𝑢)𝑢𝑢 + ∇𝑝𝑝 = ∆𝑢𝑢 + 𝑛𝑛∇𝜑𝜑,                𝑥𝑥 ∈ Ω, 𝑡𝑡 > 0,   

                                   ∇.𝑢𝑢 = 0 ,                                                                           𝑥𝑥 ∈ Ω, 𝑡𝑡 > 0             (1.3) 

in a bounded domain Ω ⊂ ℝ3 with a smooth boundary, where 𝑓𝑓(𝑐𝑐) measures the rate at which cells 
consume oxygen, and 𝑆𝑆(𝑥𝑥,𝑛𝑛, 𝑐𝑐)denotes a tensor-valued (or scalar) chemotactic sensitivity. Here 
𝑢𝑢,𝑝𝑝,𝜑𝜑, and 𝜅𝜅 ∈  R denote the velocity field, the associated pressure of the fluid, the potential of the 
gravitational field, and the strength of nonlinear fluid convection, respectively. By the chemical 
consumption setting and the maximum principle of the parabolic equations, one can directly deduce 
that 𝑐𝑐 is uniformly bounded from the second equation of (1.3), which leads to it being more intensively 
studied than the framework with signal production by the cells.(Lorz, 2010) discussed the local 
existence of weak solutions to in a bounded domain in 𝑅𝑅𝑑𝑑, d = 2,3. In the case of homogeneous 
boundary conditions of Neumann type of 𝑛𝑛 and 𝑐𝑐, and of Dirichlet type for 𝑢𝑢, (Winkler, 2014) showed 
that the global weak solutions to (1.3). For more literature about this system, one can refer to (Hillen & 
Painter, 2009; Winkler, 2017a) and the references therein for details. There are also more results about 
chemotaxis systems with nonlinear chemotaxis sensitivity functions, for which we refer to (Bellomo et 
al., 2015; Cieślak & Winkler, 2008, 2017; Hou & Wang, 2019; Li, 2019; Pan & Wang, 2021; Rosen, 
1978; Tao & Winkler, 2012; Winkler, 2017b).  (Hattori & Lagha, 2021a, 2021b) showed the global 
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existence and asymptotic behavior of the solutions for a chemotaxis system with chemoattractant and 
repellent in three dimensions. In this paper, we are concerned with the following initial value problem 
of the Keller-Segel-Nevier-Stokes system with nonlinear diffusion: 

𝜕𝜕𝑡𝑡𝑛𝑛 − ∆𝑛𝑛 + 𝑢𝑢.∇𝑛𝑛 = −χ∇. (n∇𝑐𝑐) + 𝑛𝑛(𝑛𝑛 − 𝑛𝑛∞) 

𝜕𝜕𝑡𝑡𝑢𝑢 − 𝛾𝛾∆𝑢𝑢 + 𝑢𝑢.∇𝑢𝑢 + ∇𝜋𝜋 = −𝑛𝑛∇𝜑𝜑                                          (1.4) 

𝜕𝜕𝑡𝑡𝑐𝑐 − ∆𝑐𝑐 + 𝑢𝑢.∇𝑐𝑐 = −𝑛𝑛𝑛𝑛       

∇.𝑢𝑢 = 0    𝑡𝑡 > 0,         𝑥𝑥 ∈ ℝ3.  

With initial data 

  (𝑛𝑛,𝑢𝑢, 𝑐𝑐)|𝑡𝑡=0 = �𝑛𝑛0(𝑥𝑥),𝑢𝑢0(𝑥𝑥), 𝑐𝑐0(𝑥𝑥)�, 𝑥𝑥 ∈ 𝐑𝐑3,          (1.5) 

where�𝑛𝑛0(𝑥𝑥),𝑢𝑢0(𝑥𝑥), 𝑐𝑐0(𝑥𝑥)� → (𝑛𝑛∞, 0,0) as |x| →  ∞. Here  𝑛𝑛 =  𝑛𝑛(𝑡𝑡, 𝑥𝑥), 𝑐𝑐 =  𝑐𝑐(𝑡𝑡, 𝑥𝑥),𝑎𝑎𝑎𝑎𝑎𝑎  𝑢𝑢 =
 𝑢𝑢(𝑡𝑡, 𝑥𝑥) denote the bacterial concentration, the oxygen concentration, and the fluid velocity field 
respectively. In addition, 𝜋𝜋 =  𝜋𝜋(𝑡𝑡, 𝑥𝑥) is unknown pressure and 𝜑𝜑 is the gravitational potential 
function. The term −χ∇. (n∇𝑐𝑐) reflects the attractive movement of cells. While 𝑛𝑛0 = 𝑛𝑛0(𝑥𝑥), 𝑢𝑢0 = 
𝑢𝑢0(𝑥𝑥), and 𝑐𝑐0 = 𝑐𝑐0(𝑥𝑥), are the given functions, the constants 𝛾𝛾 >  0, χ > 0. Where 𝑛𝑛∞ is a non-
negative constant. A simple model case can be obtained upon the choices ∇𝜑𝜑 = 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐.,  χ = 1. 

