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Abstract

The tumor growth models are vital and efficient tools for treating and
diagnosing the disease. Therefore, we will find in this paper an approx-
imate solution to the brain tumor growth model for a variable killing
rate under medical treatment by applying the homotopy perturbation
method (HPM). This method is both effective and simple, as it
doesn’t require the development of any iterative scheme to find a solu-
tion to the given equations. We will apply a new homotopy perturbation

method (NHPM), which shortens the steps used in HPM by utilizing the
first approximate solution to get the exact solution. The efficiency and
reliability of the presented methods will be tested using some examples.
Additionally, we will calculate the norm errors L,, L, and absolute
error. Furthermore, we will conduct numerical simulations and generate
graphics for this model using the Wolfram Mathematica 13.2 code.
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INTRODUCTION

Cancer cells grow and multiply very quickly, and most cancer treatments only rarely kill active-
stage cells, this has prompted scientists to develop models of the growth of these tumors to develop
effective treatment strategies and improve diagnostic and prevention methods. These models help
improve patient care and also work to simulate the effects of different treatments on growth tumors
and achieve the best results with the least side effects. In our study, we will study the growth model
of a glioma brain tumor, which is commonly found in humans and can be managed with chemo-
therapy, radiotherapy, and surgery.in (Burgess et al., 1997) presented the initial formula for study-
ing the glioma model, where they proposed a three-dimensional model for the growth of glioma that
is devoid of any medical treatment and can grow without restrictions. This model was developed by
many physicists, mathematicians, biologists, and medicines by incorporating cancer-killing sub-
stances into treatment. It was done by utilizing differential or integral equations, combining ideas
derived from these sciences (Cruywagen et al., 1995; Gonzalez-Gaxiola & Bernal-Jaquez, 2017;
Wein & Koplow, 1999). In our research, we will study how to apply the homotopy perturbation
method (HPM) and the modified homotopy perturbation method (NHPM) to a developed model of
the Burgess equation, as this method was studied for the first time in (He, 1999) to solve nonlinear
differential and integral equations. We will compare the approximate solution obtained from this
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method with the exact solution provided in the examples. This will be done using the absolute error
and the norm errors L, L.,. To calculate the results, we will use the Wolfram Mathematica 13.2
software.

Mathematical model of the Brain tumor growth (BTG):

Several scholars have discussed the Mathematical model describing brain tumor growth (Ganji et
al., 2021; Tracqui et al., 1995).

The equation that expresses the tumor rate is (Gonzélez-Gaxiola & Bernal-Jaquez, 2017; Nayied et
al., 2023):

51’1;. o DV*n(x,7) + p(D)n(x,7)
_ D_a_( 2 a";x T}) + p(Dn(x, 1) 1)

Where n(x, ) is the tumor cell concentration at the time t, VZis the Laplacian operator, D the dif-
fusion coefficient, and p(t) is the growth rate of the tumor. The equation (1) is known as the Bur-
gess equation, but this model has been modified by adding the Killing rate k(z) to equation (1) by
(Wein & Koplow, 1999) so the Burgess equation was obtained in the form:

an;ar:.r] _ xiz;_x( Zana[xr}) + p(Dnlx, ) — k(Dn(x,1) (2)

Equation (2) can be rewritten as
{ana[:.r} _D 12 aax (1’2 anlx, r}) + p(@nlx,1) — k(©Dn(x,7) .
n(xg,rg) =g
Following (Andriopoulos & Leach, 2006; Singha & Nahak, 2022), we propose the change of varia-
blest = 2Dt,u(x,t) = x n(x, 1), and w(x,t) = E u(x, t) in equation (3), we get
[ dulxt) 1 azu{x t]

Pra + w(x,t)
u(x, 0) = f(x)

Where w(x, t) represents the source term.

(4)

MATERIAL AND METHODS

The iterative methods employed in this paper to find the approximate solution of the glioma brain
tumor model will be introduced in this section (Kashkari & Saleh, 2017; Pal et al., 2023,
Sobamowo, 2023).

