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 Abstract 

By examining both deterministic and stochastic models, the intracellu-
lar viral movement model explores the complex dynamics of the inter-
action of viruses with host cells. Since such movement is not deter-
ministic but rather random, the main goal of this study is to build a 
stochastic model corresponding to the deterministic one, that describes 
the movement of viruses and their intracellular interactions in a more 
realistic way. The model helps explain how viruses are produced and 
reproduce by analyzing the mechanisms that generate and deplete 
structural proteins and viral nucleic acids, and by examining the effect 
of the viral template, the findings may help improve methods for treat-
ing and preventing viral infections by shedding light on structural pro-
teins and viral DNA. The deterministic and stochastic systems were 
solved numerically and represented using MATAB tools, to gain 
deeper insights. 

Keywords: Intracellular Virus Movement Model, Stochastic Model, 
Covariance Matrix, Diffusion Matrix. 

INTRODUCTION 

Viruses are infectious agents that are tiny, obligate intracellular parasites that are incapable of self-
replication. These are also acellular creatures, meaning that their genomes are either RNA or DNA 
(nucleic acid) and are encased in a protective protein coat that is encoded by the virus. Every virus 
can only replicate obligately in live cells. They do this by utilizing the metabolic processes and ri-
bosomes of the host to create a collection of parts that come together to form molecules known as 
VIRIONS, which guard the genome and spread it to new cells  (Gelderblom, 1996) 
https://www.uoanbar.edu.iq/eStoreImages/Bank/14736. 

All living things, including bacteria, archaea, plants, and animals, are susceptible to virus infection. 
https://www.uoanbar.edu.iq/eStoreImages/Bank/14736.The infectious units known as viruses range 
in diameter from around 16 nanometers for circoviruses to over 300 nanometers for poxviruses. Be-
cause of its microscopic size, it is ultra-filterable, meaning that bacteria-resistant filters cannot hold 
it (Modrow et al., 2013). Humans and other species have been greatly impacted by viruses, yet until 
recently, little was understood about their nature. Clarifying their nature can be aided by a brief his-
tory of their discovery and identification as distinct infectious agents. Despite their ignorance of the 
nature of their illnesses, the ancients were aware of conditions like rabies, which are understood to 
have a viral cause today. Indeed, there is considerable evidence that the measles and smallpox vi-
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ruses were likely responsible for the enormous epidemics that struck between 165 and 180 AD and 
between 251 and 266 AD., which significantly damaged the Roman Empire and contributed to its 
fall (Harley, 2002). Numerous discoveries in several fields of biology during the past 20 years have 
fundamentally altered our understanding of the viral world. The conventional understanding of vi-
ruses as passive biological entities that evolved mainly by choosing genes from their hosts and had 
a secondary function in evolution is contradicted by several of these findings. It is now known that 
viruses are extremely varied, and very old—they existed before the Last Universal Cellular Ances-
tor (LUCA) and that they were crucial to the evolution of life. These new findings have led to the 
proposal of new definitions and ideas for viruses. The idea of the viral cell, in particular, affirms 
that viruses are cellular entities and that they are capable of producing their own DNA (Forterre, 
2017). Over millions of years, viruses have changed to fit certain creatures or their cells. Proteins 
make up infectious viral particles, or virions, which are encased in a fatty membrane known as the 
envelope in certain virus species. Only one kind of nucleic acid—either DNA or RNA—is present 
in the particles. Unlike bacteria, yeasts, or other cells, viruses multiply within the live cells they in-
fect rather than by dividing (Modrow et al., 2013). Virologists study viruses, which are obviously 
extremely different from prokaryotic and eukaryotic microbes. Viruses are very significant and re-
quire careful consideration, even though they are simpler than biological creatures, (Harley, 2002). 
Although viruses may cause terrible illnesses in a variety of creatures, they are also straightforward 
systems that can be used for a wide range of beneficial reasons. Viruses have long been used in 
medicine to make vaccinations, and they are now utilized as vectors to carry chemicals that are 
needed to cure illnesses like cancer so that they may target certain cells. They have also been uti-
lized to precipitate certain metals in nanotechnology and agriculture, and they have shown signifi-
cant promise in the creation of nanomaterials. Additionally, they have a variety of uses in the elec-
tronics, cosmetics, pharmaceutical, and other sectors. As a result, viruses are no longer just consid-
ered adversaries (Varanda et al., 2021). We also point out that the study of viruses has made signifi-
cant contributions to the science of molecular biology, as indicated by the recent appearance of 
AIDS and the fact that numerous viral illnesses in humans are already recognized, with new ones 
being identified or emerging each. Viral discoveries are the foundation of the entire discipline of 
genetic engineering (Harley, 2002).  