This paper is organized as follows, the first section is this introduction, which describes of some of the 
models used in chemotaxis, their rationale, and a very brief summary of the results obtained. In Section 
2, we present notations and some assumptions that will be heavily used throughout the whole paper and 
state our main result. In Section 3, we prove the local-in-time existence of a regular solution for three-
dimensional chemotaxis system with incompressible Navier-Stokes equations. 
 
2. Main result 
We first introduce some notations that we will use later in this paper. For 1 ≤ 𝑃𝑃 ≤ ∞, we denote  𝐿𝐿𝑝𝑝 
for the Lebesgue space on Ω, and the norms in the space  𝐿𝐿𝑝𝑝(𝑹𝑹3) are denoted by ‖. ‖p. For any integer 
𝑁𝑁 ≥ 0, we use HN to denote the Sobolev space HN(𝑹𝑹3). Set L2 = H0, the norm of  HN is denoted by 
‖. ‖HN . We set 𝜕𝜕𝛼𝛼 = 𝜕𝜕𝑥𝑥1

𝛼𝛼1𝜕𝜕𝑥𝑥2
𝛼𝛼2𝜕𝜕𝑥𝑥3

𝛼𝛼3 for a multi-index 𝛼𝛼 = [𝛼𝛼1,𝛼𝛼2,𝛼𝛼3] and length of 𝛼𝛼 is |. | = 𝛼𝛼3 + 𝛼𝛼2 +
𝛼𝛼3. C and 𝐶𝐶𝑖𝑖, where 𝑖𝑖 = 1,2, denote some positive (generally small) constant, where both C and 𝐶𝐶𝑖𝑖  may 
take different values in different places. Let us denote the space 

𝑋𝑋(0,𝑇𝑇) = �𝑛𝑛 − 𝑛𝑛∞,𝑢𝑢, 𝑐𝑐 ∈ C�[0, T]; H3(𝐑𝐑3)� ∩ C1�[0, T]; H1(𝐑𝐑3)�,∇(𝑛𝑛 − 𝑛𝑛∞),∇𝑢𝑢,∇ 𝑐𝑐
∈ L2�[0, T]; H3(𝐑𝐑3)��. 

 The main goal of this paper is to establish the existence of unique local solutions in three dimensions 
around a constant state (𝑛𝑛∞, 0, 0) for the above system (1.4). The main result of this paper is stated as 
follows: 

Theorem 2.1. There exists a positive number ε0 such that if  
‖𝑛𝑛0,𝑢𝑢0, 𝑐𝑐0‖H3 ≤ ε0, 

 
then the Cauchy problems (1.4)-(1.5) of the Keller-Segel-Nevier-Stokes system admits a unique local 
solution (𝑛𝑛,𝑢𝑢, 𝑐𝑐) with 
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(𝑛𝑛 − 𝑛𝑛∞,𝑢𝑢, 𝑐𝑐) ∈  𝑋𝑋(0,𝑇𝑇). 
The proof of the existence of local solutions in Theorem 2.1 by constructing a sequence of 
approximation functions based on iteration and some basic energy estimates. Let U(𝑡𝑡) = (𝑛𝑛,𝑢𝑢, 𝑐𝑐) be a 
smooth solution to the Cauchy problem of the Chemotaxis system (1.4) with initial data U0  =
 (𝑛𝑛0,𝑢𝑢0, 𝑐𝑐0). 
We set:  

𝑛𝑛(𝑡𝑡, 𝑥𝑥) = 𝑛𝑛∞ + 𝜎𝜎(𝑡𝑡, 𝑥𝑥). 
 
Then, the Cauchy problem (1.4) and (1.5) are reformulated as 
 

𝜕𝜕𝑡𝑡𝜎𝜎 − ∆𝜎𝜎 + 𝑢𝑢.∇𝜎𝜎 + 𝑛𝑛∞𝜎𝜎 = −∇. (𝜎𝜎∇𝑐𝑐) − 𝑛𝑛∞∆𝑐𝑐 +  ∇𝜎𝜎2       
                𝜕𝜕𝑡𝑡𝑢𝑢 − 𝛾𝛾∆𝑢𝑢 + 𝑢𝑢.∇𝑢𝑢 = −∇𝜋𝜋 − (𝜎𝜎 + 𝑛𝑛∞)∇𝜑𝜑                                               

𝜕𝜕𝑡𝑡𝑐𝑐 + −∆𝑐𝑐 + 𝑢𝑢.∇𝑐𝑐 = −(𝜎𝜎 + 𝑛𝑛∞)𝑐𝑐                                              
∇.𝑢𝑢 = 0    𝑡𝑡 > 0, 𝑥𝑥 ∈ ℝ3,                                           (2.1)          

                         
                                                                                                                

 

with initial data 
            (𝜎𝜎,𝑢𝑢, 𝑐𝑐)|𝑡𝑡=0 = (𝜎𝜎0,𝑢𝑢0, 𝑐𝑐0) → (0,0,0)  as |x| → ∞,    (2.2) 

where 𝜎𝜎0 = 𝑛𝑛0 − 𝑛𝑛∞ 

 3. Existence of local solutions 

This section is devoted to the proof of Theorem 2.1. We construct the sequence (nj, uj, cj)j≥0 by solving 
iteratively the Cauchy problems on the following linear equations  

