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Abstract

By examining both deterministic and stochastic models, the intracellu-
lar viral movement model explores the complex dynamics of the inter-
action of viruses with host cells. Since such movement is not deter-
ministic but rather random, the main goal of this study is to build a
stochastic model corresponding to the deterministic one, that describes
the movement of viruses and their intracellular interactions in a more
realistic way. The model helps explain how viruses are produced and
reproduce by analyzing the mechanisms that generate and deplete
structural proteins and viral nucleic acids, and by examining the effect
of the viral template, the findings may help improve methods for treat-
ing and preventing viral infections by shedding light on structural pro-
teins and viral DNA. The deterministic and stochastic systems were
solved numerically and represented using MATAB tools, to gain

deeper insights.
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INTRODUCTION

Viruses are infectious agents that are tiny, obligate intracellular parasites that are incapable of self-
replication. These are also acellular creatures, meaning that their genomes are either RNA or DNA
(nucleic acid) and are encased in a protective protein coat that is encoded by the virus. Every virus
can only replicate obligately in live cells. They do this by utilizing the metabolic processes and ri-
bosomes of the host to create a collection of parts that come together to form molecules known as
VIRIONS, which guard the genome and spread it to new cells (Gelderblom, 1996)
https://www.uoanbar.edu.ig/eStorelmages/Bank/14736.

All living things, including bacteria, archaea, plants, and animals, are susceptible to virus infection.
https://www.uoanbar.edu.ig/eStorelmages/Bank/14736.The infectious units known as viruses range
in diameter from around 16 nanometers for circoviruses to over 300 nanometers for poxviruses. Be-
cause of its microscopic size, it is ultra-filterable, meaning that bacteria-resistant filters cannot hold
it (Modrow et al., 2013). Humans and other species have been greatly impacted by viruses, yet until
recently, little was understood about their nature. Clarifying their nature can be aided by a brief his-
tory of their discovery and identification as distinct infectious agents. Despite their ignorance of the
nature of their illnesses, the ancients were aware of conditions like rabies, which are understood to
have a viral cause today. Indeed, there is considerable evidence that the measles and smallpox vi-
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ruses were likely responsible for the enormous epidemics that struck between 165 and 180 AD and
between 251 and 266 AD., which significantly damaged the Roman Empire and contributed to its
fall (Harley, 2002). Numerous discoveries in several fields of biology during the past 20 years have
fundamentally altered our understanding of the viral world. The conventional understanding of vi-
ruses as passive biological entities that evolved mainly by choosing genes from their hosts and had
a secondary function in evolution is contradicted by several of these findings. It is now known that
viruses are extremely varied, and very old—they existed before the Last Universal Cellular Ances-
tor (LUCA) and that they were crucial to the evolution of life. These new findings have led to the
proposal of new definitions and ideas for viruses. The idea of the viral cell, in particular, affirms
that viruses are cellular entities and that they are capable of producing their own DNA (Forterre,
2017). Over millions of years, viruses have changed to fit certain creatures or their cells. Proteins
make up infectious viral particles, or virions, which are encased in a fatty membrane known as the
envelope in certain virus species. Only one kind of nucleic acid—either DNA or RNA—is present
in the particles. Unlike bacteria, yeasts, or other cells, viruses multiply within the live cells they in-
fect rather than by dividing (Modrow et al., 2013). Virologists study viruses, which are obviously
extremely different from prokaryotic and eukaryotic microbes. Viruses are very significant and re-
quire careful consideration, even though they are simpler than biological creatures, (Harley, 2002).
Although viruses may cause terrible illnesses in a variety of creatures, they are also straightforward
systems that can be used for a wide range of beneficial reasons. Viruses have long been used in
medicine to make vaccinations, and they are now utilized as vectors to carry chemicals that are
needed to cure illnesses like cancer so that they may target certain cells. They have also been uti-
lized to precipitate certain metals in nanotechnology and agriculture, and they have shown signifi-
cant promise in the creation of nanomaterials. Additionally, they have a variety of uses in the elec-
tronics, cosmetics, pharmaceutical, and other sectors. As a result, viruses are no longer just consid-
ered adversaries (Varanda et al., 2021). We also point out that the study of viruses has made signifi-
cant contributions to the science of molecular biology, as indicated by the recent appearance of
AIDS and the fact that numerous viral illnesses in humans are already recognized, with new ones
being identified or emerging each. Viral discoveries are the foundation of the entire discipline of
genetic engineering (Harley, 2002).