The ability of viruses to infiltrate cells from bacteria, archaea, and eukaryotes is a result of their 
evolution. The majority of the more than 3,600 identified viruses are linked to illness, and hundreds 
of them have the ability to infect human cells. Animal viruses attach themselves to host cell recep-
tors to enter the cell. Understanding how viral entry proteins interact with their host cell receptors 
and change conformation to allow entrance offers previously unheard-of possibilities for creating 
novel therapies and vaccines. The first and most crucial stage of a virus' life cycle is its entrance 
into the host cell. After attaching to receptors, viruses enter animal cells by either fusing with cellu-
lar membranes (enveloped viruses), penetrating through (non-enveloped viruses), or undergoing 
significant conformational changes to their proteins. When viral genomes are transferred into host 
cells, the procedure is complete (Dimitrov, 2004). Viruses are intracellular pathogens, meaning they 
need the metabolic machinery of their host cell to proliferate. Although there are significant differ-
ences in the reproductive life cycle of different viral kinds and classes, attachment, penetration, dis-
assembly, replication, assembly, and virus release are the six fundamental processes required for 
virus reproduction. https://www.immunology.org/sites/default/files/2022-
08/Virus%20replication.pdf 

 The public's health is still at risk from the seasonal and pandemic influenza virus (IAV). The kinet-
ics of the immune response to IAV infection and the biological factors that significantly affect in-
fection outcomes, however, are not well understood quantitatively. In order to tackle these prob-

https://www.immunology.org/sites/default/files/2022-08/Virus%20replication.pdf
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lems, we statistically examine innate and adaptive immune responses to primary IAV infection us-
ing modeling techniques in conjunction with experimental data. The dynamic interactions between 
target (epithelial) cells, viruses like influenza virus, cytotoxic T lymphocytes (CTLs), and virus-
specific IgG and IgM have been described mathematically. Simulation studies have also been con-
ducted to determine the relative contributions of biological parameters to the clearance of IAV 
(Miao et al., 2010). This study provides a model of virus movement inside cells, as by adjusting the 
parameters according to the behaviors of different viruses, it is suitable for many viruses, including 
influenza virus, HIV, and others. This is to provide precise insights into how different viruses inter-
act with cells and develop effective methods to combat viral diseases.  

The basic interactions between viral components may be captured by deterministic models that are 
based on ordinary differential equations. On the other hand, a single viral particle can start an infec-
tion by transferring its genome — a single DNA or RNA molecule — to the host cell. A stochastic 
model that takes into account the natural variations in viral component levels might produce quali-
tatively different results in these circumstances (Srivastava et al., 2002). We have created a basic 
model of the intracellular dynamics of a generic virus that may be implemented either stochastically 
or deterministically in order to compare modeling techniques (Allen, 2010). Therefore, the pro-
posed mathematical model is 

. 

where all constants  are in units of day, and the variables described in Table 1. 

Table: (1). Description of state variables of the proposed model 

Variable Description 
T viral template. 
G viral genome. 
S structural proteins 

 
The model reflected the processes that produced and depleted structural proteins and viral nucleic 
acids. Before creating the stochastic model for the system, we will study the stability of its system 
at the equilibrium point (  ) (Chou & Friedman, 2015). 
1- The equilibrium points:  

. 

. 