               𝜕𝜕𝑡𝑡𝑛𝑛𝑗𝑗+1 + 𝑢𝑢𝑗𝑗 .∇𝑛𝑛𝑗𝑗+1 = ∆𝑛𝑛𝑗𝑗+1 − ∇. �𝑛𝑛𝑗𝑗∇𝑐𝑐𝑗𝑗+1� + 𝑛𝑛𝑗𝑗(𝑛𝑛𝑗𝑗 − 𝑛𝑛∞)                                                                   
               

𝜕𝜕𝑡𝑡𝑢𝑢𝑗𝑗+1 + 𝑢𝑢𝑗𝑗 .∇𝑢𝑢𝑗𝑗+1 = 𝛾𝛾∆𝑢𝑢𝑗𝑗+1 − ∇𝜋𝜋𝑗𝑗+1 − 𝑛𝑛𝑗𝑗∇𝜑𝜑                                                                             
     𝜕𝜕𝑡𝑡𝑐𝑐𝑗𝑗+1 + 𝑢𝑢𝑗𝑗 .∇𝑐𝑐𝑗𝑗+1 + ∆𝑐𝑐𝑗𝑗+1 = −𝑛𝑛𝑗𝑗𝑐𝑐𝑗𝑗+1                                           (3.1)                                             

∇.𝑢𝑢𝑗𝑗+1 = 0    𝑡𝑡 > 0,     𝑥𝑥 ∈ ℝ3 ,                                                                                                            
                                                                               

 

with initial data 

            �𝑛𝑛𝑗𝑗+1,𝑢𝑢𝑗𝑗+1, 𝑐𝑐𝑗𝑗+1��
𝑡𝑡=0

= (𝑛𝑛0,𝑢𝑢0, 𝑐𝑐0),       𝑥𝑥 ∈ ℝ3, (3.2)   

for j ≥ 0, where   (𝑛𝑛0, 𝑐𝑐0,𝑢𝑢0)|𝑡𝑡=0 = (𝑛𝑛∞, 0,0) is set at initial step. Now, we set  𝑛𝑛𝑗𝑗 = σ𝑗𝑗 + 𝑛𝑛∞, then 
(3.1)-(3.2) can be rewritten as 

⎩
⎪⎪
⎨

⎪⎪
⎧ 𝜕𝜕𝑡𝑡𝜎𝜎𝑗𝑗+1 + 𝑢𝑢𝑗𝑗 .∇𝜎𝜎𝑗𝑗+1 + 𝑛𝑛∞𝜎𝜎𝑗𝑗+1 = ∆𝜎𝜎𝑗𝑗+1 − ∇. �𝜎𝜎𝑗𝑗∇𝑐𝑐𝑗𝑗+1� − 𝑛𝑛∞∆𝑐𝑐𝑗𝑗+1 + ∇𝜎𝜎𝑗𝑗2                                 
𝜕𝜕𝑡𝑡𝑐𝑐𝑗𝑗+1 + 𝑢𝑢𝑗𝑗 .∇𝑐𝑐𝑗𝑗+1 + ∆𝑐𝑐𝑗𝑗+1 = −�𝜎𝜎𝑗𝑗 + 𝑛𝑛∞�𝑐𝑐𝑗𝑗+1                                                                                      

               
𝜕𝜕𝑡𝑡𝑢𝑢𝑗𝑗+1 + 𝑢𝑢𝑗𝑗 .∇𝑢𝑢𝑗𝑗+1 = 𝛾𝛾∆𝑢𝑢𝑗𝑗+1 − ∇𝜋𝜋𝑗𝑗+1 − �𝜎𝜎𝑗𝑗 + 𝑛𝑛∞�∇𝜑𝜑                                                                       

                                                               
∇.𝑢𝑢𝑗𝑗+1 = 0    𝑡𝑡 > 0,        𝑥𝑥 ∈ ℝ3,             (3.3)                                                                                             

 

with initial data 
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  (𝜎𝜎𝑗𝑗+1, 𝑐𝑐𝑗𝑗+1,𝑢𝑢𝑗𝑗+1)|𝑡𝑡=0 = (𝜎𝜎0, 𝑐𝑐0,𝑢𝑢0) → (0,0,0)            (3.4)   

 as  |x| → ∞, for j ≥ 0. In what follows, let us write  Aj = �𝜎𝜎𝑗𝑗+1,𝑢𝑢𝑗𝑗+1, 𝑐𝑐𝑗𝑗+1�
j≥0

and A0 =
(σ0, u0, c0), where A0 ≡ (0 ,0,0). Next, we prove that (Aj)j≥0 is a Cauchy  sequence in the Banach 
space C([0,T1];H3) for T1 > 0  suitable small.  At last, by taking the limit and  continuous argument, we 
prove that (𝜎𝜎,𝑢𝑢, 𝑐𝑐) is a local solution to (2.1)-(2.2). Now, we can state the  following result: 

Theorem 3.1.   

