Al-Mukhtar Journal of Agricultural, Veterinary and Environmental Sciences

Voulme 3 **APR 2025** Issue 1 PUBLISHED BY OMU ISSN: 3006 - 6501

Al-Mukhtar Journal of Agricultural, Veterinary and Environmental Sciences

Al-Mukhtar Journal of Agricultural, Veterinary and Environmental Sciences

The Author(s) 2025. This article is distributed under the terms of the Creative Commons Attribution-Non Commercial 4.0 International License [http://creativecommons.org/licenses/bync/4.0/], which permits unrestricted use, distribution, and reproduction in any medium, for non-commercial purposes only, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Email: omu.j.ave@omu.edu.ly

Editor-in-Chief:

Prof. Dr. Nawara Ali Mohammed Al-Obaidi

Editorial Board Members:

Prof. Nawara Muhammad Balqasim

Prof. Zahra Ibrahim Al-Jali

Prof. Dr. Nasser Al-Maslati

Prof. Dr. Magda Rizq Emraj

Dr. Ahmed Atiya Al-Mansouri

Dr. Osama Abd-Elhamid Abd-Elatty

Dr. Hamida Abdel Nabi Youssef

Dr. Abdel-Ghani Abdel-Fattah Hamad Al-Kaloush

Dr. Khadija Muhammad Othman Al-Haddad

Dr. Fatima Faraj Mohammad

Dr. Mohamed Abd-Elkarim Momen

Advisory Committee

Prof. Ibrahim Saleh Milad, Omar Al-Mukhtar University

Prof. Ariel Guti Veterinary Educational and Research Institute-India

Prof. Muhammad Ali Saeed, Omar Al-Mukhtar University

Prof. Ibrahim Ali Azaqa, Sebha University

Prof. Malik Raisul Islam Agricultural Sciences

University of Agricultural Sciences and Technology- India

Prof. Abdul Hamid Salem Issa Al-Haddad, Misrata University

Prof. Omar Musa Al-Senussi, Omar Al-Mukhtar University

Prof. Muhammad Ali Musa Boubakra, Omar Al-Mukhtar University

Prof. Abdel Hafeez Abdel Rahman Bouaida, Omar Al-Mukhtar University

Prof. Nasser Abdel Razek Abdel Mawla, Omar Al Mukhtar University

Prof. Abdul Hamid Hamad Charity, Omar Al-Mukhtar University

Support Team

Mr. Salah Muftah Abdullah

Ms. Suad Saeed Ahmeida

Peer Reviewers for This Issue

The editorial board of *Al-Mukhtar Journal of Agricultural, Veterinary and Environmental Sciences* expresses its appreciation to the reviewers who participated in the peer review of this issue.

Name	Affiliation			
Prof. Rabha Mohamed Abdel Sayed	Oman Al Mukhtan University, Al Davida Lihya			
Mansour,	Omar Al-Mukhtar University, Al-Bayda, Libya			
Prof. Faraj Ali Ajbil,	University of Tripoli, Tripoli, Libya			
Prof. Abdel Wahab Ramadan Abeya,	Mansoura University, Mansoura, Egypt			
Prof. Essam Mustafa Abdel Qader,	Agricultural Research Center, Horticultural Research			
1101. Essain Mustara Abuer Qauer,	Institute, Cairo, Egypt			
Prof. Wahid Mohamed Abdel Sadiq	Agricultural Research Agricultural Extension and Rural			
Ahmed,	Development Research Institute, Cairo, Egypt			
Prof. Adel Abdel Samie Ali,	Agricultural Research Center, Agricultural Extension			
1 101. Adei Abdei Sainie An,	and Rural Development Research Institute, Cairo, Egypt			
Prof. Wassan Saleh Hussein,	University of Mosul, Mosul, Iraq			
Prof. Fatima Faraj Mohamed,	Omar Al-Mukhtar University, Al-Bayda, Libya			
Dr. Lama Alwan,	Agricultural Research Center, Aleppo, Syria			
Dr. Fatima Aqoub Hussein,	Omar Al-Mukhtar University, Al-Bayda, Libya			
Dr. Fairouz Abu Bakr Ali Buajila,	Omar Al-Mukhtar University, Al-Bayda, Libya			
Prof. Idris Al-Jehani,	University of Benghazi, Benghazi, Libya			
Prof. Abdul Rasoul Bousultan,	Omar Al-Mukhtar University, Al-Bayda, Libya			
Prof. Nasr Abd-ElRazek Abd-El Mawla	Omar Al-Mukhtar University, Al-Bayda, Libya			
Prof. Sabah Habib Malik Al-Shatti,	University of Basra, Basra, Iraq			
Prof. Jamal Saeed Dariak	Omar Al-Mukhtar University, Al-Bayda, Libya			
Dr. Kamla Abdel Rahim Al-Wahsh	Omar Al-Mukhtar University, Al-Bayda, Libya			
Dr. Mohammed Issa Musa	University of Tripoli, Tripoli, Libya			
Dr. Saleh Bashir Mohammed,	Higher Institute of Agricultural Technology, Tripoli, Libya			
	Lioya			

Al-Mukhtar Journal of Agricultural, Veterinary and Environmental Sciences 03:(1), 2025

Paper Title	Pages
The Effect of Babesia on Some Blood Parameters in Camels (Camelus dromedarius) In the	1-7
north eastern of Libya	1-7
Effect of Previous Crop Residues on Growth and Development of Squash Plants	8-14
The effect of chickpea planting density and weeding frequency on diversity parameters of	15-24
wild oat & bind weeds under conditions in Safsaf at EL-jabal Al-Akhdar	13-24
Impact of Six Distinct Growth substrates on the Survival and Root Elongation of Grafted	25-32
Tomato and Pepper Seedlings	23-32
Utilization of tractors and implements owned by individual farmers in the Gezira Scheme,	33-44
Sudan	33-44
Factors affecting olive farmers adoption of the integrated pest management program in	45-60
Homs Governorate, Syria	43-00
Fertilizer Recommendation Test for Different Types of Fertilizers on Soil Chemical and	61-71
Fertility Properties, and on Eggplant Productivity	01-/1
Grain Quality Evaluation of Ten Soft Wheat (Bread Wheat) Genotypes Triticum aestivum	72-81
L. Grown under rain-fed Conditions	12-81
The effect of compound mineral fertilizer (NPK) and Humic acid on the vegetative and	92.04
flowering characteristics of Squash plants (Cucurbita pepo L)	82-94
Feeding Effects of three Verities of Date fruits on the Biology of Cadra cautella (Walker)	05 102
(Lepidoptera: Pyralidae)	95-103
Experimental grow-out of European Sea bream (Sparus aurata) and Gilthead Sea bass	104 100
(Dicentrarchus labrax) in Eastern Libya	104-109

Research Article 6 Open Access

The Effect of Babesia on Some Blood Parameters in Camels (Camelusdromedarius) in the northeastern of Libya Salwa M.S., Radya A. A. Mustufa¹, Mohamed S. M. Elgther², Nawara M. B. Eissa³.

*Corresponding author:

slwyalfzny101@gmail.com, Department of Clinical Veterinary Medical& infectious disease,. Libya.

Second Author:

Radya.mustafa@omu.edu.ly.Department of Veterinary Preventive medicine. Libya

Third Author:

mohamed.eljadar@omu.edu.ly Department of Microbiology and Parasitology. Libya

Forth Author:

.nawara.belgasim@omu.edu.ly.
Department of Clinical Veterinary Medical& infectious diseases, Libya.

Received:
01.01.2025

Accepted: 30.04.2025 Publish online:

الباحث الاول^{1*}: سلوى الفزاني، ،باطنة والأمراض المعدية، كلية الطب البيطري، ليبيا.

الباحث الثاني: رضية مصطفى، الطب الوقائي، كلية الطب البيطرى، ليبيا

الباحث الثالث: محمد الجدر، علم الأحياء الدقيقة وعلم الطفيليات كلية الطب البيطري، ليبيا.

الباحث الرابع: نوارة بلقاسم, الأمراض السريرية البيطرية والطبية والمعدية، كلية الطب البيطري، لسبا. **Abstract:** The study involved 160 camels raised in northeastern Libva from 2021–2022. Blood samples were randomly collected from each camel's jugular veins and sent to a laboratory for hematological and parasitological examination. The results showed that 35% of the samples were infected with Babesia species. High infection rates were found in Tubrug-khuayri (70%), Ajdubiya-road (60.6%), Alhamamuh (60%), Sulanta (46.6%), and Alqabah (28.4%). Lower infection were observed in Qanduluh (19.35%) and Imsaeid (7.1%). Babesia spp in Camels penetrate erythrocytes at the sporozoite stage, appearing as reddish violet particles inside blood cells. The study also showed that 56 camel blood samples were infected by babesiosis, with complete blood count examination revealing a deficiency in RBCs (5.43±2.33). and increase in WBCs (14.63 ± 8.23), MCV (52.8 ± 36.8), (22.11 ± 9.45). MCH and MCHC (47.4±19.8). Significant differences were observed (p<0.05). Additionally, there was an increase in white blood cells types including neutrphilia (51.95±1.23), lymphocytes 40.30±1.23) and monocytes 5.51±0.35). in conclusion The study found a 35% prevalence of Babesiosis in camels, leading to decreased red blood cell count but increased leukocytes, neutrophils, lymphocytes, and monocytes, causing lysis and hematopoietic system depression.

Keywords: Babesia, Hematolog, protozoa, Piroplasma, camels, Northeastern, Libya.

تاثير البابيزيا على بعض مكونات الدم في الإبل(ذات السنام الواحد) في شمال شرق ليبيا.

المستخلص: شملت الدراسة 160 عينة من الإبل تم جمعها بشكل عشوائي من شمال شرق ليبيا في الفترة من 2021 إلى 2022 م، وتم جمع عينات الدم من الوريد الوداجي ثم أرسلت الي المختبر لفحص الطفيليات وصورة الدم، وقد أظهرت النتائج أن 35% من العينات كانت مصابة البابيزيا، وسجلت نسبة إصابة عالية في كل من طبرق الخوير (70%)، طريق إجدابيا (60.6%)، الحمامة (60%)، اسانطة (64.6%)، القبة العينات أقل في كل من قندولة (19.3%)، إسانيزيا (7.1%) بابيزيا الأبل تخترق كريات الدم الحمراء في مرحلة السبوروزويت، وتظهر على شكل جزيئات الأبل تخترق كريات الدم الحمراء في مرحلة السبوروزويت، وتظهر على شكل جزيئات مصابة بالبيزيا وتم فحص الصورة الكاملة للدم حيث تبين وجود نقص RBC (51.48±2.33), MCV (52.8±2.33) وارتفاع في), (85±2.123) وارتفاع في الكلملة للدم حيث تبين وجود نقص WBC (47.4±1.25 و 14.63±2.33) الكلملة الدم البيضاء وكانت هناك فروقات معنوية عند مستوى (60.05)، وكذلك سجلت زيادة في أنواع كريات الدم البيضاء وكانت في اسجلت زيادة في أنواع كريات الدم البيضاء وكانت في اسمتوى (14.30

الكلمات المفتاحية: بابيزيا ، أمراض الدم ، بيروبلازما ، الجمال ، الشمال الشرقي ، لليبيا.