. 
2- The Jacobian matrix:    

. 
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3- Stability study: 
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  .  
. 

. 

. 

. 
If  

 Then by the Routh-Hurwitz criterion, the system at  is stable. 

Despite our continued efforts in analyzing the system, we were unable to reach a consistent result or 
a clear analytical solution. We faced multiple challenges that complicated the results, making it dif-
ficult to determine the system’s behavior definitively. We therefore intend to resort to numerical 
methods as an alternative means to explore the system dynamics more precisely. By using numeri-
cal solutions, we hope to gain deeper insights into the stability of the system and its behaviors under 
different conditions, which may help us understand complex phenomena that we have not been able 
to analyze Figure 1.  

 

Figure: (1).  intracellular viral kinetics; . 

Note that the viral template T appears concave upward, and this indicates that the amount of tem-
plate increases over time, which indicates stability in growth with increasing template production. 
Being concave upward, this means that the increase in the amount of T accelerates over time, which 
reflects a positive dynamic in the reproduction of the virus.  

As for the viral genome, it decreases over time as it is concave downwards. This decrease also indi-
cates consumption or degradation of the viral genome. This dynamic may reflect an interaction pro-
cess between the genome and the target cells. As for the amount of structural proteins, it decreases 
over time, and this indicates that the structural proteins are either used to build new viruses or are 
broken down due to cell processes. Based on the results extracted from the drawing, the system ap-
pears unstable. This is based on the data that was entered.  

In fact, viruses and the host cell are exposed to random fluctuations. These fluctuations can affect 
the rates of interaction and reproduction. To provide a deeper understanding of how random factors 
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affect the movement of the virus inside cells, we can create a stochastic model that takes into ac-
count random factors and provides a better understanding of how viruses evolve and become re-
sistant. For treatments or vaccines. 

The stochastic model for the system 
1- Probabilities associated with changes in the model, Table 2. 

 
Table: (2). Probabilities associated with changes in the model 

Probability,  Changes,  
. . 
. . 
. . 

. . 
. . 

. . 
  
2- The expectation  is  matrix  the expectation can be expressed as fol-
lows.    

 , 

 + 

. 

. 

. 

3- The covariance matrix, can be expressed as follows  

. 
= 𝑝𝑝1∆𝑥𝑥1(∆𝑥𝑥1)𝑇𝑇 + 𝑝𝑝2∆𝑥𝑥2(∆𝑥𝑥2)𝑇𝑇 + 𝑝𝑝3∆𝑥𝑥3(∆𝑥𝑥3)𝑇𝑇 + 𝑝𝑝4∆𝑥𝑥4(∆𝑥𝑥4)𝑇𝑇 +

                            𝑝𝑝5∆𝑥𝑥5(∆𝑥𝑥5)𝑇𝑇 + 𝑝𝑝6∆𝑥𝑥6(∆𝑥𝑥6)𝑇𝑇. 

 + 

. 

 + 

. 
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. 

. 

4- Formulate the stochastic system as 

. 
where 

. 

+ 

. 

.          

 
The equivalent system for the former system. 

The diffusion matrix G of dimension  is 
 

. 

. 

Where: 

. 

Thus, the system takes the following form: 

. 
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.       

 
A stochastic drawing shows how the viral template interacts with the genome and structural pro-
teins in the system. While the viral template remains stable, the genome and proteins exhibit fluctu-
ations that reflect response to random factors and changes in the cellular environment, Figure 2 and 
Figure3.   

 

Figure: (2).  intracellular viral kinetics; . 
 

 

Figure: (3).  intracellular viral kinetics; . 
 
Numerical Representation 
The deterministic and stochastic systems solved numerically, (see the Appendix), their solutions 
represented using MATAB tools, and hence the following figures were obtained. 
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CONCLUSION  

In this study, the movement of the virus inside cells was analyzed, using an advanced mathematical 
model, where the stability of the virus's dynamics was studied and the random model of the virus's 
movement inside the cells was discovered, which allowed us to better understand the dynamics of 
the virus and how the system works, and its influence on random factors. This study provides im-
portant insights that contribute to the development of effective treatment strategies. 