Homotopy perturbation method (HPM)
Consider examining the nonlinear differential equation that follows
Aw)—f(r)=0,r€sd (5)
With the conditions
B(u%)—ﬂrer (6)
Where 4, B,r, f(r),T respectively, are a general differential operator, a boundary operator, a co-
ordinate, a known function, and the boundary of the domain &§. Operator A can be split into two
separate operators, L ( linear operator) and N ( nonlinear operator). Consequently, equation (5) can
be rewritten as follows:
Lw)+N@w)—f(r)=0 (7)
Using the homotopy technique, we can create a homotopy denoted as v(r,p):8 x [0,1] = R
Which meets the following conditions:
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H(v,p) = (1 —p)[L(v) — L(ug)] + p[A(v) — F(r)] =0, pel0,1], re6  (8)

Where w4 is an initial approximation of Eq. (5). Using the homotopy technique, we can assume that
the solution of equation (8) is as follows:

V= v+ pry + pPug o

By setting p = 1, we obtain the solution of the equation (5)

u=limv=uvy+uvy+wvy+--
p—1

New homotopy perturbation method
The idea of this method is similar to HPM. First, we consider the Egs. (5), (6), (7). Using NHPM
we construct the following homotopy:
H(v,p) = (1 —p)[L(w) —uol + p[A(w) — fF()] =0 (9)
Where uy, is as in Eq. (8) . By using the homotopy technique and assuming that the solution of
equation (9) can be expressed as:

V= v+ pry + puy 4o (10)
By setting the initial approximation of Eq. (5) in the form _
1o = Nizo ¢ (R (x) , R;(x) =t (11)

Where, ¢;(x) are unknown coefficients and R;(x) are known functions. By substituting (10) and
(112) into (9) and comparing the coefficients of p to the same powers, we assume w4 (x,t) = 0.
Therefore the exact solution can be obtained as:

wix, ) = F() + B2 ¢, (1) 112 (12)

Where R;(x) = t',¢;(x),i = 0,1,--- unidentified quantities that would be evaluated

Application of Iterative Methods in the Brain Tumor Growth Model

Application of Homotopy Perturbation Method in the Brain Tumor Growth Model
This part is dedicated to the analysis of the BTG model (4) by using HPM, where

Llu(x,t)] = us(x, t) ,N[u(x,t)] = — (%uﬂ(x. t) + w(x.t)) S, t)=0

i.e. A(u(x, t)) = u.(x,t) —%uxx(x, t) —w(x,t)

Where w(x,t) = % u(x,t)

By employing the homotopy technique, we obtain

Hu,p) =us—vor + p (vm —% Uy — w(x,t)) (13)

Substituting the initial condition and u = %72, p'u; in the above equation

In the first case, if w(x,t) = au(x,t),a is constant, then
dug Oy , dus

at "Par TP gy T Ver

1/ 3%u, d%u, , 0%us 5
+p vor — 5| 512 +p 9x2 +p 32 + - | —alug + puy +p*us ++--) | =0

By comparing the coefficient of terms with identical power of p, we get
p%:ugr — vor = 0 = uy = u(x, 0)

plruy = aug + 5 toxx ~ Vot » u,(x,0) =0
p?iuy = auy + % Ui Uz (x,0) =0 (14)

p3iuz, = au, +E Uony, Uz(x,0) = 0
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P": Upe = QUp_y) -l-%u{n_l}xx, u,(x,0) =0

By integrating both sides of the above equations for t, we get the required solution.

In the second case, if w(x,t) = g(u(x, t)), i.e.w(x,t) is anonlinear function of wu(x,t).

Using the same steps as in the first case, but setting w(x,t) = g(ug + puy + p*u; + ---) and using
Taylor’s series in Eq. (13).

Application of New Homotopy Perturbation Methods in the Brain Tumor Growth Model
For solving Eq.4 by NHPM we construct the following homotopy:

Uy = Vg — P (1?0 — %uxx —wix, t)) (15)
Integrate both sides of the above equation for ¢
u(x,t) = u(x,0) + fﬂt vodt — p fﬂt (1?0 — % Uy — wix, t)) dt (16)

Where u = 272, p'u;, vg = 2ieo ¢ (0)R; (1), R;(t) = ¢* in the eq. (16) and equating the coeffi-
cients of p with the same power leads to
In the first case, if w(x,t) = au(x,t),a is a constant:

t
p°:ug = ulx, 0) +[ (co+ e1t +cpt? + - )dt
0

pliu, = —fﬂt ((C{] + ¢yt +cpt? + -0) —% Ugex — auﬂ) dt a7

b
p?iu, = —f (——ulﬂ — aul)dt
0 2

o1
p3iuz = —[ (—— Uppy — auz) dt
0 2

And, so on
If we solve eq.’s (17) in a manner that

t
1
Uy = —[ ((C{J + et +ept? + ) — 5 toxx — a“{l)dt =0
0

Then, the equations (17) get the yield to
U, =0m=234,-
Thus, the exact solution can be obtained as follows:

u(x,t) = fx)+ X206 % R; =1t!
In the second case, if w(x,t) = g(u(x, t)), i.e.w(x,t) is anonlinear function of u(x,t).
Using the same steps as in the first case, but setting w(x,t) = g(ug + pu, + p*u; + ---) and using

Taylor’s series in Eq. (16).