The ability of viruses to infiltrate cells from bacteria, archaea, and eukaryotes is a result of their
evolution. The majority of the more than 3,600 identified viruses are linked to illness, and hundreds
of them have the ability to infect human cells. Animal viruses attach themselves to host cell recep-
tors to enter the cell. Understanding how viral entry proteins interact with their host cell receptors
and change conformation to allow entrance offers previously unheard-of possibilities for creating
novel therapies and vaccines. The first and most crucial stage of a virus' life cycle is its entrance
into the host cell. After attaching to receptors, viruses enter animal cells by either fusing with cellu-
lar membranes (enveloped viruses), penetrating through (non-enveloped viruses), or undergoing
significant conformational changes to their proteins. When viral genomes are transferred into host
cells, the procedure is complete (Dimitrov, 2004). Viruses are intracellular pathogens, meaning they
need the metabolic machinery of their host cell to proliferate. Although there are significant differ-
ences in the reproductive life cycle of different viral kinds and classes, attachment, penetration, dis-
assembly, replication, assembly, and virus release are the six fundamental processes required for
virus reproduction. https://www.immunology.org/sites/default/files/2022-
08/Virus%20replication.pdf

The public's health is still at risk from the seasonal and pandemic influenza virus (IAV). The kinet-
ics of the immune response to 1AV infection and the biological factors that significantly affect in-
fection outcomes, however, are not well understood quantitatively. In order to tackle these prob-
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lems, we statistically examine innate and adaptive immune responses to primary 1AV infection us-
ing modeling techniques in conjunction with experimental data. The dynamic interactions between
target (epithelial) cells, viruses like influenza virus, cytotoxic T lymphocytes (CTLs), and virus-
specific 1gG and IgM have been described mathematically. Simulation studies have also been con-
ducted to determine the relative contributions of biological parameters to the clearance of 1AV
(Miao et al., 2010). This study provides a model of virus movement inside cells, as by adjusting the
parameters according to the behaviors of different viruses, it is suitable for many viruses, including
influenza virus, HIV, and others. This is to provide precise insights into how different viruses inter-
act with cells and develop effective methods to combat viral diseases.

The basic interactions between viral components may be captured by deterministic models that are
based on ordinary differential equations. On the other hand, a single viral particle can start an infec-
tion by transferring its genome — a single DNA or RNA molecule — to the host cell. A stochastic
model that takes into account the natural variations in viral component levels might produce quali-
tatively different results in these circumstances (Srivastava et al., 2002). We have created a basic
model of the intracellular dynamics of a generic virus that may be implemented either stochastically
or deterministically in order to compare modeling techniques (Allen, 2010). Therefore, the pro-

posed mathematical model is
g = fl(Tl GJS) = K]_G - KgT
dG
at = f2(TJ G, S) = KgT_ K]_G - K4GS
das
o = f3(T,G,5) = KsT — K¢S — K,GS.

where all constants K;,i = 1,2,3,4,5,6. are in units of day, and the variables described in Table 1.

Table: (1). Description of state variables of the proposed model

Variable Description
T viral template.
G viral genome.
S structural proteins

The model reflected the processes that produced and depleted structural proteins and viral nucleic
acids. Before creating the stochastic model for the system, we will study the stability of its system
at the equilibrium point (T*,G*,5*) (Chou & Friedman, 2015).
1- The equilibrium points:
C =02KG6-KT=02K6=KT = T"=2G".