The study can also be used to analyze different types of viruses, such as the immunodeficiency vi-
rus, influenza virus, coronavirus, etc., which confirms the importance of model in viral researches. 
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Appendix 
Code of intracellular viral kinetics model (Deterministic model): 
% Parameters 
K1 = 0.5; % Parameter K1 
K2 = 0.1; % Parameter K2 
K3 = 0.3; % Parameter K3 
K4 = 0.2; % Parameter K4 
K5 = 0.4; % Parameter K5 
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K6 = 0.1; % Parameter K6 
 
% ODE system 
ode_system = @(t, Y) [ 
    K1 * Y(2) - K2 * Y(1);              % dT/dt 
    K3 * Y(1) - K1 * Y(2) - K4 * Y(2) * Y(3); % dG/dt 
    K5 * Y(1) - K6 * Y(3) - K4 * Y(2) * Y(3)  % dS/dt 
]; 
 
% Initial conditions 
T0 = 10; % Initial condition for T 
G0 = 12; % Initial condition for G 
S0 = 8; % Initial condition for S 
Y0 = [T0; G0; S0]; 
 
% Time span 
tspan = [0 2.5]; 
 
% Solve ODE 
[t, Y] = ode45(ode_system, tspan, Y0); 
 
% Plot results 
figure; 
plot(t, Y(:,1), '-b', 'DisplayName', 'T'); 
hold on; 
plot(t, Y(:,2), '-r', 'DisplayName', 'G'); 
plot(t, Y(:,3), '-g', 'DisplayName', 'S'); 
xlabel('Time'); 
ylabel('Concentration'); 
legend; 
grid on; 
hold off; 
 
Code of intracellular viral kinetics model (Stochastic model): 
% Parameters 
K1 = 0.5; % Parameter K1 
K2 = 0.1; % Parameter K2 
K3 = 0.3; % Parameter K3 
K4 = 0.2; % Parameter K4 
K5 = 0.4; % Parameter K5 
K6 = 0.1; % Parameter K6 
 
% Initial conditions 
T0 = 10; % Initial condition for T 
G0 = 12; % Initial condition for G 
S0 = 8; % Initial condition for S 
total_time = 2.5;  % Total time 
dt = 0.01; % Time step 
N = total_time / dt; % Number of time steps 
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% Preallocate arrays 
T_values = zeros(1, N); 
G_values = zeros(1, N); 
S_values = zeros(1, N); 
t = linspace(0, total_time, N); 
T_values(1) = T0; 
G_values(1) = G0; 
S_values(1) = S0; 
 
% Simulation using Euler-Maruyama method 
for i = 1:N-1 
    % Deterministic part 
    dT_det = (K1 * G_values(i) - K2 * T_values(i)) * dt; 
    dG_det = (-K1 * G_values(i) + K3 * T_values(i) - K4 * G_values(i) * S_values(i)) * dt; 
    dS_det = (-K4 * G_values(i) * S_values(i) + K5 * T_values(i) - K6 * S_values(i)) * dt; 
     
    % Stochastic part 
    dW1 = sqrt(dt) * randn; 
    dW2 = sqrt(dt) * randn; 
    dW3 = sqrt(dt) * randn; 
     
    dT_sto = sqrt(K1 * G_values(i) + K2 * T_values(i)) * dW1 - sqrt(K1 * G_values(i)) * dW2; 
    dG_sto = -sqrt(K1 * G_values(i)) * dW1 + sqrt(K1 * G_values(i) + K3 * T_values(i) + K4 * 
G_values(i) * S_values(i)) * dW2 + sqrt(K4 * G_values(i) * S_values(i)) * dW3; 
    dS_sto = sqrt(K4 * G_values(i) * S_values(i)) * dW2 + sqrt(K4 * G_values(i) * S_values(i) + K5 
* T_values(i) + K6 * S_values(i)) * dW3; 
     
