Doi: https://doi.org/10.54172/tr3mwd31

Research Article ⁶Open Access

Chemical composition of Ocimum sanctum by GC-MS Analysis

 ${\bf Ahmed\ A.\ Mustafa}^*, {\bf Mubarak\ S.\ Hamad}^1, {\bf Haifa\ A.\ Awad}^2 \ {\bf and\ Hatil\ El-kamali}^3$

Corresponding Author: ah-mad.ali11526@uofg.edu.sd, Department of Botany and Microbiology, Faculty of Science, University of Gezira, Wad-madani, Sudan.

¹Department of Taxonomy and Phytochemistry, Medicinal, Aromatic and Tradition Medicine,Research Institute, National Center for Research, Khartoum, Sudan.

²Department of Botany, Faculty of Science, Sudan University of Science and Technology, Khartoum, Sudan.

³Department of Botany Faculty of Science and Technology, Omdurman Islamic University, Omdurman, Sudan

Received:

30 November 2023

Accepted:

10 October 2024

Publish online:

31 December 2024

Abstract

The chemical composition of the n-hexane extract from the aerial parts of *Ocimum sanctum.*, was investigated using gas chromatography-mass spectrometry (GC/MS), identifying 46 different compounds. Terpenoids were the most abundant, with monoterpenes representing 21.82% of the extract. The primary components identified were methyl eugenol (27.24%), squalene (11.84%) α -bergamotene (9.83%), linalool (8.42%), and fenchyl acetate (7.56%). These results indicate that *O. sanctum* could serve as a valuable source of food and medicinal agents.

Keywords: Ocimum sanctum., GC

INTRODUCTION

Medicinal plants are well-known for their diverse range of bioactive compounds, which have long been used to treat chronic and infectious diseases (Periyasamy Ashokkumar et al., 2010). Natural products derived from plant extracts/fractions are potent therapeutic agents for various infectious as well as degenerative diseases. In herbal medicines, various parts of the plant (root, stem, flower, fruit, twig exudates and modified plant organs) are used having diverse therapeutic properties. To utilize these plants, they are collected on the minute scale by local communities and folk healers, while to trade for herbal industries numerous other plants are collected in large amounts as a raw material (Sahreen et al., 2015). In recent years for the management and protection against pathogens, a large number of plants have been examined for their antimicrobial characteristics as an integrative system of medicine (Hosseinzadeh et al., 2015).

For centuries, plant extracts and oils have served various medicinal and practical purposes (EL-

The Author(s) 2024. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium 'provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Kamali & EL-Amir, 2010). The genus *Ocimum*, which includes 160 species, is distributed across tropical and subtropical regions, showing considerable morphological variability from herbs to sub-shrubs (Mustafa & El-kamali, 2019). The morphology of *Ocimum* varies from herb to sub-shrubs with large variations in leaf shape, size, glands, hairs and many more morphological peculiarities. Each species produces essential oils with antimicrobial, antioxidant, antifungal, and anti-inflammatory properties, although their taxonomy remains somewhat unclear (Nahak et al., 2011).

Ocimum sanctum., is widely recognized in traditional and modern medicine across Africa, Asia, Europe, and South America (Mustafa & El-kamali, 2020). This study aims to identify the chemical composition of the n-hexane extract from the aerial parts of *O. sanctum*.

MATERIALS AND METHODS

Plant Material

The aerial parts of *Ocimum sanctum.*, were collected from Sinnar State in April, 2018 and identified by Prof. Maha Kordofani from the University of Khartoum, Botany Department, Sudan.

Extraction

Twenty grams (20g) of dried aerial parts were macerated in n-hexane for 72 hours. After filtration, the extract was concentrated, yielding 80 mg of dried material (Omer et al., 2024).

GC-MS Analysis

GC/MS analysis was performed on a Shimadzu GC/MS-QP2010A system in ET mode (70ev) equipped with at a split /splitters injector (250°C), at split ratio of 5/50 using DB-5MSColumn (30m x 0.25mm id, film thickness: 0002E25 miss J and W scientific, fulsome, CA,WA). Injection volume was 1misarlitre and electronic pressure programming was used to maintain a constant flame (0.67ml/mins) of the Helium carrier gas. The oven temperature was programmed from 150°C (4mins) to 320°C at a rate of 2c/mins and held at that temperature 200°C and interface temperature 250°C. The relative approach percentage of each compound was determined by area. Components identification was carried out using the NIST 147 and NIST 27 libraries (Mustafa & El-kamali, 2019).