INTRODUCTION

Camels are a valuable source of meat, milk, textiles, and transportation due to their amazing adaption to the harsh desert climate. (Aajep, 2020; El-Naga & Barghash, 2016; Al-Naily & Jasim, 2018). An extensively dis

persed protozoan parasite illness transmitted by vectors, babesiosis is significant within the veterinary field (Mirahmadi et al., 2022). Different species of the *Babesia* genus, which are picomplexan parasites within erythrocytic cells, cause babesiosis. Many hard ticks from the Ixodidae family, including those belonging the genera *Dermacentor*, *Rhipicephalus*, and *Hyaloma*, spread the disease to both domestic and wild animals, especially dogs, cats, humens, ruminants, and rodents.(Kalani, Fakhar, & Pagheh, 2012). Many species of *babesia* exist, such as *Babesia equi* and *Babesia caballi*.(Swelum, Ismael, Khalaf, & Abouheif, 2014).

The life cycles of *Babesi*a include an asexual infective stage called sporozoites, an asexual blood stage called merozoites, and a sexual blood stage called gametocytes (Alsaad, Al-Amery, Al-Hamed, & Muhsen, 2015). Every morphological characteristic of apicomplexans is found among infected erythrocytes in variety Shapes, including ring, oval, cross, amoeboid and pear-shaped, with a lengths of 1-2 or 2.5-5 µm (Uilenberg, 2006) Babesiosis is associated with hemolytic anemia (Ord & Lobo, 2015). A smear of venous blood stained with Giemsais used as a diagnostic tool to confirm babesiosis in animals. Clinical signs during the acute phase of the disease are also assessed in conjunction with the microscopic detection of parasites. In animals that have recovered from babesiosis, subclinical infections are seen.

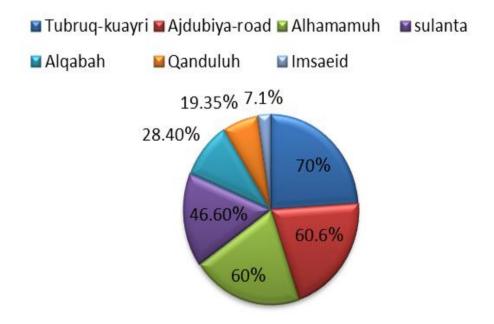
There have been reports of camel babesiosis in several parts of the world, with *B. caballi* being among the most important *Babesia* species (Abd-Elmaleck, Abed, & Mandourt, 2014; Ibrahim, Kadle, & Nyingilili, 2017; Jasim, Azzal, & Othman, 2015; Khamesipour et al., 2015). Infected camels experience fever, anemia, jaundice, and edema during acute phase of illness. It can occasionally result in death, causing significant financial losses for the camel industry.(TAKTAZ-HAFSHEJANI & KHAMESIPOUR, 2017). Over the past ten years Libyans have been consuming more camel meat and dairy products in the last ten years, so preventing infectious diseases is crucial to the food safety of camel products. Taking into account the lack of information regarding the genetic diversity and spread of the parasite Babesiosis in camels in northern Libya. The study's goal was to determine the prevalence of *Babesias pp*. .associated with infection-related haematological changes in camels.

MATERIALS AND METHODS

Animals in the study area: The study involved 160 camels of the local breed, raised in northeastern Libya, ranging in age from less than one to twenty-five years old, during the period from 2021-2022. The areas included in this study were Tubrug-khuayri, AL-qubah, AL-hamamuh, Sulanta, Qanduluh, Ajdubiya road and Imsaeid.

Collection of blood samples: After the area had been properly cleansed with 70% alcohol, samples were taken from each camel's jugular veins using a disposable 5-milliliter syringe with a 19–20 gauge needle. Three milliliters of blood were added to an anticoagulant tetra acetic acid (EDTA)-containing tube for hematological and parasitological investigation. Each tube was accurately labeled with the animal's identification number. All blood samples were shipped on ice to Faculty of Veterinary Medicine at the University of Omer Al-mukhtar's in Al-Beida, Libya.

Parasitological examinations: For the preparation of blood films for analysis, fresh whole blood was used to create blood Smears on tiny glass slides. These smears that were then dried,


fixed in methanol, and stained with Giemsa's dye. *Babesia* was examined by direct microscopic inspection using a compound microscope equipped with X100 oil immersion lenses (Olympus, USA) Babesiosis can be identified through direct diagnosis by looking for parasites in blood according to (Chagas, Binkienė *et al.*, 2020). Analyzing blood smears is beneficial for thin films but less effective for more sensitive thick films. This approach is generally useful for diagnosing acute infections, but is not effective for identifying carriers when parasitemia are frequently very low.

Hematological Examinations: Blood samples were mixed with EDTA and used to determine the Total erythrocyte count (RBC), hemoglobin concentration (Hb), Packed cell volume (PCV), Total platelet count, (MCV) mean corpuscular volume, and mean corpuscular hemoglobin concentration (MCHC). The blood samples were placed into tubes and transported to the laboratory for analysis. Differential leukocyte counts were also examined.

Statistical analysis : IBM SPSS Statistics 20 (USA) was used for data management. Descriptive statistics for data summaries were generated with mean and standard deviation The variance analysis (ANOVA) test was used to assess group comparisons. All statistics were deemed significant When p < 0.05.

RESULTS

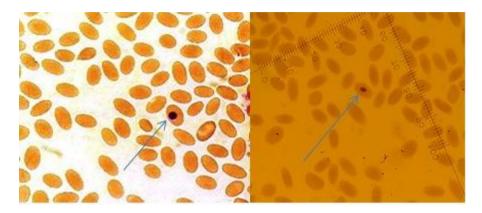

The results showed that out of 160 camels' blood samples examined microscopically, 35% of the samples were infected with *Babesia* species. According to the seven regions the highest infection rate were found Tubrug-khuayri (70%), Ajdubiya -road (60.6%), Alhamamuh (60%), Sulanta (46.6%) and Alqabah (28.4%). The lower infection rate were observed in Qanduluh (19.35%) and Imsaeid (7.1%). See Figure (1) and (2).

Figure: (1). prevalence of *Babesia* spp. in Camels According to different seven regions.

Morphological of *Babesia* spp.: *Babesiaspp* penetrates erythrocytes at the sporozoite stage.

When a thin blood smear is stained with Giemsa, the tetrad shape is observed. *Babesia* appear as reddish-violet particles inside the blood cells. They may present as a single or double pyriform and the parasite can also take other shapes depending on its type, round, oval or ring forms.

Figure: (2). smear of blood from a dromedary camel naturally infected with *Babesia* spp. (A) oval, (B) pear-shaped close to the contaminated RBC border (Giemsa, 100×).

Blood parameters of camels infected: A total of 56 out of 160 camel blood samples were subjected to complete blood count (CBC). The results showed the following percentage: WBC (41.0%), RBC(83.9%), HGB(51.7%), HCT(35.7%), MCV(100%), MCH(35.7%), MCHC(28.5%), plt (89.2%), neutrophilia(69.6%). lymphocytes(23.2%), monocytes(26.0%), eosinophils(5.3%), (**Table 1**).

Table:(1). Blood parameters of camels infected and References normal with *Babesia spp*, date presented as mean± STD

Parameters	Infected	References normal
WBCs*10^9/L	14.63±8.23	7.0-16.0
*RBC count \times 1012/L	5.43 ± 2.33	7.5-12.0
HGBg/dl	10.36 ± 2.16	10.2-16.0
HCT%	26.0 ± 13.2	25.35
MCV fl	52.8±36.8	27.0-33.0
MCH pq	22.11 ± 9.45	12.5-16.5
MCHC q/dl	47.4 ± 19.8	42.0-49.6
$PLT \times 109/L$	275 ± 110	150-450
NEUT*%	51.95±1.23	30.0-60.0
LUMPH*%	40.30±1.23	30.0-55.0
MONO*%	5.51±0.35	2.0-6.0
EOSINO %	2.11 ± 0.20	2.0-8.0
BASO %	0.37±0.0.07	Up to 2.0

DISCUSSION

The one-humped camel, Camel dromedarius is highly adaptated to withstand harsh environments, and is a widely distributed domestic animal in arid and semi-arid regions of Arabic lands, Africa, and Western Asia. Moreover, one of the biggest problems facing the livestock sector in developing countries is tick infestation, which causes babesiosis. The current study found an overall frequency of (56/160) 35% of babesiosis in camels in northeastern Libya. This prevalence is lower than the rate recorded by (Abd-Elmaleck et al., 2014) 46.9% in Egypt and

(El-Alfy et al., 2024) at 43.6% in Sudan. However, some other reports found lower rates of *babesia* infection 19.5%, 17.5%, and 25% in Iraq (Farhan & Hameed, 2017); (Al-Amery, Faraj, &Majeed, 2017); (Al-Mialy, Hatem, & AL-Abedi, 2018), and 24.3% in Nigeria; (Wakil et al., 2016). The lowest infection rate of (1.0%) was reported in Tunisia by Selmi et al. (2019) and 10% in Iran by Mirahmadi et al. (2022).

Many factors, contribute to these differences in prevalence such as the lack of veterinary services, environmental- variations, specific geographic and strategic features of the study locations and the quantity of samples gathered. In our study, the highest prevalence rate was recorded in Tubrug-khuayri (70%), followed by Ajdubiya (60.6%), Alhamamuh(60%), Sultana (46.6%), Alqabah, (28.57%), Qanduluh (19.35%) and Imsaeid (7.1%). The highest rate in Tubrugkhuayri area (70%). Can be attributed to the high temperature, humid conditions and an environment suitable for the growth and reproduction of ticks vectors. According to the examination of the stained blood smears, the babesia spp in various shapes, including large, pearshaped, oval and circular. The trophozoites were recognized as oval or elliptical shape, whereas merozoites were pear-shaped and most commonly found inside the erythrocytes as described by (Alsaad et al. (2015). However, the identification of *Babesia* spp cannot be determined with absolute confidence because the size and shape of Babesia's -vary throughout its maturation stages in the red blood cells. Additionally, certain *piroplasmid* species that infect distinct vertebrate hosts may vary in size and form (Swelum, Ismael et al., 2014). The simplest, fastest, and most widely available technique for diagnosing clinical cases of babesiosis is the microscopic detection of Babesia spp. through analysis of blood smears stained by Giemsa. Our results indicated changes in the blood profile of camel infected with Babesia spp. The mean values of the total RBC count showed a significant decrease (p<0.05), to (5.43±2.33) in infected camels but there was a significant increase in the mean values of MCV (52.8±36.8), MCH (22.11±9.45) and MCHC (47.4± 19.8). There were also an increase in the leukocytes count (WBC), with increase in neutrophils (51.95 \pm 1.23), lymphocytes (40.30 \pm 1.23), and monocytes (5.51 \pm 0.35). Similar results were obtained by Al-Obaidi, Hasan et al., (2021) in Iraq, who recorded a decrease in erythrocytes but a significant increase in lymphocytes. Farhan and Hameed (2017) also observed a decrease in RBCs. A study by (Alsaad, Al-Amery et al., (2015) recorded a decrease in erythrocyte rate, along with an increase in lymphocytes, the total leukocytes count and increase in (MCV). Another study by Swelum, Ismael et al., (2014) in Saudi Arabia found an increase in the total leukocyte count and a decrease in erythrocyte rate. The reduction in erythrocytes is due to the direct parasitic effect on the erythrocytes, causing their lysis, and depression of the haematopoietic system's. Furthermore, erythrocyte phagocytosis by macrophages red blood cell damage caused by parasites and a change in anti-erythrocytic autoantibodies within the bone marrow are considered signs of bone marrow depression. Several studies found that leukocytosis occurred as a result of lymphocytosis in infected camels, supporting the findings of (Egbe-Nwiyi, (1994) and Uilenberg (2006), who explained that the stimulation of stem cells and lymphoid tissues in the bone marrow is the primary source of leucocytosis in blood parasite infection. Moreover, our results were consistent with those of Mahran (2004) and Mohammed, Sackey, Tekdek, &Gefu (2007), who suggested that a rise in leukocyte counts may be anticipated as a result of lymphoid depletion and disorganization with large lymphocytes.