   Suppose ‖A0‖H3 ≤ ε1, for small constants  ε1  > 0, T1 > 0 ,𝐵𝐵1 > 0. Then for each 𝑗𝑗 ≥ 0, Aj ∈
 C([0, T1)]; H3), is well defined and  

�Aj(t)�
HN

≤ B 1,Sup
0≤t≤T1

 
       (3.5) 

 Moreover, (Aj)j≥0 is a Cauchy sequence in Banach space C([0, T1]; H3), the corresponding limit 
function denoted by A  belongs to C([0, T1]; H3) with    

 
‖A(t)‖HN ≤ B ,Sup

0≤t≤T1

  (3.6) 

and A = ( 𝜎𝜎 ,𝑢𝑢, 𝑐𝑐) is a solution to the Cauchy problem (2.1)-(2.2) over [0, T1]. The Cauchy problem 
(2.1)-(2.2) admits at most one solution A∈ C([0, T1]; H3), which satisfies (3.6). 

proof .  

We begin by focusing  our attention on the proof of (3.5), which will be given by an inductive argument. 
The trivial case is 𝑗𝑗 = 0 since A0 = ( 0,0,0) by the assumption at initial step. Suppose that (3.5) holds for 
some j≥ 0 where is small enough. To prove (3.5) holds for j+1, we need some energy estimates on 
(𝜎𝜎𝑗𝑗+1, 𝑐𝑐𝑗𝑗+1,𝑢𝑢𝑗𝑗+1).  

Applying ∂α to  both sides of the first equation of (3.3), multiplying by ∂ασj+1, and integrating over ℝ3 
with |α| ≤ 3, we obtain    

        1
2
d
dt ∫ �∂ασj+1�2ℝ3 dx + ∫ ∂α∆𝜎𝜎𝑗𝑗+1ℝ3 ∂ασj+1dx + n∞ ∫ �∂ασj+1�2dx,ℝ3  

         = −  �∂α�uj.∇σj+1� ∂ασj+1

ℝ3

dx − �∂α∇. �σj∇cj+1� ∂ασj+1

ℝ3

dx 

          +n∞ ∫ ∂α∆cj+1 ∂ασj+1dx +ℝ3 ∫ ∂ασj+1 ∂α𝜎𝜎𝑗𝑗2 ℝ3 dx.     

By using integration by parts, we have  

1
2

d
dt

��∂ασj+1�2

ℝ3

dx + ��∂α∇σj+1�2

ℝ3

dx + n∞ ��∂ασj+1�2dx,
ℝ3

 

                       = −  �∂α�uj.∇σj+1� ∂ασj+1

ℝ3

dx − �∂α�σj∇cj+1� ∂α∇σj+1

ℝ3

dx 

                   +n∞ ∫ ∂α∇cj+1 ∂α∇σj+1dx +ℝ3 ∫ ∂ασj+1 ∂α𝜎𝜎𝑗𝑗2 ℝ3 dx.    (3.7) 
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By using the Cauchy inequality the terms on the right-hand side are bounded by  

         C�uj�
H3
�∇σj+1�

H3
2 + C �σj�

H3
�∇cj+1�

H3
  �∇σj+1�

H3
     

     +n∞ �  �∇cj+1�
H3

 �∇σj+1�
H3
� +  C �σj�

H3
  �∇σj+1�

H3
+ �σj�

H3
2 .                                 (3.8) 

 Then, by taking the summation over |𝛼𝛼| ≤ 3, we have 

                     
1
2

d
dt
�σj+1�

H3
2 +

1
2

 �∇σj+1�
H3
2 + n∞ �σj+1�

H3
2

 

≤ C�∇cj+1�
H3
2 +   C�(uj,σj)�

H3
2  �∇�σj+1, cj+1��

H3
2 + 𝐶𝐶�σj�

H3
2 .   (3.9)   

By the same way, for (3.3)2  on  cj+1, one has 

               1
2
d
dt

 ∫ �∂αcj+1�2dx + ∫ �∇ ∂αcj+1�2dxℝ3 +ℝ3 n∞  ∫ �∂αcj+1�2dx           ℝ3   

= − �∂α(uj.∇cj+1) ∂αcj+1dx − �∂α�𝜎𝜎𝑗𝑗cj+1� ∂αcj+1dx 
ℝ3

.
ℝ3

 

The terms on the right-hand side of the previous inequality are bounded by  

               c �uj�
H3 �∇cj+1�

H3
2

+c�σj�
H3
�∇cj+1�

H3
 �cj+1�

H3 . 

Thus, we have  

             1
2
d
dt

 �cj+1�
H3
2 + 1

2
�∇cj+1�

H3
2 + n∞

2
�cj+1�

H3
2  ≤ C�(uj,σj)�

H3
2 �∇cj+1�

H3
2 .     (3.10)  

Similarly, for the (3.3)3 on uj+1, we get that 

                        
1
2

d
dt

��∂αuj+1�2dx + 𝛾𝛾 ��∇ ∂αuj+1�2dx =
ℝ3ℝ3

 

                      −∫ ∂α�uj.∇uj+1�. ∂αuj+1dx + ∫ ∂α�∇σjφ�. ∂αuj+1dx.ℝ3ℝ3    

Where the right-hand side of the previous equation is bounded by 

            C �uj�
H3

  �∇uj+1�
H3
2 + C �σj�

H3
2  +

1
2

 �∇uj+1�
H3
2 .   