2
9 0 KT —K,G—K,GS=0=§* = K _ Kl
at Kz Ky Ky Ky Ky

% 0= KT —K,S—K,GS=0=G* = sa7Ka)
dt Ky(K5—K3+K3)

2- The Jacobian matrix:
94 9n dh

ar ac¢ as —K, K, 0
j=|% % °:|_|( g _g —KS —KG
“|ar 8c as | 3 1 4 4 '
of 9f: 9f Ks —K,S —Kg — KuG

ar aG as
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—K, K, 0
]( T*,G*,S*): (Kg _K]. —K4S* _Kd_G‘ )
K —K,S*  —K,;— K,G*

3- Stability study:
at(r*,G*,8*):

J —All = 0.
—K; K; 0 100
(K3 —K, — K,S* —K,G* )—A(u 1 0) =0.
K —K,S* —Kg — K,G* 0 0 1
—K; K, 0 A 0 O
( K; —K,—K,S* —K,G* )— (0 A 0) =0.
K —K,S* —Kg — K,G* 0 0 A
—K,— A K, 0
K —K;, —K,5*— 1 —K,G* = 0.
K —K,S* —Kg — K,G* — A
(—K; — DK, — KeS* — D(—Kg — Ko 6* — 2) — (—Ko6°)(—KeS5)] — (Ky) [K5 (—Ke — Ko G* — DI+
(K, KsG*) = 0.
(K2 — D[(Ey + E,5* + (K, + K6 + 1) — K, "6°5%] — (K )[—K3 (Kg + Ko6* + D]+
(K, K<sG*) = 0.

put x =k, + K,5°,y = K, +K,6°,Z = K,°G 5*,h = K,K.G".

(K, —D[x+ Dy +2) —z] — (&) [-K:(y + )] + R =0.

(K, — D [(xy + xA + yA+ A2) — 2] + (K Ky + Ky KaA — KyR) = 0.

(K — D[y + (x +3)2+ 2%) — 2] + (K, K3 (y + 1) —K;h) = 0.

—Koxy — Ko{x + y)A —KoA2 + KZ —xyd —(x +y)A2— A3+ zA + Ky Kyy + Ky KA — Ky h= 0.

—B—((x+y) + K22 — (K(x + V) + xy —z — K  K3)A — (Koxy — Kz — Ky K3y + K h) = 0.

B+ (x+y+E)2+ (Kpx + Ky +xy —z— K K3)A+ (Kyxy — Kyz— Ky K3y + K h) = 0.

A3+ ((Ey + Ky 5*) + (Kg + K5G*) + K3)A% + (K3 (K; + KuS*) + K3(Kg + K3G*) + (K, + KuS*)(Kg + K3G*) -

(KaG°5*) — Ky K3)A + (Ko (Ky + KoS™) (K + KoG*) — KoKoG°S* — Ky K3 (K + K4G*) + K; (KK56*)) = 0.

A3+ (K + KuS* + Ko + KoG* + K) A2 + (KoK + KoKuS* + KoK + KoKaG* + Ky K + Ky KaG* + KoKy 5+t

K2G*S* — K,°G*S* — Ky Ko)A + (K G K + K Ko KuG* + K KoKy S* + KoKy 267 S* — KoK, 6°5* — Ky Ko K-
Ky KaKsG* + Ky Ko KsG*) = 0.

34 (K +KuS* + K + KuG* + Kp) A2 + (KoK + KoKuS* + KoK + KoKaG* + Ky K + Ky KsG* + KgKs 5™
Ky KDA + (Ky KoK + Ky KoKoG* + KoK KyS* — KyKaKs — KyKa KuG* + Ky Ky KoG*) =0 .

K,(K3—K3) Kg(K3—K3) K, (KE3—K3)

Ba(K + K (L2 4+ K + Ky (322 ) + K,)A2 + (KoK + KoKy (—53—2) + KoK+
( 1 K&( KEKII- ) & K&(K4(KS_K3+KZ:)) 2) ( 2581 ZKQ( KEKII- ) 206
o () e+ (e ey )+ o (SEE) ~on s

Ke(K3—K>) Ky (K3—K>) Ke(K5—K>)
K Kzﬁ(m) + Kusﬁ(W) — Ky K3Kg — K KK, (m)"‘
Kg(K3—K5)

KlKQKS(mD =0.

_ _ Ko(K.—K
23+ (K + (B g (KR g | YA 4 (KK, + Ky (K — Ky) + KoK + K, ( 6(K3~K3) )+

Kz (Ks—Kz+Ka) (KK 3+K 2)
Kg(K3—K3) 31(33_32)) Ko(Ks—K2)
KK+ K (m + K (T - K1K3)ﬂ, + (K1K2K5+K1Kz(m + KK (Kg - Kz)
_ Ky (K3 —Ks) Kg(K3—K3) ..
K K3Kg 1'1'11'1'3((%_;{3 +x;]) + KIKE(—(KS_K3+K2) N=0.