CONCLUSION

Babesiosis is a tick infestation, significantly impact livestock, particularly the one-humped camel (Camelus dromedaries). In this study a prevalence of 35% were reported in northeastern Libya for camels infected with *Babesia spp*, The highest prevalence rate in Tubrug-khuayri, Aj-

dubiya, Alhamamuh, and Sultana. *Babesia spp*. is large, pear-shaped, oval, and circular organisms found inside erythrocytes. The simplest and fastest method for diagnosing babesiosis is the microscopic detection of *Babesia* spp. The study results indicated a significant decrease in total red blood cell count in infected camels. attributed to the parasitic effect on erythrocytes. Additionally, there was an increase in leukocyte count, neutrophils, lymphocytes, and monocytes., causing lysis and hematopoietic system depression

REFERENCES

Aajep, M. A. M. O. (2020). Prevalence and Risk factors of Trypanosoma evansi Infections and Classification of Its Vectors in Camel in Tamboul Locality-Gezira State-Sudan. Sudan University of Science & Technology .

Abd-Elmaleck, B. S., Abed, G. H., & Mandourt, A. (2014). Some protozoan parasites infecting blood of camels (Camelus dromedarius) at Assiut locality, Upper Egypt. *J. Bacteriol. Parasitol*, 5(2), 1-6.

Al-Amery, A., Faraj, A., & Majeed, S. (2017). Detection of Haemoprotozoa in camels in Al-Najafprovince, Iraq. *Int. J. Adv. Biol. Res*, 7(2), 238-241.

Al-mialy, A. J., Hatem, A. A., & AL-Abedi, A. H. J. (2018). Some epidemiological aspects of Piroplasmosis of sheep and camels in desert of Al-Najaf. *Kufa Journal For Veterinary Medical Sciences*, 9(2.7-1,(

Al-Naily, Z. H. C., & Jasim, G. A. (2018). Molecular study of Babesia spp and Theileria spp in camels of Al-Diwaniyah province in Iraq. *Kufa Journal For Veterinary Medical Sciences*, 9(2), 62-70.

Alsaad, K. M., Al-Amery, M., Al-Hamed, T., & Muhsen, R. K. (2015). Babesiosis caballi in one humped dromedaries of Basrah province. *Basrah Journal of Veterinary Research*, 14(2), 207-214.

Egbe-Nwiyi, T. (1994). Haematological and pathological studies of camel babesiosis in Nigeria. *Bulletin of animal health and production in Africa* .

El-Naga, T. R. A., & Barghash, S. (2016). Blood parasites in camels (Camelus dromedarius) in Northern West Coast of Egypt. *J. Bacteriol. Parasitol*, 7(1), 258.

Farhan, B., & Hameed, M. (2017). Prevalence of babesia, theileria and evaluated of some blood parameters in camels in al najaf province. *International Journal of Science and Nature*, 8(3), 561-564.

Ibrahim, A. M., Kadle, A. A., & Nyingilili, H. S. (2017). Microscopic and molecular detection of camel piroplasmosis in Gadarif State, Sudan. *Veterinary Medicine International*, 2017.

Jasim, H. J., Azzal, G. Y., & Othman, R. M. (2015). Conventional and molecular detection of Babesia caballi and Theileria equi parasites in infected camels in south of Iraq. *Basrah Journal of Veterinary Research*, 14(2), 110-121.

Kalani, H., Fakhar, M., & Pagheh, A. (2012). An overview on present situation babesiosis and theileriosis and their distribution of ticks in Iran. *Iranian Journal of Medical Microbiology*, *5*(4), 59-71.

Khamesipour, F, Doosti, A., Koohi, A., Chehelgerdi, M., Mokhtari-Farsani, A., & Chengula, A. A. (2015). Determination of the presence of Babesia species in blood samples of cattle, camel and sheep in Iran by PCR. *Archives of Biological Sciences*, 67(1), 83-90.

Mirahmadi, H., Ghaderi, A., Barani, S., Alijani, E., Mehravaran, A., & Shafiei, R. (2022). Prevalence of camel babesiosis in southeast of Iran. *Veterinary Medicine and Science*, 8(1), 343-348.

Ord, R. L., & Lobo, C. A. (2015). Human babesiosis: Pathogens, prevalence, diagnosis, and treatment. *Current clinical microbiology reports*, 2, 173-181.

Selmi, R., Dhibi, M., Ben Said, M., Ben Yahia, H., Abdelaali, H., Ameur, H., . . . Mhadhbi, M. (2019). Evidence of natural infections with Trypanosoma, Anaplasma and Babesia spp. in military livestock from Tunisia. *Trop. Biomed*, *36*(3), 742-757.

Swelum, A. A., Ismael, A. B., Khalaf, A. F., & Abouheif, M. A. (2014). Clinical and laboratory findings associated with naturally occurring babesiosis in dromedary camels. *Journal of Veterinary Research*, 58(2), 229-233.

TAKTAZ-HAFSHEJANI, T., & KHAMESIPOUR, F. (2017). Molecular detection of Theileria equi and Babesia caballi infections in horses by PCR method in Iran. *Kafkas Üniversitesi Veteriner Fakültesi Dergisi*, 23(1.(

Uilenberg, G. (2006). Babesia—a historical overview. *Veterinary parasitology*, 138(1-2), 3-10.

Wakil, Y., Lawal, J., Gazali, Y., Mustapha, F., Bello, A., Mshelia, E., & Ayomikun, A. (2016). Survey on prevalence of haemoparasites of trade camels (Camelus dromedarius) in Maiduguri; Nigeria. *Journal of Veterinary Medicine and Animal Science*, 2, 7-10.

Research Article 6Open Access

Effect of Previous Crop Residues on Growth and Development of Squash Plants

Sami A. Alasheebi^{1*}, Idress A. Al Gehani² and Taher M. Mohammed ²

¹Department of Horticulture, Faculty of Agriculture, University of Benghazi, Benghazi, Libya.

²Department of Plant Production, Faculty of Agriculture, University of Benghazi, Benghazi, Libya.

*Corresponding author: idress.algehani@uob.edu.ly

Department of Horticulture, Faculty of Agriculture, University of Benghazi, Benghazi, Libya.

Received: 19.05.2024 Accepted: 30.04.2025 Publish online:

.....

سامي العشيبي: قسم البستتة، كلية الزراعة، جامعة بنغازي، بنغازي، ليبيا. ادريس الجهاني*: قسم الانتاج النباتي، كلية الزراعة، جامعة بنغازي، بنغازي، ليبيا.

طاهر محمد قسم الانتاج النباتي، كلية الزراعة، جامعة بنغازي، بنغازي، ليبيا.

Abstract: The seedlings of Squash (*Cucurbita pepo* L.) were irrigated with aqueous extract of crop residues of barley or wheat or oat, at a concentration of 50 g.L⁻¹, or olives at 25, 50, 75 and 100 g.L⁻¹, in addition to the control treatment (tap water) until the flowering stage. A completely randomized design was used with the treatments. The results showed that the fresh and dry weight of the shoots decreased by (27, 26, 33%) and (26, 35, 44%), and the number of leaves and flower buds (20, 20, 25%) and (28, 24, 40%) and leaf petiole length (38, 41, 47%), when treated with aqueous extract of the residues of each of barley, wheat, or oats, respectively, compared to the control. The results also showed the effect of the aqueous extract of olive residues on the growth measurements of squash plants, and the rate of decrease was directly proportional to the increase in the concentration of the aqueous extract, and thus both the fresh and dry weight of the shoots decreased by 51% and 42%, roots 43% and 25%, plant length 40%, number of leaves 29%, and leaf area 70%, respectively, compared to the control. The results obtained show that the aqueous extract of different plant residues have a clear role in reducing the growth of squash plants, and thus, this will be reflected in productivity later. This type of effect is clearly due to the presence of an "allelopathic" effect from growth-inhibiting substances present in the tissues of previous plant residues or their presence simultaneously with squash plants in the field.

Keywords: Allelopathic; *Cucurbita pepo* L.; Squash; Aqueous extract; Crop residues, Olive residues

تأثير متبقيات المحاصيل السابقة على نمو وتطور نبات الكوسا

المستخلص: تم ري شتلات الكوسا (... Cucurbita pepo L.) بالمستخلص المائي لبقايا محاصيل الشعير أو القصح أو الشوفان بتركيز 50 جم/لتر أو الزيتون بتركيز 50 ، 75 و 700 جم/لتر بالإضافة إلى معاملة المقارنة (ماء الصنبور) حتى الوصول إلى مرحلة التزهير، وقد استُخدم تصميم عشوائي كامل مع المعاملات، وأظهرت النتائج انخفاضاً في الوزن الرطب والجاف للمجموع الخضري بنسبة (27، 26، 38%) و (26، 35%) و (48، 44%)، وعدد الأوراق والبراعم الزهرية (20، 20، 25%) و (28، 24، 25%، 40%) وطول سويقات الورقة (38، 41، 47%)، عند معاملتها بالمستخلص المائي لبقايا كل من الشعير، القمح، أو الشوفان على التوالي، مقارنة مع معاملة المقارنة، كما أظهرت النتائج تأثير المستخلص المائي لبقايا الزيتون على قياسات نمو نباتات الكوسا وكان معدل النقصان يتناسب طرديا مع زيادة تركيز المستخلص المائي وكذلك الوزن الطازج والجاف للنبات، وانخفض معدل النمو الخضري بنسبة 51% و 24%، والجذور 43% و 25%، وطول النبات الكوسا وغلا وعدد الأوراق 29% والمساحة الورقية 70% على التوالي نسبة لمعاملة المقارنة، وأوضحت النتائج المتحصل عليها أن المستخلص المائي لمخلفات النباتات المختلفة له دور واضح في تقليل نمو نباتات الكوسا وذلك سينعكس على الإنتاجية لاحقاً، ومن الواضح أن هذا النوع من التأثير يرجع إلى وجود تأثير "اليلوباثي" من المواد المثبطة للنمو الموجودة في أنسجة بقايا النباتات السابقة أو وجودها بالتزامن مع نباتات الكوسا النامية في

الكلمات المفتاحية: اليلوباثي، الكوسا، . Cucurbita pepo L. ، بقايا المحاصيل، بقايا الزيتون.

The Author(s) 2025. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium ,provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

INTRODUCTION

The cultivation of field crops such as wheat, barley, and oat are widespread during the winter season in vast areas of arable land. Despite the great benefit and significant profit from production, the possibility of investing some of these areas in cultivating summer crops faces some obstacles. The process of preparing the land for agriculture, which includes the process of cleaning it from the remains of the previous crop, will not be easy and will not be achieved completely, and it may be impossible to get rid of the roots, stems, and even grains left behind by plants. Also, the presence of plant remains is not limited to what is left behind by field crops only, but it may also come from fallen leaves from cultivated trees, such as olives and others, and this cannot be avoided when wanting to exploit the interstitial spaces by planting some other crops.