Then, after taking summation over |𝛼𝛼| ≤ 3 and using the Cauchy inequality, one has 

                  1
2
d
dt

 �uj+1�
H3
2   + 𝛾𝛾

2
  �∇uj+1�

H3
2    ≤ C �σj� 2

H3 + C�uj� 2
H3 �∇uj+1� 2

H3 .      (3.11)                             

 Then the linear combination (3.9)+(3.10)×  d+(3.11) leads to 

           1
2
d
dt

 (�σj+1�
H3
2 + d �cj+1�

H3
2 + �uj+1�

H3
2 )  
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          +C1�∇(σj+1, cj+1 , uj+1)�
H3
2 + C2�σj+1, cj+1�

H3
2                                   

≤ C �σj�
H3
2 + C�σj, cj, uj�

H3
2 �∇(σj+1, cj+1 , uj+1)�

H3
2 ,           (3.12) 

By choosing 𝑑𝑑 > 0 large enough. Further, after Integrating  (3.12) over [0, 𝑡𝑡] for all t ∈[0, T1], we have 

               �Aj+1(t)�
H3
2 + C1 ��∇Aj+1(s)�

H3
2 ds

t

0

+C2 ��σj+1, cj+1�
H3
2

t

0

 

≤ C ‖A0‖H3
2 + C ∫ �Aj(s)�

H3
2 𝑑𝑑𝑑𝑑 + C∫ �Aj(s)�

H3
2t

0
t
0   �∇Aj+1(s)�

H3
2 ds,    (3.13) 

for some positive constants C1 𝑎𝑎𝑎𝑎𝑎𝑎 C2. From the inductive assumption, the previous inequality can be 
re-estimated as 

�Aj+1(t)�
H3
2 + C1 ��∇Aj+1(s)�

H3
2 ds

t

0

+ C2 ��σj+1, cj+1�
H3
2 ds

t

0

  

≤ C𝜀𝜀12 + C𝐵𝐵12T1 + C𝐵𝐵12 ∫ �∇Aj+1(s)�
H3
2 dst

0  ,               (3.14) 

for any 0≤ t ≤ T1. Now, we take the small constants  𝜀𝜀1 > 0, B1 > 0 and T1 > 0. Then, we get 

�Aj+1(t)�
H3
2 + C1�∇Aj+1(t)�

H3
2 + C2�σj+1, cj+1�

H3
2 ≤ 𝐵𝐵12,       (3.15) 

for any 0 ≤ t ≤ T1. This implies that (3.5) holds for 𝑗𝑗 + 1, Hence (3.5) is proved for all  𝑗𝑗 ≥ 0. 

Next, we define  

E(Aj+1(t)) ≔ �σj+1�
H3
2 + d �cj+1�

H3
2 + �uj+1�

H3
2 , 

Where the constant d > 0 is given in (3.12). Similar to prove (3.12), we have 

          �E(Aj+1(t)) − E(Aj+1(s))� = �∫ d
dτ 

E(Aj+1(τ)) dτ t
s �                                                                                              

                
≤ 𝐶𝐶 ∫ �Aj(τ)�

H3
2 dτ + C∫ (1 +t

s
t
s �Aj(τ)�

H3
2 )�∇Aj+1(τ)�

H3
2 dτ + C2 ∫ �σj+1, cj+1�

H3
2 dτt

0 , 

           ≤  CB12(t − s) + C�1 + B12� ∫ �∇Aj+1(τ)�
H3
2t

s dτ + C2 ∫ �σj+1, cj+1�
H3
2 dτt

0 ,   (3.16) 

  for any 0 ≤ s ≤ t ≤ T1. Here, The time integral on the right-hand side from the above inequality is 
bounded by (3.15), and hence E(Aj+1(t)) is Continuous in 𝑡𝑡 for each j≥ 0. By the same argument, we 
can infer that  both �cj+1�

H3
2 , and �uj+1�

H3
2

 are continuous in 𝑡𝑡. 

 From the continuity of E (Aj+1(t)), we can also infer the continuity of  �σj+1�
H3
2 . Therefore, 

�Aj+1(t)�
H3
2  is continuous in time for any  j ≥ 1.  
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For this step, we prove that the sequence �Aj�
j≥0

is a Cauchy sequence in the Banach space 
C([0, T1]; H3), which converges to the solution U = (𝜎𝜎,𝑢𝑢, 𝑐𝑐) of the Cauchy problem (2.1)-(2.2), and 
satisfies (3.6). Let us take the difference of (3.3) for 𝑗𝑗 + 1 and 𝑗𝑗 so that it gives 
 

∂t�σj+1 − σj� − ∆(σj+1 − σj) + n∞(σj+1 − σj) = −uj.∇(σj+1 − σj) − (uj − uj−1).∇σj                                                           

−∇. �σj∇�cj+1 − cj�� − ∇. (�σj − σj−1)∇cj�   − n∞[∆�cj+1 − cj)�  − (σ(j+1)2 − σj2)                                                                    

∂t�cj+1 − cj� − ∆(cj+1 − cj) + n∞(cj+1 − cj)                                                                                                                                   
= −uj.∇�cj+1 − cj� − �uj − uj−1�.∇cj − σj�cj+1 − cj� − �σj − σj−1�cj,                                                                                        