RESULTSAND DISCUSSION

GC-MS analysis of the n-hexane extract from *O. sanctum.*, aerial parts revealed 46 chemical constituents (Table1) The major compound was methyl eugenol (27.24%), followed by squalene (11.84%), α-bergamotene (9.83%), linalool (8.42%), and fenchyl acetate (7.56%). Sesquiterpenes (48.33%) and monoterpenes (21.25%) were the dominant compound groups, with other identified components including triterpenol hydrocarbons, esters, ketones, fatty acids, and alcohols.

The results can be justified by the already reported work (Khair-ul-Bariyah, 2013). The work has been reported regarding the chemical constituents of *O. sanctum* (Mondello et al., 2002). Similarly, linalool of up to 71.4% in essential oil from Bulgaria has been reported (Jirovetz et al., 2001). From China, Croatia, Israel, the Republic of Guinea, Nigeria, Egypt, Pakistan and Malaysia, (z)cinnamic acid methyl ester, linalool, eugenol, estragol, bergamotene, 1,8-cineol, α-cadinol, methyl cinnamate and limonene has been listed as major components of the essential oil. Forty seven components comprising 97.99% of total oil have been reported (Hassanpouraghdam et al., 2010).

Generally, the work has been reported monoterpenoids comprise the major fraction of the oil (77.8%) followed by sesquiterpenoids (12.8%). Oxygenated monoterpenes are 75.3% present with estragole (21.5%), menthone (33.1%), menthol (6.1%), isoneomenthol (7.5%) and pulegone (3.7%) being the main compounds. The only monoterpene hydrocarbon is limonene (1.5%). Menthyl acetate was found in trace amounts (5.6%) (Khair-ul-Bariyah, 2013). The presence of bioactive compounds supports the traditional use of *O. sanctum* for medicinal purposes, and it was classified as a methyl eugenol chemotype.

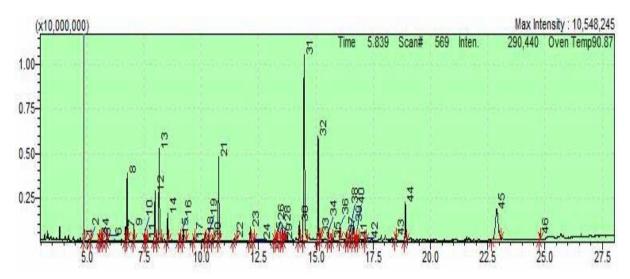


Figure (1). GC/MC chromatogram of Ocimum sanctum., n-hexan extract

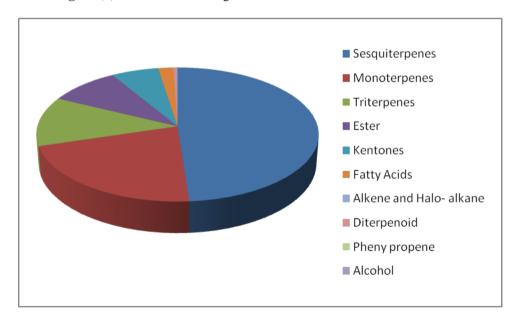


Figure (2). Percentage of compounds

Table(1). Chemical composition of n-hexane extract of aerial parts of Ocimum sanctum.,:

NO	Compounds	R.T	%	Formula	Class type
1	α –pinene	4.866	0.38	$C_{10}H_{16}$	MH
2	Camphene	5.152	0.13	$C_{10}H_{16}$	MH
3	Hexen-2-one	5.523	0.42	$C_6H_{10}O$	OH
4	β – phellandrene	5.598	0.20	$C_{10}H_{16}$	MH
5	β- (-)pinene	5.680	0.40	$C_{10}H_{16}$	MH
6	β – myrcene	5.888	0.41	$C_{10}H_{16}$	MH
7	D- Linanene	6.689	1.06	$C_{10}H_{16}$	MH
8	Eucalyptol	6.762	5.25	$C_{10}H_{18}O$	OM
9	B- Ocimene	7.048	1.09	$C_{10}H_{16}$	MH
10	Cyclohexanol,1-methyl-4-(1-methylethenyl	7.516	0.41	$C_{10}H_{18}O$	OM
11	α-methyl-alpha-(4-mehyl- 3pentenyl)	7.609	0.17	$C_{10}H_{18}O_2$	FA
12	L-fenchone	7.976	4.48	$C_{10}H_{16}O$	Ketone
13	Linalool	8.159	8.42	$C_{10}H_{18}O$	OM
14	Bicyclo (2.2.1) hepta-2-ol ,1,3,3-trimethyl-	8.530	2.16	$C_{10}H_{18}O$	OM
15	3-cyclohexene-1-methanol	9.047	0.59	$C_7H_{12}O$	Alkene
16	(+)-2-bornanone	9.207	1.14	$C_{10}H_{16}O$	Ketone
17	L-α- terpineol	9.667	0.29	$C_{10}H_{18}O$	OM
18	α – terpineol	10.167	0.67	$C_{10}H_{18}O$	OM
19	Estragole	10.308	0.33	$C_{10}H_{12}O$	OM
20	Octyl acetate	10.480	0.25	$C_{10}H_{20}O_2$	FA
21	Fenchyl acetate	10.755	7.56	$C_{12}H_{20}O_2$	FA
22	Geraniol	11.440	0.38	$C_{10}H_{18}O$	OM
23	Bornyl acetate	12.136	1.18	$C_{12}H_{20}O_2$	FA
24	Hexadecane,1-chloro	12.280	0.12	$C_{16}H_{33}CL$	Halo-alkane
25	-β elemene	13.181	0.28	$C_{15}H_{24}$	SH
26	2-hydroxycineol	13.253	0.14	$C_{12}H_{20}O_3$	Ether
27	α – culenene	13.423	0.04	$C_{15}H_{24}$	SH
28	6-isopropenyl-3-(methoxy methoxy)-3-methyl	13.528	0.07	$C_{12}H_{20}O_2$	FA
29	Hydroxycineol	13.586	0.13	$C_{10}H_{18}O_2$	FA
30	Elemene	14.275	1.64	$C_{11}H_{14}O_2$	FA
31	Methyl eugenol	14.491	27.24	$C_{15}H_{24}$	SH
32	α- Bergamotenol	15.096	9.83	$C_{15}H_{24}$	SH
33	α- Guaiene	15.188	0.45	$C_{15}H_{24}$	SH
34	Humulene	15.537	0.64	$C_{15}H_{24}$	SH
35	β- cubebene	15.700	0.25	$C_{15}H_{24}$	SH
36	β -Ylangene	16.047	1.50	$C_{15}H_{24}$	SH
37	Germcrene B	16.338	0.63	$C_{15}H_{24}$	SH
38	α-bulnesene	16.477	0.71	$C_{15}H_{24}$	SH
39	γ-maurolene	16.636	1.76	$C_{15}H_{24}$	SH
40	β-Sesquiphella-ndrene	16.737	0.34	$C_{15}H_{24}$	SH
41	2-α-trans-bergamolol	16.832	0.20	$C_{15}H_{24}O$	OS
42	Trans $-\alpha$ -begamotol	17.156	0.30	$C_{15}H_{24}O$	OS
43	Cubenol	18.476	0.38	$C_{15}H_{26}O$	OS
44	Cadinol	18.903	3.78	$C_{15}H_{26}O$	OS
45	Squalene	22.884	11.84	$C_{30}H_{50}$	Triterpenoid
46	Phytol	24.788	0.38	$C_{20}H_{40}O$	Diterpene

MH=monoterpene hydrocarbon; OM=oxygenated monoterpene ; FA=fatty acid; SH=sesquiterpene hydrocarbon; OS=oxygenated sesquiterpene; OH: Oxgenated hydrocarbon.

Compounds	%	Medicinal uses and biological activity	References	
Methyl euge- nol	27.24	anti-inflammatory, Nematodes, Antifeedant and Insects.	(Desai et al., 1996; Park et al., 2007)	
Squalene	11.42	Antioxidant and Antitumor activities.	(Saint-Leger et al., 1986; Yano, 1987)	
α- bergamotene	9.83	Antiepileptic and anti-inflammatory activity.	(Kohno et al., 1995)	
Linalool	8.42	Antibacterial, antifungal and Anti-inflammatory.	(Desai et al., 1996)	
Fenchyl acetate	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \		(Sabogal-Guáqueta et al., 2016)	
Eucalyptol	5.25	Insecticidal, flavorings, fragrances, and cosmetics.	(Sfara et al., 2009)	

Table (2). The high compounds in Ocimum sanctum., with biological activity:

CONCLUSIONS

A higher percentage of sesquiterpenes was found in the *O. sanctum* n-hexane extract which might be used in the pharmaceutic industry, some compounds found in *O. sanctum.*, aerial parts are toxic such as phytol, which requires caution. To establish therapeutic uses of *O. sanctum* in modern medicine, scientists and researchers must study the pharmacological effects of different extracts on different body systems.

Duality of interest: The authors declare that they have no duality of interest associated with this manuscript.

Author contributions :Contribution is equal between authors.

Funding: No specific funding was received for this work.