The presence of these plant remains and their decomposition in the lands targeted for cultivation is greatly beneficial in improving the properties of the soil and increasing its fertility, and thus this is reflected in increased production. However, in many cases this may lead to a negative impact on the productivity of the next crop due to the plant remains containing substances that hinder growth and the natural development of some plant species, which is known as the "allelopathic" effect. It is recognized that plants compete with each other in various aspects of their lives, such as moisture, nutrients, and light, directly or through the influence that is common in nature, which is an inhibitor of the growth of other plants (Tanveer et al., 2010). The inhibitory effect of one plant on the growth of another plant appears through the ability of one plant to release allelopathic chemicals that inhibit the growth of other plants (Abu Rumman, 2016; Kluth et al., 2018). Allelopathic compounds are formed and accumulated in all parts of the plant, roots, stem, rhizome, leaves, fruits, and seeds (Vijayan, 2015). But the leaves are considered the most important parts of the plant in accumulating at the highest level (Kumari et al., 2016). Allelopathic compounds come into contact with other competing plants by filtering decomposing plant residues, root filtration, volatilization, as well as some other processes (Sikolia & Ayuma, 2018). Indeed, Zuo et al., (2005) found that the aqueous extract of a group of wheat varieties reduced the length of the root system of lettuce plants at several stages of the plant's life. As much, wheat plant residues reduced the dry weight of the root and shoot of oat plants (Mahmood et al., 2013). Also, Ashrafi et al. (2007) found that aqueous extracts of barley reduced the germination rate, the length and weight of the upper embryonic stalk, and the length and weight of the radicle of (H. spontaneum). While that, Ben-Hammouda et al., (2001) indicated that aqueous extracts of barley reduced root and seedling growth for several wheat varieties. On the other hand, Shao et al., (2019) found that the aqueous extract of oat plants reduced the germination rate, and also decreased shoot length and root length of wheat plants. In addition to those high concentrations of 50% and 100% oat aqueous extract reduced the germination rate, the dry weight of the shoot and root system, the plant height, and the number of leaves of cucumber plants (Wang et al., 2010). On the other hand, Tubeieh & Souikane (2020) found that aqueous extract of olive tree residues reduced the rate and speed of germination of four types of weeds. Orr et al., (2005) also found that olive leaf extract reduced the germination rate and biomass of roots and leaves of some forest trees. As well as, the waste of olive presses reduced the length of the shoot and root and their fresh and dry weight, and the content of the shoot of sugars and proteins decreased (Saleh, 2013). Popolizio et al., (2022) added that the waste of olive presses reduced the rate and speed of germination of tomato plants. After that, Endeshow et al., (2015) pointed out that adding olive branch residue to the growth environment of olive seedlings reduced the dry weight of the shoot, the length of the seedling, and the dry weight of the root shoot. It also reduced the shoot to root ratio, and the content of the leaves and roots of nitrogen and phosphorus was also reduced. Moreover, Zairi et al. (2020) found that the germi-

nation rate of wheat and flax plants showed a gradual decrease with the increase of all concentrations of aqueous extracts of olives. In addition to that, Al-Samarai et al., (2018) found that irrigation with olive leaf extracts reduced the germination rate and growth of hops. As for squash plant, it was allelopathically affected by extracts of forest trees (Eucalyptus and Acacia), so the germination rate and speed decreased, the fresh and dry weight of the plant decreased, and the number of leaves and flower buds of the plant decreased (Alasheebi et al., 2021). Elshora and Abd El-Gawad (2015) also found that the extract of the purslane plant, (Portulaca oleracea L.), reduced the germination rate of squash plants, and the leaf content of protein, chlorophyll b, a, and total decreased, while the percentage of proline increased. The allelopathic effect is clearly achieved between the remains of dead plants and developing plants, and it also commonly occurs between growing and neighboring plant species, and thus plants are affected by the appearance of symptoms of general weakness represented by lack of growth and impaired development. Therefore, growing summer Squash (Cucurbita pepo L.) often on lands previously planted with winter crops or in the spaces between fruit trees makes it highly exposed to the influence of the remains of previous or neighboring plants. Given the importance of the squash crop, it is necessary to investigate the problems that hinder its growth and increase its production. Therefore, this research will focus on the extent to which the residues of some field crops and trees affect the growth and development parameters of the squash plant.

MATERIALS AND METHODS

Plant material and growth conditions: The experiment was carried out at the research station of the Faculty of Agriculture - University of Benghazi - Libya, during the summer seasons of 2022 and 2023. The study began by planting two-week-old squash (Cucurbita pepo L. Alex-andria F1) seedlings in a culture medium (soil, sand, and peat moss in volume ratios 1:1:1) in 3-liter of plastic pots. Throughout the experiment, the plants were fertilized by mixing modified Hoagland Solution as a complete nutrient solution (NS) with irrigation water. The full NS contains (in m mol. L⁻¹) 5 KNO₃, 5 Ca (NO₃)₂·4H₂O, 2 MgSO₄·7H₂O, 1 KH₂PO₄, 0.02 FeSO₄·7 H₂O; 0.02 Na₂- EDTA; 2 H₂O; 0.045 H₃BO₃; 0.01 MnCl₂·4 H₂O, and (in μmol/L) 0.8 ZnSO₄·7 H₂O, 0.4 Na₂MoO₄·2 H₂O, and 0.3 CuSO₄·5 H₂O. Plants were grown under a plastic cover for protection from rain at 14h photo-period. Photosynthetic active radiation reached a daytime peak value of 1250 µmol.m⁻². s⁻¹, and the temperature and relative humidity were 31 and 19°C and 41 and 80% during the day and night periods respectively. Irrigation was scheduled according to plant requirements and the substrate water holding field capacity. The aqueous extract concentrations were prepared by first grounding the dry leaves of each barley or wheat or oat, as well as olives, then soaking certain weights in fresh water according to the required concentrations for 24 hours at room temperature, and second, the extract was filtered and used immediately under field conditions for irrigation.

Treatments: The plants were irrigated with aqueous extract of crop residues of each barley or wheat or oat, at a concentration of 50 g.L⁻¹, or olives at concentrations of 25, 50, 75 and 100 g.L⁻¹, in addition to the control treatment (tap water only) until the flowering stage was reached.

Measurements: The measurements were effectuated after three weeks from planting, fresh weight (FW) of shoot and root were measured, then plants were dried for three days in an oven at 65 °C (until there was no decrease in weight) for determination of dry weight (DW) of shoot and root, the percentage of water content (WC) was also measured. The number of flower buds and leaves were counted, the height of plant and length of petioles, as well as leaf area was also estimated by the correlation between leaf area and leaf fresh weight (Watson, 1937).

Experimental design and statistical analysis: The data represent averages for two separate experiments. Each treatment was replicated six times, where each pot is considered a one replicate, and by a plant in each pot. The first experiment consists of one factor with 4 levels of aqueous extract types (wheat, barley and oat extract as well as control) at a concentration of 50 g.L⁻¹. The second

experiment consisted of one factor with 5 levels representing the concentrations of leaf aqueous extract of olive (0, 100, 75, 50, 25) g.L⁻¹. A completely randomized design was used with the treatments. The data were subjected to a one-way analysis of variance and the means were compared using the least significant difference test (LSD) at 5% significance level.

RESULTS

The results in table 1. showed a significant decrease in the fresh weight (FW) and dry weight (DW) of the shoots of squash plants when irrigated with aqueous extracts of field crop residues (barley, wheat, oat), where the largest percentage of decrease was recorded from treatment with oat extract at a rate of 33 and 44%, while the percentages of decrease were recorded when treated with barley and wheat extracts, 27 and 26%, 26, and 35%, respectively, compared to the control treatment. Irrigation with aqueous extracts of crop residues also had a significant effect on the number of plant leaves, decreasing by 20 to 25% compared to the control treatment. The number of flower buds and leaf petiole length also decreased significantly, and the largest decrease values were attributed to oat extract by 40 and 47%, respectively, while the percentages decreased to 28 and 38%, respectively, when irrigated with barley extract, and 24 and 41% when irrigated with wheat extract, respectively. On the other hand, irrigation with aqueous extracts of field crop residues did not significantly affect the water content (WC) of squash plants.

Table:(1). Effect of aqueous extract of some crop residues (50 g.L-1) on some growth measurements of squash plants.

Types of aqueous extract	Shoot FW (g)	Red. (%)	Shoot DW (g)	Red. (%)	Leaf No.	Red. (%)	Flower buds No.	Red. (%)	Leaf petiole length (cm)	Red. (%)	WC (%)	Red. (%)
Control	7.7^{a}	-	0.87^{a}	-	5.0^{a}	-	6.1 ^a	-	11.5 ^a	-	90	-
Barley	5.6 ^b	27	0.64^{b}	26	4.0^{b}	20	$4.4^{\rm b}$	28	7.1 ^b	38	88	1
Wheat	$5.7^{\rm b}$	26	0.56^{b}	35	4.0^{b}	20	4.6^{b}	24	6.8^{b}	41	90	0
Oat	5.1°	33	0.48^{c}	44	3.8^{b}	25	3.6°	40	6.1°	47	90	0
LSD	0.45	-	0.11	-	0.38	-	0.71	-	0.62	-	N.S	-

Each value represents mean of six replicates. Means followed by the same letter in each column are not significantly different by least significant difference (LSD) test at 5% level.

FW: fresh weight; DW: dry weight.

Red. (%): attributable reduction percent to control value.

The results presented in table 2. showed that the growth of squash plants was affected when irrigated with aqueous extracts of olive leaves at different concentrations. The fresh weight of the shoot (FW) and root (DW) decreased significantly compared to the control treatment, and the decrease was directly proportional to the increase in the concentration of the aqueous extracts (25, 50, 75, and 100 g.L⁻¹), with decrease rates of 29, 47, 47 and 51%, and 23, 42, 42 and 42%, respectively. The FW of the roots also decreased directly with increasing concentration of aqueous extracts, with decreases of 17, 22, 39 and 43%. The DW of the roots also decreased significantly by 25% for all concentrations compared to the control treatment. Also, aqueous extracts of olive leaves had a direct effect on reducing plant height with increasing concentrations of the extracts. The lowest values were with the treatment with the highest concentration (100 g.L⁻¹), at a rate of 41%, while the rest of the treatments led to a decrease of 25, 27 and 28%, respectively. The number of leaves also decreased significantly as a result of irrigation with aqueous extracts of olive leaves, and the percentages of decrease were 12, 14, 29 and 29%, respectively. The leaf area of the plant also decreased significantly and in a direct pattern with increasing concentration of extracts, with percentages of decrease of 31, 52, 61 and 70%, respectively. On the other hand, the water content (WC) of the plant was not significantly affected by irrigation with aqueous extracts of olive leaves.

Table:(1). Effect of aqueous extract concentrations of olive tree residues on some growth measurements of squash plants.