K;—K; K3—K;
2 (e + () 4K + (O ) + )2 + (Kl + Kyl + K

Kg(K3—K3)
(Rs—Ks+K2) ( *RET

(Ks—K +K7)

Ke(K3—K3) (K 1(K5—K, 2)) )
" (cﬁ's—fﬂ’sﬂﬁ’z) TR, ) TR R R Gy R
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Kg(K3—K3)

K. (Ka—Ka)
By K —— ]+K1ffs(m)) =0.

(Ks—K3+Kz)
iz = 1=0.
Ky (K3—Kz)
=K +(——) +K +
az 1+ ( P ) 6 ((Ks-Ks+Kz}
Kg(K3—K>) ) ( Kg(K35—K>) ) (Kl(KS—KZ)
—=—3 = |+ K K, + K +K,
(Ks—K,+K3) 176 T I\ (KK +Ky) ¢ K3

_ K (K3—Kz)
Q= KlKZKE_FKlKZ(i(KE—K#KE}

K (K3—K3) )+ K,

ay ZKJ_KE +K2K6 +Kz( )_KJ_KE.

Ky (Ka—K2)
— KB K — Klffa(m) + KK (m-
3

Ifa; >0,i =0,1,2 and a,a; —azap >0
Then by the Routh-Hurwitz criterion, the system at ( 7+,6+,5%) is stable.

Despite our continued efforts in analyzing the system, we were unable to reach a consistent result or
a clear analytical solution. We faced multiple challenges that complicated the results, making it dif-
ficult to determine the system’s behavior definitively. We therefore intend to resort to numerical
methods as an alternative means to explore the system dynamics more precisely. By using numeri-
cal solutions, we hope to gain deeper insights into the stability of the system and its behaviors under
different conditions, which may help us understand complex phenomena that we have not been able

to analyze Figure 1.
14

no -

Concentration
(%3]

0 0.5 1 15 2 2.5
Time

Figure: (1). intracellular viral kinetics; K; = 0.5,K; = 0.1. K3 = 0.3, K, = 0.2, K; = 0.1, K, = 04.

Note that the viral template T appears concave upward, and this indicates that the amount of tem-
plate increases over time, which indicates stability in growth with increasing template production.
Being concave upward, this means that the increase in the amount of T accelerates over time, which
reflects a positive dynamic in the reproduction of the virus.

As for the viral genome, it decreases over time as it is concave downwards. This decrease also indi-
cates consumption or degradation of the viral genome. This dynamic may reflect an interaction pro-
cess between the genome and the target cells. As for the amount of structural proteins, it decreases
over time, and this indicates that the structural proteins are either used to build new viruses or are
broken down due to cell processes. Based on the results extracted from the drawing, the system ap-
pears unstable. This is based on the data that was entered.

In fact, viruses and the host cell are exposed to random fluctuations. These fluctuations can affect
the rates of interaction and reproduction. To provide a deeper understanding of how random factors
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affect the movement of the virus inside cells, we can create a stochastic model that takes into ac-
count random factors and provides a better understanding of how viruses evolve and become re-
sistant. For treatments or vaccines.

The stochastic model for the system
1- Probabilities associated with changes in the model, Table 2.

Table: (2). Probabilities associated with changes in the model

Changes,AX; Probability, p;
(1,—1,0)%. K,GAt.
(—1,0,0)%. K;T At.
(0,1,0)%. K3T At.

(0, —1, ;1)“’. K4GSAL.
(0,01, KsTAL.
(0,0,—1)*. Ko SAL.

2- The expectation E(Ax) = X°_, p;Ax; is 3 x 1 matrix, the expectation can be expressed as fol-
lows.