REERENCES

- Desai, K., Wei, H., & Lamartiniere, C. (1996). The preventive and therapeutic potential of the squalene-containing compound, Roidex, on tumor promotion and regression. *Cancer letters*, 101(1), 93-96.
- EL-Kamali, H. H., & EL-Amir, M. Y. (2010). Antibacterial activity and phytochemical screening of ethanolic extracts obtained from selected Sudanese medicinal plants. *Current Research Journal of Biological Sciences*, 2(2), 143-146.
- Hassanpouraghdam, M. B., Hassani, A., & Shalamzari, M. S. (2010). Menthone-and estragole-rich essential oil of cultivated Ocimum basilicum L. from Northwest Iran. *Chemija*, 21(1), 59-62.
- Hosseinzadeh, S., Jafarikukhdan, A., Hosseini, A., & Armand, R. (2015). The application of medicinal plants in traditional and modern medicine: a review of Thymus vulgaris. *International Journal of Clinical Medicine*, 6(9), 635-642.
- Jirovetz, L., Buchbauer, G., Stoyanova, A., & Balinova, A. (2001). Analysis, chemotype and quality control of the essential oil of a new cultivated basil (Ocimum basilicum L.) plant from Bulgaria. *Scientia Pharmaceutica*, 69(1), 85-89.

- Khair-ul-Bariyah, S. (2013). Comparison of the Physical Characteristics and GC/MS of the Essential Oils of Ocimum basilicum and Ocimum sanctum. *International Journal of Scientific Research in Knowledge*, 1(9), 363.
- Kohno, Y., Egawa, Y., Itoh, S., Nagaoka, S.-i., Takahashi, M., & Mukai, K. (1995). Kinetic study of quenching reaction of singlet oxygen and scavenging reaction of free radical by squalene in n-butanol. *Biochimica et Biophysica Acta (BBA)-Lipids and Lipid Metabolism*, 1256(1), 52-56.
- Mondello, L., Zappia, G., Cotroneo, A., Bonaccorsi, I., Chowdhury, J. U., Yusuf, M., & Dugo, G. (2002). Studies on the essential oil bearing plants of Bangladesh. Part VIII. Composition of some Ocimum oils O. basilicum L. var. purpurascens; O. sanctum L. green; O. sanctum L. purple; O. americanum L., citral type; O. americanum L., camphor type. *Flavour and fragrance journal*, 17(5), 335-340.
- Mustafa, A. A., & El-kamali, H. H. (2019). Chemical composition of Ocimum americanum in Sudan. *Res. Pharm. Health Sci*, 5(3), 172-178.
- Mustafa, A. A., & El-kamali, H. H. (2020). Proximate and phytochemical constituents of in Sudan Ocimum sanctum.
- Nahak, G., Mishra, R., & Sahu, R. (2011). Taxonomic distribution, medicinal properties and drug development potentiality of Ocimum (Tulsi). *Drug Invention Today*, 3(6).
- Omer, H. A., Mustafa, A. A., Kabbashi, A. S., & Taher, A. R. (2024). Antimicrobial, Antioxidant Activities and total phenolics contents of Portulaca oleracea., crude extracts, Sudan.
- Park, I.-K., Kim, J., Lee, S.-G., & Shin, S.-C. (2007). Nematicidal activity of plant essential oils and components from ajowan (Trachyspermum ammi), allspice (Pimenta dioica) and litsea (Litsea cubeba) essential oils against pine wood nematode (Bursaphelenchus xylophilus). *Journal of nematology*, 39(3), 275.
- Periyasamy Ashokkumar, P. A., Rajkumar, R., & Mahalingam Kanimozhi, M. K. (2010). Phytochemical screening and antimicrobial activity from five Indian medicinal plants against human pathogens.
- Sabogal-Guáqueta, A. M., Osorio, E., & Cardona-Gómez, G. P. (2016). Linalool reverses neuropathological and behavioral impairments in old triple transgenic Alzheimer's mice. *Neuropharmacology*, 102, 111-120.
- Sahreen, S., Khan, M. R., Khan, R. A., & Hadda, T. B. (2015). Evaluation of phytochemical content, antimicrobial, cytotoxic and antitumor activities of extract from Rumex hastatus D. Don roots. *BMC complementary and alternative medicine*, *15*, 1-6.
- Saint-Leger, S., Bague, A., Cohen, E., & Chivot, M. (1986). A possible role for squalene in the pathogenesis of acne. I. In vitro study of squalene oxidation. II. In vivo study of squalene oxides in skin surface and intra-comedonal lipids of acne patients.

- Sfara, V., Zerba, E., & Alzogaray, R. A. (2009). Fumigant insecticidal activity and repellent effect of five essential oils and seven monoterpenes on first-instar nymphs of Rhodnius prolixus. *Journal of medical entomology*, 46(3), 511-515.
- Yano, K. (1987). Minor components from growing buds of Artemisia capillaris that act as insect antifeedants. *Journal of Agricultural and Food Chemistry*, 35(6), 889-891.