         ∂t�uj+1 − uj� − 𝛾𝛾∆�uj+1 − uj�   =  −∇�πj+1 − πj� − uj.∇�uj+1 − uj� − �uj − uj−1�.∇uj                                                                
  ∇. �uj+1 − uj� = 0,        t > 0, x ∈ ℝ3 .                                                                                                                                                      

 

By using the same energy estimates as before, we have  

           1
2
d
dt
�(σj+1 − σj)�

H3

2
+�∇(σj+1 − σj)�

H3
2 + n∞�(σj+1 − σj)�

H3
2

  

                  ≤ C��uj − uj−1,σj − σj−1��
H3
2 �∇(σj, cj)�

H3
2             

+𝐶𝐶�(σj,𝑢𝑢j)�
H3
2 �∇(σj+1 − σj, cj+1 − cj)�

H3
2 +n∞�∇(cj+1 − cj)�

H3
2

       (3.17) 

                    
1
2

d
dt
�(cj+1 − cj)�

H3

2

+  
n∞
2
�(cj+1 − cj)�

H3
2 +

1
2
�∇(cj+1 − cj)�

H3
2 ≤ 

                  C�(σj,𝑢𝑢j)�
H3
2   �∇(cj+1 − cj)�

H3
2

+ C �∇(σj − σj−1, uj − uj−1)�
H3
2   �∇cj�

H3
2     (3.18) 

                   
1
2

d
dt
�(uj+1 − uj)�

H3

2

+
𝛾𝛾
2
�∇(uj+1 − uj)�

H3
2

 

                 ≤ C�uj�
H3
2  �∇(uj+1 − uj)�

H3
2 + C�(uj − uj−1)�

H3
2   �∇uj�

H3
2

+ C �σj − σj−1�
H3
2 .             (3.19)             

We combine the equations (3.17)-(3.19) to obtain 

        1
2
d
dt 

E�Aj+1 − Aj� + 1
4
�∇(Aj+1 − Aj)�

H3
2 + n∞

2
  �(cj+1 − cj)�

H3
2 + n∞�(σj+1 − σj)�

H3
2            

           ≤ C�Aj − Aj−1�
H3
2 + C�Aj�

H3
2 �∇(Aj+1 − Aj)�

H3
2 + C�Aj − Aj−1�

H3
2   �∇Aj�

H3
2 .         (3.20) 

By integrating over [0, 𝑡𝑡] for any 0 ≤ t ≤ T1 from (3.20), we obtain   

�(𝐴𝐴𝑗𝑗+1(𝑡𝑡) − 𝐴𝐴𝑗𝑗(𝑡𝑡)�
2
𝐻𝐻3 + 𝐶𝐶1 ��∇(Aj+1(s) − Aj(𝑠𝑠))�

H3
2 𝑑𝑑𝑑𝑑

𝑡𝑡

0

+
n∞
2
��(cj+1 − cj)�

H3
2 𝑑𝑑𝑑𝑑

𝑡𝑡

0

+ 𝐶𝐶2 ��(σj+1 − σj, cj+1 − cj)�
H3
2 𝑑𝑑𝑑𝑑

𝑡𝑡

0
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         ≤  𝐶𝐶(1 + 𝐵𝐵12)𝑇𝑇1 �(𝐴𝐴𝑗𝑗(𝑡𝑡) − 𝐴𝐴𝑗𝑗−1(𝑡𝑡)�
𝐻𝐻3 Sup

0≤t≤T1

 + 𝐶𝐶𝐵𝐵12  ��∇(Aj+1(s) − Aj(𝑠𝑠))�
H3
2 𝑑𝑑𝑑𝑑

𝑡𝑡

0

,   

which by smallness of B1and T1implies that there is a constant 𝐶𝐶1 < 0, there exists a constant 𝜃𝜃𝜃𝜃(0,1), 
such that for any j ≥ 1 

�(𝐴𝐴𝑗𝑗+1(𝑡𝑡) − 𝐴𝐴𝑗𝑗(𝑡𝑡)�
𝐻𝐻3 ≤Sup

0≤t≤T1

 𝜃𝜃 �(𝐴𝐴𝑗𝑗(𝑡𝑡) − 𝐴𝐴𝑗𝑗−1(𝑡𝑡)�
𝐻𝐻3 Sup

0≤t≤T1

 , 

which implies that (Aj)J≥0 is a Cauchy sequence in the Banach space C�[0, T1]; H3(ℝ3 )�.                               

By the property of Banach space, we have the limit function                                                       

A = A0 + lim
i→∞

��Aj+1 − Aj�
𝑖𝑖

𝑗𝑗=0

 

exists in C�[0, T1]; H3(ℝ3 )�, and satisfies    

‖𝐴𝐴(𝑡𝑡)‖𝐻𝐻3 ≤Sup
0≤t≤T1

 lim
𝑗𝑗→∞

 𝑖𝑖𝑖𝑖𝑖𝑖 �𝐴𝐴𝑗𝑗(𝑡𝑡)�
𝐻𝐻3 ≤ 𝐵𝐵1.           Sup

0≤t≤T1

 (3.21) 