Numerical simulation

In this section, we will employ our methods to obtain an approximate solution of the BTG model
(4) to verify the efficiency of the methods used in this paper. The given examples have been chosen
from (Gonzélez-Gaxiola & Bernal-Jaquez, 2017; Nayied et al., 2023).

The numerical simulation for the examples was performed using the Wolfram Mathematica code.
To determine the quality of the results obtained, the following error norms L, and L.are calculated

N M 5 1 1
Ly = |lu— vergetllz = &x&tzz (u(xi.tj) — uexact(xl-.tj)) JAx = N 1..*2;?: =W _1

i=0 j=0
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Lo = lu—upllee = max|u — upyqer| , abs.error = |u — wgpper
L
Example 4.1
We consider the following Burgess equation
uy(x, t) = %uxx (x,t) + wix,t) (18)
With the initial condition
u(x,0) =e* (19)

Where w(x,t) = é u(x, t) and the exact solution u(x,t) = e**t
To find a solution of eq. (18) by HPM, we will follow the same steps used in part (3.1), we obtain

the following:
p%iuy = e*
pl:u, = te*
2 t? x
peiup = e (20)
tg

3 _ x
P iUz = e
3 6

Gives the series solution as:

(=]

t? 3
—_— _ JES— —_— IR x
u(x,t) = E un—(l—l—t—l—z!—l—a!—l— )e

n=0
= X+t

Now, we will use NHPM to find the solution to equation (18) by following the same steps as in part
(3.2).

t
p%iuy = e +[ (co + it + cpt? 4+ -+ )dt
0

pliu, = —fot ((cg + eyt +cpt? +0) —% Woxx —éug) dt (21)

5 o1 1
peily = — . (—Eulxx—zul)dt

b 1
piius = —f (——uzﬂ ——uz)dt
0 2

2
And, so on
Now we will get the value of u, (x, t) such that the values 5, us, ... 1, will vanish.
— fﬂt ((cg + oyt +ept? + ) — % Uggy — aug) dt =10 (22)
Now putting the coefficients of ¢t equal to zero in eq.(22), which gives
1 . . . 1
cp=¢e",c; = E(cg + cﬂ) =e”*, c; = E(Cl —I—cl) :133‘,03 :E(cz —I—cz) = Eex and so on
— 1 x
Ch = EB

So, the solution of eq. (18) is as follows:
Riya ;
,t) = ,t —— R. =1!
u(x,t) = uglx )+Z;CI£+1 ;
i=

t2 1
=ex-I—ext-l—ex;-l—gex—-i-—ex—-l----
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—e* (1+e+ S+ 5+ 5+

So, we get

u(x,t) = e*tt
Which is an exact solution.

The numerical results of this example are displayed in Table 1 and Figures 1, 2, and 3. Table 1
compares the error norms L,, L., for N = 100 at different time levels ¢t < 1. Figure 1 displays the
graphical behavior of the numerical solution at various time levelst < 1 and i = 10. Figure 2 com-
pares HPM and NHM with the exact solution at t = 0.5. Moreover, Fig. 3 shows the absolute error
the solutions obtained by HPM and NHM and
x € [0,1],t = 0.5,i = 10. Based on Tables 1 and 2, as well as Figures 1, 2, and 3, it is clear that we
obtained good results.

between

Table: (1). Comparison of the error norm L5, L, at various times of ex.1

page201 ofll

the exact

solution for

Error t=01 t=10.3 t=10.5 t=07 t=09
HPM 34542 x 10718 4.7468% 1071 4.6524% 107 g gq55x 107 1 0117x 10718
NHPM L; 34542 x 10718 4.7468% 10718 4.6524% 10718 g g455% 10718 1 0117x 10715
HPM 8,8818% 107'%  13323x 1075 g 8g18%x 107'* 2 gE45x 10715 3 55p7x 10715
NHPM L 8,8818% 107'%  13323x 1075 g 8g18%x 107'® 2 eE45x 10715 3 55p7x 10715
1L gl )
/ | '
45 ; 45 p
Fd
10 Fé P 4 i
tus0.l — = i ’ 0=
15 3 . 20,3 — —
/ / :“" :'i" i t:=e.5 i
=D — ! t=8.7 —
30. 4 P o :"" :; o 25 t:=e.9--.
2‘5:/ D " g »” e '
t ’/ P 207
20 - b X
/ - v . ‘ ) 150 1.0
15 « * 02 04 06 08 1.0