E(Ax) = X7 piAx; = pyAxy + poAx, + pAxz + pylxy + psAxs + pelxe

1 -1 0 0 0

E(Ax) = X%, piAx; = K16 (—1) + K’zT( 0 ) + KgT(l) + K,GS (—1) + KET(O) +
0 0 0 —1 1

0
KES( 0 )
-1
K,G —K,T 0 0 0 0
roo=(che)o( ¢')+(ar) () () ()
0 0 0 —K,GS K.T —K,S
K,G — K,T
E(Ax) = (—KlG + KT — mcs) At.
—K,GS + KT — K¢S
3- The covariance matrix, can be expressed as follows

E(Ax(Ax)T) = X7, piAx; (Ax,)".
= p1Ax1 (Ax1)T + ppAxy (Bx)" + p3Axs (Ax3)T + pyAxy (Axy)" +

PsAxs(Axs)T + peAxg(Axg).

K,G —K,T 0
E(Ax(AxX)T) = (—KIG) (1-10) +( 0 ) (—10 0) + (K3T) (010)+
0 0 0

0 0 0
(—K4GS)(0 -1 —1)+( 0 )(0 0 1)+( 0 )(0 0—1).
—K,GS KT —K,S
K.G —-K,G 0 KT 0 0 0 0 0
E(Ax(Ax)T) = (—KlG K,G 0) + ( 0 0 0) + (o KsT 0) +

0 0 0 0 0 0 0O 0 0

0 0 0 00 0 0 0 0
(0 K,GS K4GS)+ (0 0 0 )+(0 0 o0 )
0 K,GS K,GS 0 0 KT 0 0 KS
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KiG + K,T —K,G 0
E(Ax(Ax)T) = ( —K.G  KiG+ KT+ K,GS K,GS )ax
0 K,GS K,GS+ K.T + K.S
K.G +K,T —K,G 0
E(Ax(ax)T) = ( —KiG  KiG+K;T + K,GS K,GS )m = VAt.
0 K,GS K,GS+ K;T + K;S

4- Formulate the stochastic system as

dX(t) = f(X(¢), t)dt + h(X(2), t)dW (1).

where
dT; dw; (t)
dx(t) = [th F&@,0 = [FE2], h(x(@), 1) =¥V and dw(®) = |dw;(0)|.
dst dWE (t)
dT, KG —K,T
(ds,) = (—Klﬁ + K3T —K,.Gs) dt +
ds, —K4GS + KT — K¢S
JE G +K,T) T 0 aw,(£)
—JK\G J(E,G + K;T + K,GS5) K,GS -\ d@Ws(2) |
0 K.GS JEGS + KT +K.5) / \dWa()

dT, = (K,G, — K,T,)dt + [(K,G, + K,T;) dW,(t) — /K, G.dW, (t).
6, = (K,G; + K;T; — K,G;S)dt — [K,G.dW, (1) + [(K, G, + K5T; + K,6,5)aW, () + K, G, S,dWy(t)
d5; = (—KAGtst + K5T; - H‘,St)dt + K6 St dli-'l?_'.,-;(t} + ‘\I'r[HAGtSt +KsTy + Kist)dwim-

The equivalent system for the former system.

The diffusion matrix G of dimension 3 x 6 is

JEiG —JK,T 0 0 0
¢=|\-/kc o J_ 1;‘1{4 0 0
0 0 ~JK.GS JKT —JKeS

dX(t) = f(X(r), t)dt + g(X(t) t)dW(t).

Where:
rdW; (£)7
dT. dW ()
t
dx (o) = \th], Fx@,0 = [F29], g(x(e), ©) = G and aw(®) = ﬂzgg -
dSt dW;(t)
[ dW, ()]
Thus, the system takes the following form:
Wi(t
dT, K G — KT JEG —JET 0 0 0 W, (t)
(ds,)—(—xls+x,r x,ﬁs)dz+(—J— o Jf J 0 0 ) ‘;:?Eg .
dS; ~HKsGS + KsT — KeS 0 —JEGS BT —JKeS W:(t)

(L
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th = (KJ" — KT )dt + \fﬁ dw1(t) - ﬁd“'z(t) -
dG, = (—K,6 + K,T — K,65)dt — \JK,6 dW; (t) + [k, TdW; (t) — VK65 dW, (1).
dS; = (K65 + k;T — K s)dt — Jk,65 AW, (t) + [r,T dW;5(2) — [K,s dW,(0).