Aqueous extract Con. (g.L ⁻¹)	Shoot FW (g)	Red. (%)	Shoot DW (g)	Red. (%)	Root FW (g)	Red. (%)	Root DW (g)	Red. (%)	Plant height (cm)	Red. (%)	Leaf No.	Red. (%)	Leaf area (cm²)	Red. (%)	WC (%)	Red. (%)
Control	19.5 ^a	-	2.6 ^a	-	2.3ª	-	0.39 ^a	-	17.6 ^a	-	5.8 ^a	-	62.7 ^a	-	86	-
25	13.8 ^b	29	2.0^{b}	23	1.9^{ab}	17	0.29^{b}	25	13.2^{b}	25	5.1 ^{ab}	12	43.4 ^b	31	85	1
50	10.3°	47	1.5°	42	1.8^{bc}	22	0.30^{b}	25	12.8 ^b	27	5.0^{b}	14	30.3°	52	85	1
75	10.3°	47	1.5°	42	1.4 ^{cd}	39	0.30^{b}	25	12.7^{b}	28	4.1°	29	24.6^{cd}	61	85	1
100	9.5°	51	1.5°	42	1.3 ^d	43	0.29^{b}	25	10.4°	41	4.1°	29	18.7 ^d	70	84	2
LSD	3.12	-	0.39	-	0.40	-	0.08	-	2.20	-	0.65	-	10.1	-	N.S	-

Each value represents mean of six replicates. Means followed by the same letter in each column are not significantly different by least significant difference (LSD) test at 5% level.

FW: fresh weight; DW: dry weight.

Red. (%): attributable reduction percent to control value.\

DISCUSSION

Aqueous extracts of field crop residues (barley, wheat, and oat) had a negative effect on the growth of squash plants, which led to a decrease in the FW and DW values of the shoot and root system. It also led to a decrease in the number of leaves, the length of leaf petioles, and the number of flower buds. Our result is consistent with findings of many studies (Zuo et al., 2005; Ashrafi et al., 2007; Wang et al., 2010; Mahmood et al., 2013) that's where the effect of barley, wheat and oat residues has been clearly manifested. It has a negative effect on plant growth resulting from the secretion of dissolved chemicals that inhibit growth (allelopathic effect). In addition, it may contribute to raising the osmotic pressure of the soil solution, which makes it difficult for the plant to absorb water. These materials may also raise the pH value of the soil and thus make it difficult for some nutrients availability. This condition leads to a deficiency in the plant growth and reflects negatively on the efficiency of the photosynthesis process, subsequently leads to weak plant growth. This leads to stunted growth of the plant, small size and small number of leaves, and thus poor fruit production of the plant. The most negative allelopathic effect was for the aqueous extract of oats, as it gave the lowest values for plant growth measurements. While the barley plant extract had the least effect on plant growth than the other aqueous extracts, although there were significant differences between the barley extract treatment and the control. As for the aqueous extract of the wheat plant, its inhibitory effect was intermediate between the effect of the aqueous extract treatments of barley and oat. Also, the allelopathic effect of olive leaf residues negatively affected the growth of squash plants, which led to a significant decrease in the FW and DW of both the shoot and root system, and a significant decrease in the length of the plant, the number of leaves, and the leaf area of the plant compared to the control treatment. This is confirmed by several studies on the effect of olive leaf residues (Orr et al., 2005; Endeshow et al., 2015; Al-Samarai et al., 2018), as the negative impact of the allelopathic effect on plant growth increased with increasing concentration of aqueous extracts, which was mentioned by Zairi et al., (2020). The reason may be that the concentration of growth inhibitory substances increases with the concentration of aqueous extracts. In addition to increasing the osmotic pressure of the soil solution and affecting the soil pH, which causes difficulty in absorbing water and nutrients necessary for plant growth (Endeshow et al., 2015). It will certainly affect the efficiency of the photosynthesis process and thus reduce the plant's content of the essential compounds needed for growth. In addition, the level of sugars and proteins is affected, which leads to a general weakness in plant growth and a decrease in dry matter synthesis (Saleh, 2013). In addition to was mentioned above, a decrease in leaf area and the number of leaves per plant means a decrease in the area and efficiency of the plant, which appears in the form of stunting, weak plant growth, and decreased dry matter formation. This certainly leads to poor flowering and fruiting development of the plant and thus a quantitative and qualitative decline in p

CONCLUSION

The allelopathic effect of aqueous extracts of barley or wheat or oat leaves on the one hand and of olive leaves on the other hand on the growth of squash depends on the type of plant affected and the concentration of its aqueous extract. The growth parameters of squash plants were clearly affected after irrigation with different water extracts. The effect greatly weakened plant growth, especially when treated with oat residue, while the effect was less severe with barley and wheat residue. On the other hand, the decrease in plant growth is directly proportional to the increase in the concentration of the aqueous extract of olive leaves.

ACKNOWLEDGEMENT

We thank our colleagues for assistance in the field and laboratory. Thanks to all the technicians for preparing the samples.

REFERENCES

Abu-Romman, S. (2016). Differential allelopathic expression of different plant parts of *Achillea biebersteinii*. *Acta Biologica Hungarica*, 67(2): 159-168.

Alasheebi, S. A., Al Gehani, I. A., & Mohammed, T. M. (2021). Effect of Aqueous Extract of some Windbreak Tree Leaves on Seed Germina-tion and Seedling Growth of Squash. *Al-Mukhtar Journal of Sciences*, 36(3): 223-230.

Al-Samarai, G. F., Mahdi, W. M., & Al-Hilali, B. M. (2018). Reducing environmental pollution by chemical herbicides using natural plant derivatives—allelopathy effect. *Ann. Agric. Environ. Med.*, 25(3): 449-452.

Ashrafi, Z. Y., Sadeghi, S., & Mashhadi, H. R. (2007). Allelopathic effects of barley (Hordeumvulgare) on germination and growth of wild barley. *Pak J Weed Sci Res.*, 13(1-2): 99-112.

Ben-Hammouda, M., Ghorbal, H., Kremer, R., &Oueslati, O. (2001). Allelopathic effects of barley extracts on germination and seedlings growth of bread and durum wheats. *Agronomie*, 21(1): 65-71.

El-Shora, H. M., & El-Gawad, A. M. A. (2015). Physiological and biochemical responses of Cucurbitapepo L. mediated by Portulacaoleracea L. allelopathy. *Fresenius Environmental Bulletin*, 24(1b): 386-393.

Endeshaw, S. T., Lodolini, E. M., &Neri, D. (2015). Effects of olive shoot residues on shoot and root growth of potted olive plantlets. *ScientiaHorticulturae*, 182: 31-40.

Kluthe, B., Ali, M., & Stephenson, S. (2018). Allelopathic influence of Eucalyptus on common Kenyan agricultural crops. *J AgronAgric Sci.*, 1(1): 2-6.

Kumari, N., Srivastava, P., Mehta, S., & Das, B. (2016). Allelopathic effects of some promising agro forestry tree species on different annual crops. *Eco. Env. & Cons.*, 22(1): 225-236.

Mahmood, K., Khaliq, A., Cheema, Z. A., & Arshad, M. (2013). Allelopathic activity of Pakistani wheat genotypes against wild oat (*Avenafatua L.*). *Pak. J. Agri. Sci.*, 50(2): 169-176.

Orr, S. P., Rudgers, J. A., & Clay, K. (2005). Invasive plants can inhibit native tree seedlings: testing potential allelopathic mechanisms. Plant Ecology, 181, 153-165.

Popolizio, S., Fracchiolla, M., Leoni, B., Cazzato, E., & Camposeo, S. (2022). Phytotoxic Effects of Retentates Extracted from Olive Mill Wastewater Suggest a Path for Bioherbicide Development. *Agronomy*, 12(6): 1378.

Saleh, A. M. (2013). In vitro assessment of allelopathic potential of olive processing waste on maize (*Zea mays* L.). *Egypt. J. Exp. Biol*, 9(1): 35-39.

Shao, Q., Li, W., Yan, S., Zhang, C. O. N. G. Y. U., Huang, S., &Ren, L. (2019). Allelopathic effects of different weed extracts on seed germination and seedling growth of wheat. *Pakistan journal of botany*, 51(6): 2159-2167.

Sikolia, S. F., & Ayuma, E. (2018). Allelopathic effects of *Eucalyptus saligna* on germination growth and development of *Vigna Unguiculata* L. Walp. *IOSR Journals*, 12(3): 15-24.

Tanveer, A., Rehman, A., Javaid, M. M., Abbas, R. N., Sibtain, M., Ahmad, A. U. H., Ibin-I-Zamir, M. S., Chaudhary, K., & Aziz, A. (2010). Allelopathic potential of *Euphorbia helioscopia* L. against wheat (*Triticum aestivum* L.), chickpea (*Cicera rietinum* L.) and lentil (*Lens culinaris* Medic.). *Turkish Journal of Agriculture and Forestry*, 34(1): 75-81.

Tubeileh, A. M., & Souikane, R. T. (2020). Effect of olive vegetation water and compost extracts on seed germination of four weed species. *Current plant biology*, 22: 100-150.

Vijayan, V. (2015). Evaluation for allelopathic impact of *Acacia auriculiformis A. Cunn.* ex Benth on Seed germination and Seedling growth of Rice (*Oryza sativa* L), a widely cultivated Indian crop species. *Research Journal of Agriculture and Forestry Sciences* -ISSN, 2320, 6063.

Wang, Y., Wu, F., & Zhou, X. (2010). Allelopathic effects of wheat, soybean and oat residues on cucumber and Fusarium oxysporum f. spcucumerinum Owen. *Allelopathy Journal*, 25(1): 107-114.

Watson, D. J. (1937). The estimation of leaf area in field crops. J. Agric. Sci., 27:474-483.

Zaïri, A., Nouir, S., Zarrouk, A., Haddad, H., Khelifa, A., &Achour, L. (2020). Phytochemical profile, cytotoxic, antioxidant, and allelopathic potentials of aqueous leaf extracts of *Olea europaea*. *Food Science & Nutrition*, 8(9): 4805-4813.

Zuo, S. P., Ma, Y., Deng, X. P., & Li, X. W. (2005). Allelopathy in wheat genotypes during the germination and seedling stages. *Allelopathy Journal*, 15(1): 21-30.

Research Article 6Open Access

تأثير كثافة زراعة الحمص الكابولي وعدد مرات العزيق على مقاييس التنوع لحشيشتي الشوفان البري والعليق تحت ظروف الصفصاف بالجبل الأخضر

نعيمة عبد الباري القاسى 1*، طيب فرج حسين2

نعيمة عبد الباري القاسي **: مركز البحوث الزراعية والحيوانية، البيضاء، ليبيا

طيب فرج حسين: قسم المحاصيل، جامعة عمر المختار، السيا. المستخلص: تجربتين حقايتين نفذتا بمحطة البحوث بالصفصاف بالجبل الأخضر لدراسة تأثير اختلاف الكثافة النباتية 2.62، 13.33، 20.0، 33.33 نبات/م² وعزيق الحشائش لمرة ومرتين لكل شهر وشهرين خلال الموسمين 2022/2021م. صممت الدراسة بالقطع المنشقة مرة واحدة، وضعت الكثافات في القطع الأساسية وعدد مرات العزيق في الثانوية مساحتها (2*4) وفي أربع مكررات، أظهرت النتائج عدم معنوية الأساسية وعدد مرات عزيق الحشائش معامل السيادة للشوفان البري والعليق باختلاف الكثافة النباتية ومعنوية الفروق بعدد مرات عزيق الحشائش لكلا الموسمين الأول والثاني، وبالمثل كانت الاستجابة دليل الأهمية لنوعي الحشائش لكلا الموسمين وتأثرها معنوياً باختلاف عدد مرات عزيق الحشائش الكلا الموسمين وتأثرها معنوياً باختلاف عدد مرات عزيق الحشائش، ولم يصل للمستوى المعنوي معامل التغطية MDR للشوفان البري والعليق باختلاف لكلا الموسمين، ولم يتأثر دليل مار قليف لكلا الموسمين، الأول والثاني، ولم يظهر دليل نوعي الحشائش بالكثافة النباتية وعدد مرات عزيق الحشائش لكلا الموسمين الأول والثاني، ولم يظهر دليل فوقاً معنوية لاختلاف كثافة الزراعة بينما سجلت فروقاً معنوية عالية لعزيق الحشائش لمرتين، لم يسجل فروقاً معنوية وروقاً معنوية عالية لكلا الموسمين الأول والثاني، عدد مرات عزيق دليل شانون للتنوع فروقاً معنوية الكلا الموسمين الأول والثاني، عدد مرات عزيق الحشائش فروقاً معنوية عالية لعزية العلاقة بينما سجل عدد مرات عزيق الحشائش فروقاً معنوية عالية لكلا الموسمين الأول والثاني.