Figure: (1). Comparison of HPM versus NHM at different t of ex.1
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Figure: (2). Solution of HPM and NHM with exact solution at x € [0,1], t = 0.5 of ex.1
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abs. error

35x10”1 |
31071 4
25x10711

- L - = | VeX =y |

2.x107 1 e

15x10"M

0.2 04 0.6 0.8 1.0

Figure: (3). Absolute error between solutions obtained by HPM and NHM for x € [0,1],t = 0.5,i = 10 of ex.1

Example 4.2

Consider the nonlinear Burgess equation

ug(x, t) = uxx(x t) + wix,t) (23)
Subject to the initial condition

u(x,0) =In(x +2) (24)

Where w(x, t) = e ¥t 4 %e‘zu(x-” and the exact solution u(x,t) = In(x + t + 2)

In the first case, we will solve eq. 23 using the HPM by following the steps used in part (3.1) when

w(x,t) is a nonlinear function as follows:

ﬂuﬂ_l_ 51L1+ ﬂuz_l_
ac Pac v’ at Vot

0%u d%u E.' u .
P (T?m (3 20 TP dx 21 + p? dx 22 + ) — g~ (uotpus+p2us+--)

1 )
_ Z e 2uptpuy+pPuz ) | — g

By simplification of the above equation, we get
dug  duy  ,0uy 1 E.'zug 1 ,0%u; 1 0%,
Ft TP TP v T Vet P T3P a3 g T3P g

1 )
_pe—uc,e—l[_pul+p Ugte ) _Epe—ZHOE—Z{_pul+p uzt+-) — o

By using the Taylor series to expand the previous expression, we obtain
dug N o,y N ,0uz ‘. N 1 E.'zug 1 ,0%u; 1 0%,
2 Par TP e Vor ¥ PV~ 3P 57 T3P a2 3P oy

2!

1 4(puq, + p?u, + -+ )?

Comparing the coefficients of equal powers of p
p%:ug = In(x + 2)
plru, = £ (25)

24+x

(puy + p2uy ++)2
—p(““ﬂ(l—(pu1+pug+ )+P1 e — -
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2., = £
Ptz = ooy
3 t?
Uny = ———
P U3 = J5103

Gives the solution as
t t? t?
24x 2Q2+07 3@+x3
That gives the exact solution
ulx,t) =Inlx+t+ 2)
In the second case, we will solve eq.23 using the NHPM. By following the steps in part (3.2), we
get

t a a2 a2
u(x,t) =Inlx + 2) + fﬂ vodt — Pf (vﬂ (a;G +p a;?i + p? a;z + ) _

u(x,t) = Inlx + 2) +

e~ (tg—pus +p?uz+--) _Ee—z{jug—pul+p Ug+- ))
2

Solving the above equation by using the homotopy technique, we get
t

p%:ug = In(x + 2) -l—[ vodt
0

_ 1 _
pliu, = —j (1?0 —Ugy, — € 10 —3e 2“0) dt (26)
tro1
p?iu, = —[ (_E Uy + Uje 0+ ule_z“ﬂ) dt
0

| 1
3. — —u —2u Z,-U —2u
p .113——[ (—Eugﬂ+uze 0 4+ use U—Eule o —ule U)dt
0

By assuming vo = 2o c; (x)R; (£), R; (t) = ', and solving the equation u; (x,t) = 0, we get
1 1 1 1

=~ a0 _ = T o = — . — [ — n
O T @R T a0 T or e T Y

Moreover, we have

u(x,t) = uglx, t) +Z I+1 R, =1t

t2 t2 t#
2 + 3 4
2(2+x) 3(2+x) 4(2+x)

2+

= In(x +2)+m—

Thus,

ulx,t) =In(x+t+2)

Which is an exact solution.

Both the exact solution and the approximate solutions of ex.2 are compared in Fig. 4, table 3, and
Table 4, where we notice that the solutions are almost identical, but through the absolute error, we
notice that there is a small difference between the exact solution and the approximate solutions. Ta-
ble 2 submits a comparison of the error norm L, for (x,t) € (0.1] x [0,1],i = 10 and different val-
ues of N, M.