A stochastic drawing shows how the viral template interacts with the genome and structural pro-
teins in the system. While the viral template remains stable, the genome and proteins exhibit fluctu-
ations that reflect response to random factors and changes in the cellular environment, Figure 2 and

Figure3.
14

12

10

Population

0 05 1 15 2 2.5
Time

Figure: (2). intracellular viral kinetics; £; = 0.5,K;, = 0.1. K; = 0.3,K, = 02, K = 0.1, K, = 04.

14

12§

wo -

10}

Population
[#}]
< E
=

Time
Figure: (3). intracellular viral kinetics; K; = 0.5,K, = 0.1. K3 =0.3,K, = 0.2, K; = 0.1,K, = 0.4.

Numerical Representation
The deterministic and stochastic systems solved numerically, (see the Appendix), their solutions
represented using MATAB tools, and hence the following figures were obtained.
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CONCLUSION

In this study, the movement of the virus inside cells was analyzed, using an advanced mathematical
model, where the stability of the virus's dynamics was studied and the random model of the virus's
movement inside the cells was discovered, which allowed us to better understand the dynamics of
the virus and how the system works, and its influence on random factors. This study provides im-
portant insights that contribute to the development of effective treatment strategies.

The study can also be used to analyze different types of viruses, such as the immunodeficiency vi-
rus, influenza virus, coronavirus, etc., which confirms the importance of model in viral researches.
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Appendix

Code of intracellular viral kinetics model (Deterministic model):
% Parameters

K1 =0.5; % Parameter K1

K2 =0.1; % Parameter K2

K3 =0.3; % Parameter K3

K4 =0.2; % Parameter K4

K5 = 0.4; % Parameter K5
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K6 =0.1; % Parameter K6

% ODE system

ode_system = @(t, Y) [
K1*Y(2)-K2*Y(1); % dT/dt
K3*Y(1)-KL1*Y(2)-K4*Y(2)*Y(3); % dG/dt
K5*Y(1)-K6*Y(3)-K4*Y(2)*Y(3) % dS/dt

I;

% Initial conditions

TO0 =10; % Initial condition for T
GO0 = 12; % Initial condition for G
S0 = 8; % Initial condition for S
Y0 =[TO; GO; SOJ;

% Time span
tspan = [0 2.5];

% Solve ODE
[t, Y] = oded5(ode_system, tspan, YO0);

% Plot results

figure;

plot(t, Y(:,1), -b', 'DisplayName’, 'T");
hold on;

plot(t, Y(:,2), -r', 'DisplayName’, 'G");
plot(t, Y(:,3), -0, 'DisplayName’, 'S");
xlabel('Time");
ylabel('Concentration’);

legend,;

grid on;

hold off;

Code of intracellular viral kinetics model (Stochastic model):

% Parameters

K1 =0.5; % Parameter K1
K2 =0.1; % Parameter K2
K3 =0.3; % Parameter K3
K4 =0.2; % Parameter K4
K5 = 0.4; % Parameter K5
K6 = 0.1; % Parameter K6

% Initial conditions

TO = 10; % Initial condition for T

GO0 = 12; % Initial condition for G

S0 = 8; % Initial condition for S

total time = 2.5; % Total time

dt =0.01; % Time step

N = total_time / dt; % Number of time steps
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% Preallocate arrays
T_values = zeros(1, N);
G_values = zeros(1, N);
S_values = zeros(1, N);

t = linspace(0, total_time, N);
T values(1) = TO;
G_values(1) = GO;

S values(1) = SO;

% Simulation using Euler-Maruyama method
fori=1:N-1
% Deterministic part
dT_det = (K1 * G_values(i) - K2 * T_values(i)) * dt;
dG_det = (-K1 * G_values(i) + K3 * T_values(i) - K4 * G_values(i) * S_values(i)) * dt;
dS_det = (-K4 * G_values(i) * S_values(i) + K5 * T_values(i) - K6 * S_values(i)) * dt;