كلمات مغتاحية: ديناميكيات الحشائش ، محصول الحمص، تنوع الحشائش، الشوفان البري، العليق.

The effect of chickpea planting density and weeding frequency on diversity parameters of wild oat & bind weeds under conditions in Safsaf at EL-jabal Al-Akhdar

Abstract: Two field experiments were conducted at research station in Safsaf at EL-jabal Al-Akhdar to study effect plant population: 9.52, 13.33, 20 and 33.33 plant m2 and the effects of weeds cultivation numbers after one month and twice after first and Second month of seeding during the two seasons 2020-2021 and 2021-2022. The study layout in split plot design. population layed in the main plet, and cultivation of the weeds in the Subplots their area 2×4 (8m²), within four replications. The results revealed that, wead dominance efficient of bindweed & wild oat was not affected significantly due plant population (P.D), while significantly affected by weeds. cultivation (WC) in both the two seasons. Similarly in case of value index of weeds in the two seasons. Weed density and relative density as not affected by PD while significant only affected by WC in both first & second season. Covering index (MDR) of bind weed and wild oat not affected by PD and significantly affected by WC in the two seasons. Similarly, marga leaf diversity index (Dmg) and Simpson & Shannon diversity index were not affected significantly by PD, while significantly with WC in both first & second season. Weeds dry weight at harvesting were not affected by PD, while affected Significantly by WC in the two seasons.

Key words: weeds dynamics, chickpea crop, weeding frequency, wild oat, bind.

*Corresponding author:

Naima Abdel-Bari Al-Qasi: E-mail address: naimaalgasi88@gmail.com Agricultural and Animal Research Center, Al-Bayda, Libya

Second Author: Tayeb Faraj Hussein: Department of Agronomy, Omar Al-Mukhtar University, Libya.

Received: 19 .05. 2025 Accepted: 30.04.2025. Publish online:

المقدمة

الحمص (Cicer arietinum L) هو أحد أهم المحاصيل البقولية يزرع بواسطة المزارعين في المناطق الجافة وشبه الجافة بمساحة عالمية قدرت بنحو 13.7 مليون هكتار (2021،FAO)، وبناءأ على إحصائيات من 2009–2019 قدر متوسط البذور الصحية للدول النامية والمنظورة (Haji) و Merga و 2019–2009 قدر متوسط البذور الصحية للدول النامية والمنظورة (Haji) و الدول الواقعة في المناطق شبه الجافة بينما قدر المتوسط العالمي للمناطق غير الإنتاج للحمص بنحو 325– 542كجم/ه في الدول الواقعة في المناطق شبه الجافة بينما قدر المتوسط العالمي للمناطق غير الجافة بنحو 1048–901كجم/ه (2021،FAO). إن معرفة مسببات انخفاض الإنتاج هي أولى الخطوات لزيادة واستدامة الإنتاجية للحمص وتعد منافسة الحشائش من أهمها (2006، Ocrke)، وبشكل عام. يعد الحمص منافساً ضعيفاً للحشائش (Yung وآخرون، 2015) ونتيجة لبطء أداء الحمص لتكوين كساء كاف لتغطية سطح التربة مع انخفاض الارتفاع والمساحة الورقية رفعت من أسهم انخفاض قوة المنافسة للحشائش المصاحبة، وقد أقيمت عدة دراسات حول تأثير تنوع الحشائش المصاحبة للحمص ووجدت علاقة موجبة بين تنوع الحشائش وأداء المحصول (Nel وآخرون، 2019) .

نمو أنواع الحشائش ودرجة تغطيتها لسطح التربة المشغولة بالحمص ذات تأثر كبير على وسائل إدارة الحشائش (2006،Adak و 2006،Adak) ومن ثم هناك علاقات معقدة لسلوك لأنواع الحشائش وعمليات إدارة الحشائش (معظم بذور الحشائش تخزن في (2017). ويعد بنك بذور الحشائش أهم مصدر لتحديد حجم ونوع الحشائش فوق سطح التربة ومعظم بذور الحشائش تخزن في عمق التربة من 0- 5 سم وتنخفض بالتعمق في التربة (Mishra) وبذلك قد تؤثر عملية عزيق الحشائش في تتوع الحشائش لوحدة المساحة (Rakesh) وأخرون، 2022) ولما كانت أكثر الأنواع انتشاراً بمحطة أبحاث الصفصاف هي العليق (Convolvulus arvensis L.) والشوفان البري (Avena Fatua .L) فإن هذه الدراسة تهدف لمعرفة مدى تأثر تتوع وكثافة هذه الأنواع بعدد مرات عزيق الحمص وتغير كثافة المحصول باستخدام عدة مقاييس لتنوع الحشائش.

المواد وطرق البحث

أقيمت تجربتان حقليتان في محطة بحوث البقوليات في الصفصاف بالجبل الأخضر الواقعة على خطي عرض 7° 2020 2° 32 شرقا وترتفع 591 متراً فوق سطح البحر خلال موسمي النمو الأول 2020 202 والثاني 2021 202 م. التربة طينية طميه لدراسة استجابة الحمص الكابولي لزراعة بالكثافة النباتية 2.0 30.3 و 2.0 33.3 نبات/ م وعزيق الحشائش بعد شهر وشهرين من الإنبات، وقد صممت الدراسة بالقطع المنشقة لمرة واحدة في 4 مكررات. ووزعت الكثافة النباتية بالقطع الرئيسية ومكافحة الحشائش بالقطع الثانوية مساحتها 2.0 3. وتم إضافة قاعدة سمادية من فوسفات ثنائي الأمونيوم بالقطع الرئيسية ومكافحة الحشائش بالقطع الثانوية مساحتها 2.0 3. وتم تقدير معامل السيادة للشوفان البري والعليق، دليل الأهمية للشوفان البري والعليق، دليل مار قليف للشوفان البري والعليق، دليل سيمبسون للشوفان البري والعليق، دليل شانون للشوفان البري والعليق والوزن الجاف للحشائش، وتقدير سيادة النوع .

3- دلیل Margalef للتنوع (DMg) (DMg) عدد الأنواع بالعینة. N: مجموع أفراد جمیع الأنواع بالعینة $\mathcal{H} = \sum_{c=1}^{S} pi \ (InPi)$ نسبة أفراد كل نوع بالعینة (MacDonald,2003):(\mathcal{H}) وفقاً لما ذكره Llias وآخرون، (2018)

$$\lambda = \sum_{s=1}^{s} pi^{2}$$

التحليل الإحصائي: تقييم النتائج باستخدام تحليل التباين الملائم لتصميم التجرية باستخدام نظام التحليل الإحصائي Genstat-8 وتفصل المتوسطات باستخدام أقل فرق معنوي LSD عند المستوى 5% كما أشارت – لذلك الوكالة المركزية للإحصاء (CSA,).

النتائج

نلاحظ من بيانات جدول (1) معامل سيادة العليق لم تظهر فروقاً وصلت للمستوى المعنوي باختلاف الكثافة النباتية لموسمي الدراسة الأول والثاني، إلا أن عمليات عزيق الحشائش أثرت بمعنوية مرتفعة في خفض معامل سيادة العليق أدناه 0.270 و 0.272 عند عزيق الحشائش لمرتين مقارنة بأقصاه 0.611 و 0.637 نتيجة عدم عزيق الحشائش لكلا موسمي الدراسة الأول والثاني بالترتيب في حين أظهر تفاعل الكثافة النباتية ×عدد مرات عزيق الحشائش فروقاً معنوية لمعامل سيادة العليق لموسمي الدراسة الأول والثاني بالترتيب، كذلك لم تتأثر سيادة الشوفان باختلاف الكثافة النباتية لمحصول الحمص بالشكل المعنوي لكلا موسمي الدراسة، في حين نجد أن عمليات العزيق أثرت بشكل عالي المعنوية في سيادة الشوفان البري أقصاه 0.631 و 0.552 عدم عزيق الحشائش بينما أدناه 10.50 و 0.186 و الحسائش لمرتين لموسمي الدراسة الأول والثاني بالترتيب أشار تفاعل عالمي الدراسة إلى فروق معنوية للموسم الأول وعدم ؟؟ معنوي في الموسم الثاني لمعامل سيادة الشوفان البري، بيانات المجدول (1) لم تظهر استجابة معنوية لكثافة وزراعة الحمص لدليل أهمية العليق لموسمي الدراسة الأول والثاني، بينما أشارت بيانات نفس الجدول إلى استجابة عالية المعنوية لأهمية عزيق العليق أدناها 0.317 و 0.334 في حالة عزيق العليق لكلا موسمي النمو الأول والثاني سجل تداخل الكثافة النباتية بالنظر لأعلى دليل أهمية العليق لكلا الموسمين.

من خلال بيانات جدول (2) لم تظهر دليل أهمية الشوفان البري فروقا معنوية خلال موسمي الدراسة الأول والثاني، إلا أن عدد مرات العزيق أظهرت فروقاً معنوية وعالي المعنوية أكبر دليل 0.577 و 0.554 نتج من عدم عزيق الحشائش مقارنة بأقل دليل أهمية 0.426 و 0.441 نتيجة عزيق الحشائش لمرتين أما عن تأثير تفاعل الكثافة النباتية عدد مرات العزيق للحشائش سجل فروقاً معنوية في دليل أهمية الشوفان البري لكلا الموسمين بالترتيب، ولم تتأثر الكثافة النسبية لحشيشة العليق باختلاف كثافة زراعة الحمص لموسمي الدراسة الأول والثاني إلا أن عدد مرات عزيق العليق أثرت في الكثافة النسبية بالشكل عالي المعنوية الجدول (2) أدنى نسبة 0.167 و 0.146 سجلت من تعرض العليق لمرتين عزيق مقارنة بعدم عزيق الحشائش 0.603 و 0.499 لموسمي الدراسة الأول والثاني.

دراسة تأثير تفاعل الكثافة النباتية *عدد مرات عزيق الحشائش في الكثافة النسبية لحشيشة العليق كانت بالشكل المعنوي لل الكلا موسمي الدراسة، و كذلك لم تتأثر الكثافة النسبية للشوفان البري باختلاف الكثافة النباتية للحمص بالشكل المعنوي خلال موسمي النمو الأول والثاني، ومن جهة أخرى أظهرت بيانات نفس الجدول فروقاً عالية المعنوية للكثافة النسبية للشوفان البري باختلاف عدد مرات العزيق أعلى كثافة نسبية 0.472 و 0.468.