Finally, we show that the Cauchy problem (2.1)-(2.2) admits at most one solution in 
C([0, T1]; H3(ℝ3)). Suppose that there exist two solutions 𝐴𝐴, 𝐴̃𝐴  in C([0, T1]; H3(ℝ3)) which satisfy 
(3.6). Let  𝜎𝜎� = 𝜎𝜎1(𝑥𝑥, 𝑡𝑡) − 𝜎𝜎2(𝑥𝑥, 𝑡𝑡), 𝑢𝑢� = 𝑢𝑢1(𝑥𝑥, 𝑡𝑡) − 𝑢𝑢2(𝑥𝑥, 𝑡𝑡), and 𝑐̃𝑐 = 𝑐𝑐1(𝑥𝑥, 𝑡𝑡) − 𝑐𝑐2(𝑥𝑥, 𝑡𝑡) 
 solves 

𝜕𝜕𝑡𝑡 𝜎𝜎 � + 𝑛𝑛∞𝜎𝜎� − ∆𝜎𝜎� = 𝑢𝑢1.𝛻𝛻𝜎𝜎� − 𝑢𝑢.� 𝛻𝛻𝜎𝜎2 + ∇. (𝜎𝜎2 𝛻𝛻𝑐̃𝑐) − ∇. (𝜎𝜎�𝛻𝛻𝑐𝑐1) − (𝜎𝜎1 + 𝜎𝜎2)𝜎𝜎� 

                𝜕𝜕𝑡𝑡 𝑢𝑢 � + 𝛾𝛾∆𝑢𝑢� = − 𝑢𝑢2∇ ∙ 𝑢𝑢�  −𝑢𝑢�∇ ∙ 𝑢𝑢1  − 𝜎𝜎�𝛻𝛻𝛻𝛻 

                𝜕𝜕𝑡𝑡 𝑐̃𝑐 − ∆𝑐̃𝑐 + 𝑛𝑛∞𝑐̃𝑐 = −𝑢𝑢2∇ ∙ 𝑐̃𝑐 −𝑢𝑢.� ∇𝑐𝑐1 +  𝜎𝜎�𝑐𝑐2 + 𝜎𝜎1𝑐̃𝑐.          (3.22) 

Multiplying 𝜎𝜎� to both sides of the first equation of (3.22) and integrating over ℝ3, we have   

∫ 𝜎𝜎�ℝ3 𝜕𝜕𝑡𝑡𝜎𝜎�𝑑𝑑𝑑𝑑+𝑛𝑛∞ ∫ 𝜎𝜎�ℝ3 𝜎𝜎�𝑑𝑑𝑑𝑑 − ∫ 𝜎𝜎�ℝ3 ∆𝜎𝜎�𝑑𝑑𝑑𝑑=∫ 𝜎𝜎�ℝ3 ∇. (𝜎𝜎�∇𝑐𝑐1)𝑑𝑑𝑑𝑑 + ∫ 𝜎𝜎�ℝ3 ∇. (𝜎𝜎2∇𝑐̃𝑐)𝑑𝑑𝑑𝑑 + ∫ 𝜎𝜎�ℝ3  𝑢𝑢1.𝛻𝛻𝜎𝜎�𝑑𝑑𝑑𝑑  
−∫ 𝜎𝜎�ℝ3  𝑢𝑢� .𝛻𝛻𝜎𝜎2𝑑𝑑𝑑𝑑 − ∫ 𝜎𝜎�ℝ3 (𝜎𝜎1 + 𝜎𝜎2)𝜎𝜎�𝑑𝑑𝑑𝑑. 

Then, after using integration by parts and the Cauchy inequality, we obtain 

                          
𝑑𝑑

2 𝑑𝑑𝑑𝑑
‖𝜎𝜎�‖𝐿𝐿2

2 + 𝑛𝑛∞‖𝜎𝜎�‖𝐿𝐿2
2 +‖∇𝜎𝜎�‖𝐿𝐿2

2

≤   𝑐𝑐‖∇𝑐𝑐1‖𝐿𝐿∞ � (|𝜎𝜎�|2 + |∇𝜎𝜎�|2)𝑑𝑑𝑑𝑑   
ℝ3

+   𝑐𝑐‖𝜎𝜎2‖𝐿𝐿∞ � ( |∇𝜎𝜎�|2 + |∇𝑐̃𝑐|2)𝑑𝑑𝑑𝑑
ℝ3

                                    

    +  𝑐𝑐‖𝑢𝑢1‖𝐿𝐿∞ � (|𝜎𝜎�|2 + |∇𝜎𝜎�|2)𝑑𝑑𝑑𝑑
ℝ3

 +  𝑐𝑐‖∇𝜎𝜎2‖𝐿𝐿∞ � ( |𝜎𝜎�|2 + |𝑢𝑢�|2)𝑑𝑑𝑑𝑑
ℝ3

  

                        +‖(𝜎𝜎1 + 𝜎𝜎2)‖𝐿𝐿∞ ∫ |𝜎𝜎�|2𝑑𝑑𝑑𝑑.ℝ3                  (3.23)                                                                                                                                
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For the estimate of 𝑢𝑢� , multiplying 𝑢𝑢�  to both sides of the second equation of (2.1) and taking 
integrations in x, we obtain 

               ∫ 𝑢𝑢�ℝ3 𝜕𝜕𝑡𝑡𝑢𝑢�𝑑𝑑𝑑𝑑+𝛾𝛾 ∫ 𝑢𝑢�ℝ3 ∆𝑢𝑢�𝑑𝑑𝑑𝑑 = 

              −∫ 𝑢𝑢�ℝ3 . ( 𝑢𝑢�𝛻𝛻 ∙ 𝑢𝑢1)𝑑𝑑𝑑𝑑  -∫ 𝑢𝑢�ℝ3  . (𝑢𝑢2𝛻𝛻 ∙ 𝑢𝑢�)𝑑𝑑𝑑𝑑 +∫ 𝑢𝑢�ℝ3 . (𝜎𝜎�∇𝜑𝜑)𝑑𝑑𝑑𝑑.  