% Stochastic part

dwW1 = sqgrt(dt) * randn;
dwW2 = sqrt(dt) * randn;
dwWa3 = sqrt(dt) * randn;

dT_sto = sqrt(K1 * G_values(i) + K2 * T_values(i)) * dW1 - sqrt(K1 * G_values(i)) * dW2;

dG_sto = -sgrt(K1 * G_values(i)) * dW1 + sgrt(K1 * G_values(i) + K3 * T _values(i) + K4 *
G_values(i) * S_values(i)) * dW2 + sqrt(K4 * G_values(i) * S_values(i)) * dW3;

dS_sto =sqrt(K4 * G_values(i) * S_values(i)) * dW2 + sqrt(K4 * G_values(i) * S_values(i) + K5
* T values(i) + K6 * S_values(i)) * dW3;

% Update populations

T values(i+1) = T_values(i) + dT_det + dT_sto;
G_values(i+1) = G_values(i) + dG_det + dG_sto;
S values(i+1) = S_values(i) + dS_det + dS_sto;

% Ensure populations remain non-negative

T _values(i+1) = max(T_values(i+1), 0);

G_values(i+1) = max(G_values(i+1), 0);

S values(i+1) = max(S_values(i+1), 0);
end

% Plot results

figure;

plot(t, T_values, -b', 'DisplayName’, T");
hold on;

plot(t, G_values, '-r', 'DisplayName’, 'G");
plot(t, S_values, -g', 'DisplayName’, 'S");
xlabel('Time");

ylabel('Population’);

legend,;

grid on;
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hold off;

Code of intracellular viral kinetics model (equevelant Stochastic model):
% Parameters

K1 =0.5; % Parameter K1

K2 =0.1; % Parameter K2

K3 =0.3; % Parameter K3

K4 =0.2; % Parameter K4

K5 = 0.4; % Parameter K5

K6 = 0.1; % Parameter K6

% Initial conditions

TO = 10; % Initial condition for T

GO0 = 12; % Initial condition for G

S0 = 8; % Initial condition for S

total time = 2.5; % Total time

dt =0.01; % Time step

N = total_time / dt; % Number of time steps

% Preallocate arrays
T_values = zeros(1, N);
G_values = zeros(1, N);
S_values = zeros(1, N);

t = linspace(0, total_time, N);
T values(1) = TO;
G_values(1) = GO;

S values(1) = SO;

% Simulation using Euler-Maruyama method
fori=1:N-1
% Deterministic part
dT_det = (K1 * G_values(i) - K2 * T_values(i)) * dt;
dG_det = (-K1 * G_values(i) + K3 * T_values(i) - K4 * G_values(i) * S_values(i)) * dt;
dS_det = (-K4 * G_values(i) * S_values(i) + K5 * T_values(i) - K6 * S_values(i)) * dt;

% Stochastic part

dwW1 = sqrt(dt) * randn;
dwW2 = sqrt(dt) * randn;
dwWa3 = sqrt(dt) * randn;
dw4 = sqgrt(dt) * randn;
dWs5 = sqrt(dt) * randn;
dWe6 = sqrt(dt) * randn;

dT_sto = sqrt(K1 * G_values(i)) * dW1 - sqrt(K2 * T_values(i)) * dW2;

dG_sto = -sqrt(K1 * G_values(i)) * dW1 + sqrt(K3 * T_values(i)) * dW3 - sqrt(K4 * G_values(i)
* S values(i)) * dwW4;

dS_sto = -sqrt(K4 * G_values(i) * S_values(i)) * dW4 + sqrt(K5 * T_values(i)) * dW5 - sqrt(K6
* S values(i)) * dWe;
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% Update populations

T values(i+1) = T_values(i) + dT_det + dT_sto;
G_values(i+1) = G_values(i) + dG_det + dG_sto;
S values(i+1) = S_values(i) + dS_det + dS_sto;

% Ensure populations remain non-negative

T values(i+1) = max(T_values(i+1), 0);

G_values(i+1) = max(G_values(i+1), 0);

S values(i+1) = max(S_values(i+1), 0);
end

% Plot results

figure;

plot(t, T_values, -b', ‘DisplayName’, 'T");
hold on;

plot(t, G_values, "-r', 'DisplayName’, 'G";
plot(t, S_values, -g', 'DisplayName’, 'S");
xlabel('Time");

ylabel('Population’);

legend;

grid on;

hold off;
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