جدول: (1). اختلاف الكثافة النباتية وعزيق الحشائش والتفاعل بينهما في سيادة العليق، الشوفان وأهمية العليق خلال الموسمين تحت ظروف منطقة الصفصاف

ية العليق	فان دليل اهمية العليق		معامل سياد	يادة للعليق	معامل السب	الصفات
الموسم	الموسم	الموسم	الموسم	الموسم	الموسم	
الثاني	الأول	الثاني	الأول	الثاني	الأول	المعاملات
		م 2	الكثافة النباتية /			
0.440	0.440	0.332	0.367	0.511	0.478	33.33
0.517	0.437	0.378	0.443	0.538	0.411	20.00
0.358	0.448	0.311	0.322	0.401	0.431	13.33
0.417	0.342	0.433	0.350	0.337	0.353	9.52
غ.م	غ.م	غ.م	غ.م	غ.م	غ.م	F
0.293	0.261	0.394	0.169	0.387	0.324	LSD _{0.05}
		Ĺ	عزيق الحشائش			
0.536	0.536	0.552	0.631	0.637	0.611	الشاهد
0.421	0.397	0.353	0.285	0.431	0.414	لمرة واحدة
0.342	0.317	0.186	0.196	0.272	0.230	لمرتين
* *	* *	* *	* *	* *	* *	F
0.072	0.073	0.114	0.095	0.094	0.096	LSD _{0.05}
*	*	غ.م	*	*	*	F

سجلت من عدم عزيق الحشائش بالنظر لأقل كثافة نسبية 0.211 و 0.224 كانت نتيجة عزيق الحشائش لمرتين خلال موسمي الدراسة الاول والثاني بالترتيب، أما عن تأثير تفاعل الكثافة النباتية مع عدد مرات عزيق الحشائش في الكثافة النسبية للشوفان البري كان بالشكل المعنوي. أما جدول (3) وضح طبيعة نمو العليق الزاحفة والمتسلقة ولاختلاف الظروف بين الموسمين الأول والثاني فإن ذلك الحجم لم يتأثر بأي من اختلاف الكثافة النباتية في الموسمين وباختلاف عدد مرات العزيق بالموسم الثاني لعدم الوصول لفروق ذات معني معنوي الجدول (3) إلا أن عدد مرات العزيق سجلت فروقاً معنوية لحجم تغطية العليق بالموسم الأول الأعلى 1810 لعدم العزيق مقابل الأدنى نتيجة العزيق لمرتين. سجل تأثير التداخل بين الكثافة النباتية وعدد مرات عزيق الحشائش فروقاً معنوية لحجم تغطية السوفان البري بعدم التأثر المعنوي لحجم التغطية باختلاف الكثافة النباتية لكلا موسمي الدراسة وعدد مرات عزيق الحشائش بالموسم الأول فقط أعلى قيمة 0.307 سجلت من عدم عزيق الحشائش إذا الفروقات بين حجم نباتات نفس النوع المشائش بالموسم الأول فقط أعلى قيمة 0.307 سجلت من عدم عزيق الحشائش إذا الفروقات بين حجم نباتات نفس النوع المؤل لتأثر مقارنة بأقل تقارب بحجم تغطية للختلاف النباتات للشوفان عنها بعضها بنحو 0.150 نتيجة عزيق الحشائش لمرتين، بالنظر لتأثر تداخل الكثافة النباتية مع عدد مرات عزيق الحشائش في حجم تغطية الشوفان البري كان بالشكل المعنوي في الموسم الأول في التأثير في حجم تغطية الشوفان البري لعدم معنوية ذلك الحجم في الموسم الثاني.

أشارت بيانات جدول (4) إلى أن دليل مارقاليف DMg لم تتأثر الفروقات الفردية بين نباتات الشوفان البري والعليق بالنوع للتنوع بسبب اختلاف الكثافة النباتية بالشكل المعنوي لموسمي الدراسة الأول والثاني وعدد مرات عزيق الحشائش بالموسم الثاني إلا أن حجم ذلك التنوع لنوعي الحشائش سجل فروقاً معنوية لعدد مرات عزيق الحشائش بالموسم الأول أعلاه 0.334 نتيجة عدم عزيق الحشائش بالنظر لأدناه 0.222 نتيجة عزيق الحشائش لمرتين.

جدول: (2). اختلاف الكثافة النباتية وعزيق الحشائش والتفاعل بينهما في قيمة الشوفان، دليل أهمية العليق ودليل أهمية الشوفان خلال الموسمين تحت ظروف منطقة الصفصاف

الشوفان البري	الكثافة النسبية	بية العليق	الكثافة النسب	لموفان البري	دليل أهمية الث	الصفات
الموسم	الموسم	الموسم	الموسم	الموسم	الموسم	
الثاني	الأول	الثاني	الأول	الثاني	الأول	المعاملات
		م 2	الكثافة النباتية /			
0.333	0.333	0.333	0.333	0.492	0.491	33.33
0.333	0.341	0.333	0.333	0.473	0.531	20.00
0.333	0.333	0.250	0.333	0.503	0.458	13.33
0.333	0.333	0.330	0.333	0.519	0.520	9.52
غ.م	غ.م	غ.م	غ.م	غ.م	غ.م	F
0.000	0.023	0.133	0.000	0.115	0.090	$LSD_{0.05}$
		Ĺ	عزيق الحشائش			
0.468	0.472	0.499	0.603	0.554	0.577	الشاهد
0.309	0.323	0.292	0.231	0.495	0.498	لمرة واحدة
0.224	0.211	0.146	0.167	0.441	0.426	لمرتين
* *	* *	* *	* *	* *	*	F
0.065	0.061	0.156	0.197	0.034	0.050	LSD _{0.05}
		الحشائش	الكثافة النباتية ×عزيق			
*	*	*	*	*	*	F

عند دراسة التنوع الفا باستخدام دليل مارقاليف في تأثير تداخل عاملي الدراسة الكثافة النباتية وعدد مرات عزيق الحشائش كانت لعدم معنوية التأثير خلال موسمي الدراسة الأول والثاني، ولم يتأثر بالشكل عالي المعنوية ومعنوي لاختلاف الكثافة النباتية لموسمي الدراسة الأول والثاني بالشكل المعنوي إلا أن ذلك التنوع تأثر بالشكل عالي المعنوية ومعنوي لاختلاف عدد مرات العزيق الأعلى 10.25 و 0.254 و 0.204 عند عدم عزيق الحشائش مقارنة بالأقل في حجم التنوع 232 و و 0.204 نتيجة عزيق الحشائش لمرتين وتأثير تفاعل الكثافة النباتية مع عدد مرات العزيق في دليل شانون لتنوع العليق لم يكن بالشكل المعنوي خلال الموسمين الأول والثاني بمثل ما استجاب العليق استجاب الشوفان البري بعدم وجود اختلاف وصل للمستوى المعنوي باختلاف الكثافة النباتية الموسمي الدراسة الأول والثاني وباختلاف عالي المعنوية لدليل شانون للشوفان البري باختلاف عدد مرات عزيق الحشائش لكلا الموسمين الأول والثاني ، أعلى قيمة دليل كلا الموسمين بالترتيب أظهر تأثير تداخل عاملي الدراسة فروقاً معنوية لدليل شانون للشوفان البري بالموسم الأول وعدم المعنوية بالموسم الثاني.

أظهرت بيانات الجدول (5) عدم تأثر دليل سيمبسون لتنوع كثافة العليق باختلاف كثافة زراعة الحمص خلال موسمي الدراسة الأول والثاني بالشكل المعنوي، إلا أن كثافة تواجد العليق تغيرت بالشكل عالى المعنوية عند عزيق الحشائش أكثر وفرة

0.436 و 0.302 نتجت من عدم عزيق الحشائش بينما أقل دليل سيمبسون 0.043 و 0.037 سجل من العزيق لمرتين خلال موسمي الدراسة الأول والثاني بالترتيب وبالنظر لتأثير تفاعل الكثافة النباتية *عدد مرات عزيق الحشائش كان ذو فروق عالية المعنوية لموسمي الدراسة الأول والثاني بالترتيب، تأثير دليل سيمبسون لتنوع الشوفان البري بالشكل المعنوي في الموسم الأول والثاني وعدم تأثره بالموسم الثاني باختلاف كثافة زراعة الحمص أدنى دليل 0.110 عند زيادة كثافة زراعة الحمص الثاني، إلا أن نبات/م2 مقابل أقصى دليل 0.850 نتيجة خفض كثافة الزراعة إلى 9.52 نبات/م2 وعدم معنوية التأثير بالموسم الثاني، إلا أن تعدد مرات عزيق الحشائش أثرت بالشكل عالي المعنوية لدليل سيمبسون لتنوع الشوفان البري بالموسم الثاني وعدم تأثره بالموسم الأول أدناه 0.053 عند العزيق لمرتين بالنظر لأقصاه 0.225 في حالة عدم عزيق الحشائش أثر تفاعل عاملي الدراسة بالشكل المعنوي في عالمي المعنوية في دليل سيمبسون خلال موسمي الدراسة الأول والثاني، واختلاف كثافة زراعة الحمص لم تؤثر بالشكل المعنوي في وزن الحشائش عند الحصاد لكلا موسمي الدراسة الأول والثاني.

جدول: (3). اختلاف الكثافة النباتية وعزيق الحشائش والتفاعل بينهما في الكثافة النسبية للشوفان وحجم التغطية في العليق MDR وحجم التغطية للشوفان MDR خلال الموسمين تحت ظروف منطقة الصفصاف

حجم التغطية للشوفان MDR		ي العليق MDR	حجم التغطية ف	الصفات
الموسم	الموسم	الموسم	الموسم	
الثاني	الأول	الثاني	الأول	المعاملات
		نباتية / م ²	الكثافة ال	
0.159	0.228	0.123	0.205	33.33
0.174	0.249	0.148	0.146	20.00
0.197	0.185	0.164	0.135	13.33
0.203	0.212	0.175	0.128	9.52
غ.م	غ.م	غ.م	غ.م	F
0.195	0.187	0.153	0.101	LSD _{0.05}
		الحشائش	عزيق	
0.202	0.307	0.166	0.181	الشاهد
0.199	0.198	0.151	0.173	لمرة واحدة
0.149	0.150	0.140	0.107	لمرتين
غ.م	*	غ.م	*	F
0.087	0.103	0.077	0.069	LSD _{0.05}
		×عزيق الحشائش	الكثافة النباتية	
غ.م	*	غ.م	*	F

أشارت بيانات الجدول (5) أيضاً إلى فروق عالية المعنوية لوزن الحشائش الجاف بتعدد مرات عزيق الحشائش الأخف وزناً 0.382 و 0.415 كجم / م2 بسبب عزيق الحشائش لمرتين مقابل الأكبر وزن جاف للحشائش 1.337 و 1.431 كجم / م2 في حالة عدم عزيق الحشائش لموسمي الدراسة الأول والثاني بالترتيب وبالنظر لتأثير تفاعل الكثافة النباتية *عدد مرات عزيق الحشائش في الوزن الجاف للحشائش عند الحصاد كان بالشكل عالي المعنوية لموسمي النمو الأول والثاني بالترتيب.