By using integration by parts and the Cauchy inequality, we have 

           𝑑𝑑
2 𝑑𝑑𝑑𝑑

‖𝑢𝑢�‖𝐿𝐿2
2 + 𝛾𝛾‖∇𝑢𝑢�‖𝐿𝐿2

2 ≤ 𝑐𝑐‖∇ ∙ 𝑢𝑢1‖𝐿𝐿∞‖𝑢𝑢�‖𝐿𝐿2
2 +‖𝑢𝑢2‖𝐿𝐿∞(‖𝑢𝑢�‖𝐿𝐿2

2 +‖𝛻𝛻.𝑢𝑢�‖𝐿𝐿2)
2  

+𝑐𝑐‖∇𝜑𝜑‖𝐿𝐿∞�‖𝑢𝑢�‖𝐿𝐿2
2 + ‖𝜎𝜎�‖𝐿𝐿2

2 �.                                                                                                   

Since 𝐿𝐿∞ norms of 𝜎𝜎𝑖𝑖,𝑢𝑢𝑖𝑖 , 𝑐𝑐𝑖𝑖 where i = 1, 2 are bounded, we have 

            
𝑑𝑑

2 𝑑𝑑𝑑𝑑
‖𝑢𝑢�‖𝐿𝐿2

2 + 𝑐𝑐‖∇𝑢𝑢�‖𝐿𝐿2
2 ≤ 𝑐𝑐‖𝜎𝜎�‖𝐿𝐿2

2 + 𝑐𝑐‖𝑢𝑢�‖𝐿𝐿2
2 .           (3.24) 

Similarly, as above, we estimate 𝑐̃𝑐 as follows: 

𝑑𝑑
2 𝑑𝑑𝑑𝑑

‖𝑐̃𝑐‖𝐿𝐿2
2 + 𝐶𝐶‖∇𝑐̃𝑐‖𝐿𝐿2

2 + 𝑛𝑛∞‖𝑐̃𝑐‖𝐿𝐿2
2 ≤ 𝑐𝑐�‖𝑐̃𝑐‖𝐿𝐿2

2 + ‖𝜎𝜎�‖𝐿𝐿2
2 + ‖𝑢𝑢�‖𝐿𝐿2

2 �.        (3.25)        

Then, after taking the linear combination of all estimates, we obtain   

 𝑑𝑑
2 𝑑𝑑𝑑𝑑

�‖𝜎𝜎�‖𝐿𝐿2
2 + ‖𝑢𝑢�‖𝐿𝐿2

2 + ‖𝑐̃𝑐‖𝐿𝐿2
2 � + 𝜆𝜆1(�‖𝜎𝜎�‖𝐿𝐿2

2 + ‖𝑐̃𝑐‖𝐿𝐿2
2 � 

   +𝜆𝜆2(�‖∇𝜎𝜎�‖𝐿𝐿2
2 +‖∇𝑢𝑢�‖𝐿𝐿2

2 + ‖∇𝑐̃𝑐‖𝐿𝐿2
2 � ≤ 𝐶𝐶�‖𝜎𝜎�‖𝐿𝐿2

2 + ‖𝑢𝑢�‖𝐿𝐿2
2 + ‖𝑐̃𝑐‖𝐿𝐿2

2 �.                (3.26)   

By applying Gronwall’s inequality to the above equation, we have 

�‖𝜎𝜎�‖𝐿𝐿2
2 + ‖𝑢𝑢�‖𝐿𝐿2

2 + ‖𝑐̃𝑐‖𝐿𝐿2
2 �𝑆𝑆𝑆𝑆𝑆𝑆

0≤𝑡𝑡≤𝑇𝑇1

 ≤ 𝑒𝑒𝑐𝑐𝑇𝑇1�‖𝜎𝜎�(0)‖𝐿𝐿2
2 + ‖𝑢𝑢�(0)‖𝐿𝐿2

2 + ‖𝑐̃𝑐(0)‖𝐿𝐿2
2 �. 

Since the initial data of (𝜎𝜎�, 𝑢𝑢� , 𝑣𝑣�,𝑤𝑤�) are all zero for T > 0, that implies the uniqueness of the local 
solution.  

CONCLUSION 

In this paper, we prove the existence of local solutions for Navier Stokes system modeling cellular 
swimming in fluid drops in three dimensions. We show the existence of local solutions by the energy 
method. We divided the proof into four steps, using integral by parts, Cauchy –Schwarz inequality, and 
Gronwall's inequality to prove these steps. 
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