Table: (2). The error norm L, on (x,t) € (0.1] x [0,1]of ex.2

Error N=10,M =10 M=N=100 M=4,N=8
HPM Ls 3.8586 x 107° 2.1628 x 10~° 6.1596 x 10~°
NHPM 1.7073 x 108 9.1124 x 1077 2.7615 x 10~°
HPM L, 3.046 x 1075 3.046 x 1075 3.046 x 1075
NHPM 1.3929 x 1075 1.3929 x 10°8 1.3929 x 10°8




Al-Mukhtar Journal of Basic Sciences 22 (3): 196-206, 2024

page204 ofll

Table: (3). Comparison between solutions obtained via HPM, NHM, and exact solution on (x,t) € (0.1] x [0,1] of

ex.2
t=0.1 t=0.5 t=0.9

x PHM NHM exact PHM NHM exact PHM NHM exact

0 0.74194 0.74194 0.74194 0.91629 0.91629 0.91629 1.06470 1.06471 1.06471
0.1 | 0.78846 0.78846 0.78846 0.95551 0.95551 0.95551 1.09861 1.09861 1.09861
0.2 | 0.83291 0.83291 0.83291 0.99325 0.99325 0.99325 1.13140 1.13140 1.13140
0.3 | 0.87547 0.87547 0.87547 1.02962 1.02962 1.02962 1.16315 1.16315 1.16315
0.4 | 0.91629 0.91629 0.91629 1.06471 1.06471 1.06471 1.19392 1.19392 1.19392
0.5 | 0.95551 0.95551 0.95551 1.09861 1.09861 1.09861 1.22377 1.22378 1.22378
0.6 | 0.99325 0.99325 0.99325 1.13140 1.13140 1.13140 1.25276 1.25276 1.25276
0.7 | 1.02962 1.02962 1.02962 1.16315 1.16315 1.16315 1.28093 1.28093 1.28093
0.8 | 1.06471 1.06471 1.06471 1.19392 1.19392 1.19392 1.30833 1.30833 1.30833
0.9 | 1.09861 1.09861 1.09861 1.22378 1.22378 1.22378 1.33500 1.33500 1.33500
1 1.13140 1.13140 1.13140 1.25276 1.25276 1.25276 1.36098 1.36098 1.36098

| Uph=Uex| |

| Up-uex| |g x1
6.x1 7
i

X 0
0.0

A
0
0‘-7

1 b0 D-D

Figure: (4). Comparing between approximate solutions obtained via HPM, NHM, and exact solution on the interval

(x,t) € (0.1] x [0,1] of ex.2
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Table: (4). The absolute error on (x,t) € (0.1] x [0,1]of ex.2

page205 ofll

X t=101 t=05 t=109

[1tp, — Ugel [thnn — Uge| [t — Uy | [tnn — Ugs [t — Uy | [tnn — Ugs |
0 4.44 % 10746 1.11 = 10~1& 1.76 % 1078 403 x107° 9.87 x 10°¢ 4.06 x 107¢
0.1 222 %1018 1.11 % 10718 1.04 x 1078 226 x107° 5.85 x 10°¢ 229 % 10°¢
0.2 | 1.11x1071 0 6.20 x 102 131 x 107° 3.55 x 10°°¢ 1.33 x 107®
0.3 333 x 10718 222 x 10718 3.89 x 10°° 7.73 x 10710 220 x 1078 7.89 x 1077
0.4 222 x 10" 1s 1.11 x 10718 2.45 % 107° 4.67 x 10710 1.40 x 10°® 479 x 1077
0.5 0 1.11 % 10718 157 x 107 2.88 x 10710 9.00 x 1077 296 x 1077
06 | 222 %101 0 1.03 % 10~° 1.81 x 1071@ 5.90 x 1077 1.87 x 1077
07 |0 222 % 10746 6.83 % 10~10 1.16 x 10719 393 x 1077 1.20 x 1077
0.8 | 222 x1p-18 222 % 10746 4.60 % 10~10 1.52 x 10711 2.65x 1077 7.82 x10°®
0.9 0 222 x 10718 3.14 x 10710 496 x 10711 1.82 x 1077 5.17 x 1078
1 222 x 10718 0 217 x 10710 332x10714 1.26 x 1077 347 x 1078
CONCLUSION

In this manuscript, we used the HPM and NHPM methods to solve the brain tumor growth model.
After comparing the results obtained from various examples, we have concluded that the methods
proposed in this study are effective and accurate for solving this mathematical model. We calculat-
ed the error norms L., L., , and absolute error, and the results indicated that these error norms
L., L, and absolute errors are very small. Therefore, we can assert that the methods outlined in
this paper yield good and reliable results. We utilized Wolfram Mathematica 13.2 software for per-
forming numerical computations and generating 2D and 3D graphs relevant to this study.

Duality of interest: The author declares that they have no duality of interest associated with this
manuscript.

Funding: No specific funding was received for this work.
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