    % Update populations 
    T_values(i+1) = T_values(i) + dT_det + dT_sto; 
    G_values(i+1) = G_values(i) + dG_det + dG_sto; 
    S_values(i+1) = S_values(i) + dS_det + dS_sto; 
     
    % Ensure populations remain non-negative 
    T_values(i+1) = max(T_values(i+1), 0); 
    G_values(i+1) = max(G_values(i+1), 0); 
    S_values(i+1) = max(S_values(i+1), 0); 
end 
 
% Plot results 
figure; 
plot(t, T_values, '-b', 'DisplayName', 'T'); 
hold on; 
plot(t, G_values, '-r', 'DisplayName', 'G'); 
plot(t, S_values, '-g', 'DisplayName', 'S'); 
xlabel('Time'); 
ylabel('Population'); 
legend; 
grid on; 
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hold off; 
 
Code of intracellular viral kinetics model (equevelant Stochastic model): 
% Parameters 
K1 = 0.5; % Parameter K1 
K2 = 0.1; % Parameter K2 
K3 = 0.3; % Parameter K3 
K4 = 0.2; % Parameter K4 
K5 = 0.4; % Parameter K5 
K6 = 0.1; % Parameter K6 
 
% Initial conditions 
T0 = 10; % Initial condition for T 
G0 = 12; % Initial condition for G 
S0 = 8; % Initial condition for S 
total_time = 2.5;  % Total time 
dt = 0.01; % Time step 
N = total_time / dt; % Number of time steps 
 
% Preallocate arrays 
T_values = zeros(1, N); 
G_values = zeros(1, N); 
S_values = zeros(1, N); 
t = linspace(0, total_time, N); 
T_values(1) = T0; 
G_values(1) = G0; 
S_values(1) = S0; 
 
% Simulation using Euler-Maruyama method 
for i = 1:N-1 
    % Deterministic part 
    dT_det = (K1 * G_values(i) - K2 * T_values(i)) * dt; 
    dG_det = (-K1 * G_values(i) + K3 * T_values(i) - K4 * G_values(i) * S_values(i)) * dt; 
    dS_det = (-K4 * G_values(i) * S_values(i) + K5 * T_values(i) - K6 * S_values(i)) * dt; 
     
    % Stochastic part 
    dW1 = sqrt(dt) * randn; 
    dW2 = sqrt(dt) * randn; 
    dW3 = sqrt(dt) * randn; 
    dW4 = sqrt(dt) * randn; 
    dW5 = sqrt(dt) * randn; 
    dW6 = sqrt(dt) * randn; 
     
    dT_sto = sqrt(K1 * G_values(i)) * dW1 - sqrt(K2 * T_values(i)) * dW2; 
    dG_sto = -sqrt(K1 * G_values(i)) * dW1 + sqrt(K3 * T_values(i)) * dW3 - sqrt(K4 * G_values(i) 
* S_values(i)) * dW4; 
    dS_sto = -sqrt(K4 * G_values(i) * S_values(i)) * dW4 + sqrt(K5 * T_values(i)) * dW5 - sqrt(K6 
* S_values(i)) * dW6; 
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    % Update populations 
    T_values(i+1) = T_values(i) + dT_det + dT_sto; 
    G_values(i+1) = G_values(i) + dG_det + dG_sto; 
    S_values(i+1) = S_values(i) + dS_det + dS_sto; 
     
    % Ensure populations remain non-negative 
    T_values(i+1) = max(T_values(i+1), 0); 
    G_values(i+1) = max(G_values(i+1), 0); 
    S_values(i+1) = max(S_values(i+1), 0); 
end 
 
% Plot results 
figure; 
plot(t, T_values, '-b', 'DisplayName', 'T'); 
hold on; 
plot(t, G_values, '-r', 'DisplayName', 'G'); 
plot(t, S_values, '-g', 'DisplayName', 'S'); 
xlabel('Time'); 
ylabel('Population'); 
legend; 
grid on; 
hold off; 

 
 
 