المناقشة

يبدو أن معامل السيادة كان غير متأثر باختلاف الكثافة النباتية عند دراسة العليق كنبات زاحف وملتف حول النبات والشوفان كنبات نجيلي رأسي الأنبات إلا أن عدد مرات العزيق حدث من كثافة الحشائش ومن ثم حدث من سيادة كلاً من العليق والشوفان البري كما شرح Dekker) عند دراسة بيئة الحشائش، ولم كان معامل السيادة غير متأثر بكثافة زراعة الحمص وتأثر بمعنوية عالية عدد مرات عزيق الحشائش فإن دليل أهمية مكافحة العليق والشوفان البري اتجهت بنفس السلوك لعدم تأثره باختلاف الكثافة وتأثره بمعنوية عالية لاختلاف عدد مرات العزيق.

جدول: (4). اختلاف الكثافة النباتية وعزيق الحشائش والتفاعل بينهما في دليل مارقاليف لتتوع ودليل شانون لتتوع العليق ودليل شانون لتتوع الشوفان البري خلال الموسمين تحت ظروف منطقة الصفصاف

دليل شانون لتنوع الشوفان البري		لتنوع العليق	دليل شانون	للتنوع DMg	دليل مارقاليف	الصفات
الموسم	الموسم	الموسم	الموسم	الموسم	الموسم	
الثاني	الأول	الثاني	الأول	الثاني	الأول	المعاملات
			2 الكثافة النباتية 2 م			<i>y</i>
0.337	0.351	0.225	0.267	0.332	0.308	33.33
0.339	0.356	0.238	0.268	0.309	0.250	20.00
0.347	0.319	0.259	0.257	0.289	0.307	13.33
0.350	0.349	0.324	0.182	0.258	0.255	9.52
غ.م	غ.م	غ.م	غ.م	غ.م	غ.م	F
0.042	0.040	0.258	0.272	0.204	0.183	$LSD_{0.05}$
			عزيق الحشائش			
0.357	0.365	0.296	0.251	0.311	0.334	الشاهد
0.348	0.349	0.284	0.248	0.299	0.283	لمرة واحدة
0.324	0.318	0.204	0.232	0.281	0.222	لمرتين
* *	**	*	* *	غ.م	*	F
0.015	0.020	0.061	0.009	0.103	0.106	$LSD_{0.05}$
		ئش	لة النباتية ×عزيق الحشا	الكثاف		
غ.م	*	غ.م	غ.م	غ.م	غ.م	F

جدول: (5).اختلاف الكثافة النباتية وعزيق الحشائش والتفاعل بينهما في دليل سيمبسون للعليق ودليل سيمبسون للشوفان البري والوزن الجاف للحشائش عند الحصاد خلال الموسمين تحت ظروف منطقة الصفصاف

حشائش عند الحصاد	الوزن الجاف للـ	للشوفان البري	دليل سيمبسون	ن للعليق	دليل سيمبسور	الصفات
الموسم الثاني	الموسم	الموسم	دليل سيمبسون الموسم الأول	الموسم الثاني	الموسم الأول	
الثاني	الأول	الثاني	الأول	الثاني	الأول	
						المعاملات
			الكثافة النباتية / م ²			
			الحداقة التباتية / م			
0.784	0.708	0.118	0.110	0.108	0.171	33.33
0.787	0.732	0.121	0.120	0.133	0.170	20.00
0.833	0.818	0.129	0.120	0.175	0.178	13.33
0.893	0.912	0.131	0.850	0.182	0.222	9.52
غ.م	غ.م	غ.م	*	غ.م	غ.م	F
0.475	0.443	0.028	0.695	0.149	0.165	$LSD_{0.05}$
			عزيق الحشائش			
1.431	1.337	0.225	0.580	0.302	0.436	الشاهد
0.627	0.659	0.096	0.220	0.109	0.077	لمرة واحدة
0.415	0.382	0.053	0.100	0.037	0.043	لمرتين
**	**	**	ن. غ.م	**	**	F
0.310	0.247	0.050	0.511	0.146	0.203	$\mathrm{LSD}_{0.05}$
0:05 الكثافة النباتية ×عزيق الحشائش						
**	**	**	**	**	**	F

كما وجد Abdin وآخرون.. (2000) اختلاف الكثافة النباتية لزراعة الحمص لم تؤثر في الكثافة النسبية لحشيشة الشوفان البري ولا في دليل مار قليف ودليل شانون للعليق والشوفان البري ولا في دليل ممسون للأنواع المدروسة ولا في الوزن الجاف للحشائش عند الحصاد وتعد طبيعة افتراش والتقاف العليق والنمو الرأس مع انتصاب أوراق الشوفان البري هما الركيزة التي جعلت تلك الأنواع لم تستجب لاختلاف الكثافة النباتية طيلة موسمي الدراسة الأول والثاني وهو متفق مع ما أشار إليه Eko . (2017) , إلا أن الكثافة النسبية للعليق والشوفان وحجم تغطية تلك الأنواع لسطح التربة ودليل مار قليف، دليل شانون ودليل سيمبسون لتنوع العليق والشوفان البري وزنهما الجاف عند الحصاد استجاب بمعنوية لعدد مرات العزيق، أما العدد أو قوة النمو لكلا من العليق والشوفان البري كما درس ذلك (Dana و 2023، Chaitanya). ويبدو تأثير تفاعلي عاملي الدراسة من الكثافة النباتية للحمص وعدد مرات العزيق كانت ذات تأثير فاعل في دليل أهمية العليق والشوفان البري معامل سيادة و الكثافة النسبية لتلك الأنواع مع تأثر حجم تغطية العليق و الشوفان البري لسطح التربة نتيجة ذلك التفاعل بالموسم الزراعي لاستقلال أو عدم استقلال العوامل عن بعضها في التأثير غير دلائل التنوع لمار قليف , شانون وسيمبسون لم تتأثر بذلك المناعل العوامل عن بعضها في التأثير كما أشار (Sharma وآخرون، 1976؛ Van-Ever وآخرون، 1976؛ Van-Ever وآخرون، 2010؛ Pan-Ever وآخرون، 2010؛ Bhagirathy؛ 2021، 8ملو

الاستنتاج: بالنظر إلى عدد مرات العزيق تبين أن العزيق لمرتين كان الانسب لكل خصائص النمو والإنتاج للحمص. الشكر والتقدير: نتقدم بالشكر لقسم المحاصيل، كلية الزراعة، جامعة عمر المختار لدعمها المتواصل لنا ولتسهيل كل العقبات التي واجهتنا لإنجاز هذا البحث.

المراجع

Abdin, O. A., Zhou, X. M., Cloutier, D., Coulman, D. C., Faris, M. A., & Smith, D. L. (2000). Cover crops and interrow tillage for weed control in short season maize (Zea mays). European Journal of Agronomy, 12(2), 93-102.

Adeux, G., Vieren, E., Carlesi, S., Bàrberi, P., Munier-Jolain, N., & Cordeau, S. (2019). Mitigating crop yield losses through weed diversity. Nature Sustainability, 2(11), 1018-1026.

Ashu, Z.A. &Sandeep, M. (2021). Effect of different weed management practices on weed dry matter Accumulation and weed population in chickpea and lentil intercrooping system. Int.J. Curr. Microbiol. Appl. Sci. 10(4): 632-638.

Bhagirathy, S.C. (2022). Integrated management of wild oat and feather fingergrass using simulated grazing and herbicides. Agronomy, 12 (10): 2586.

Booth, B. D., Murphy, S. D., & Swanton, C. J. (2010). Invasive plant ecology in natural and agricultural systems. CABI.

Dana, L. & Chiatanya, S.G. (2023). Theoretical assessment of persistence and adaptation Nature plants; 9:1267-1279.

Dekker, J. (2011). Evoluntionary Ecology of Weeds Ames Iwowa: Weed Biology Lab. Agronomy Dpt, Iwowa State Univ.

Eko, W. (2017). Weed communities on mono culture and intercropping cultivation techniques J. Degraded and Mining lands manag, 4(3):781-788.

FAO State. (2021). Agriculture Data, Online http://WWW.Fao.org/faostat/en/#date/QC.

Gamite, S. (2010). Caution is needed when applying Margalef diversity index. Ecol. Indic.(10): 550-551.

Gulshan,M. & Bhagirath,S.C.(2021). Seed longevity and seeding emergence behavior of wild oat in response to burial depth in eastern Australia. Weed. Sci. 69(3):362-371.

Holt, J. (1990). Field bindweed – Biology and Distribution Calif. Weed Sci. Conf proce, 42;64-67.

Kayan, N. İ. H. A. L., & Adak, M. S. (2006). Effect of different soil tillage, weed control and phosphorus fertilization on weed biomass, protein and phosphorus content of chickpea (*Cicer arietinum* L.).

Kumar, R., Kumawat, N., Mishra, J. S., Ghosh, D., Ghosh, S., Choudhary, A. K., & Kumar, U. (2022). Weed dynamics and crops productivity as influenced by diverse cropping systems in eastern India.

Lowe, A.J. (2017). Weed abundance is positively correlated with native plant diversity in grasslands of southern Australia. PLOS ONE, 12. (6), e0178681.

MacDonald, G. (2003). Biogeography: Introduction Space Time and Life. Hoboken, NJ: Blackwell Publishing.

Martín-Forés, I., Guerin, G. R., & Lowe, A. J. (2017). Weed abundance is positively correlated with native plant diversity in grasslands of southern Australia. PLoS One, 12(6), e0178681.

Merga,B. & Haji. (2019). Economic importance of chickpea: production, Value and world trade. Congent Food and Agriculture, 5,1615718.

Mishra, J.S. and Singh, V.P. (2012). Tillago and weed control effects on productivity of a day seeded rice-wheat system on a vertisol in control India soil Tillage and Research, 123:11-20.

Nel, L., Pryke, J. S., Carvalheiro, L. G., Thebault, E., Van Veen, F. F., & Seymour, C. L. (2017). Exotic plants growing in crop field margins provide little support to mango crop flower visitors. Agriculture, Ecosystems & Environment, 250, 72-80.

Nkoa, R., Owen, M. D., & Swanton, C. J. (2015). Weed abundance, distribution, diversity, and community analyses. Weed Science, 63(SP1), 64-90.

Oerke, E. (2006). Crop losses to pests. The Journal of Agricultural Science, 144,31.

Sharma, M. P.; Vanden-Born, W.H, & McBeaths. D.K. (1976). Studies on the biology of wild oat: Dormancy, germination and emergence. Avialable at http://doi.org/10 4141/cjps 76-097.

Song, J. S., Kim, J. W., Im, J. H., Lee, K. J., Lee, B. W., & Kim, D. S. (2017). The effects of single-and multiple-weed interference on soybean yield in the far-eastern region of Russia. Weed Science, 65(3), 371-380. Swan, D. G & Chancellor, R.J. (1976). Regenerative capacity of field bindweed roots. Weed Sci.,24:306-308.

Travlos, I. S., Cheimona, N., Roussis, I., & Bilalis, D. J. (2018). Weed-species abundance and diversity indices in relation to tillage systems and fertilization. Frontiers in Environmental Science, 6, 11.

Van Evert, F. K., Fountas, S., Jakovetic, D., Crnojevic, V., Travlos, I., & Kempenaar, C. (2017). Big data for weed control and crop protection. Weed research, 57(4), 218-233.

Whish, J. P. M., Sindel, B. M., Jessop, R. S., & Felton, W. L. (2002). The effect of row spacing and weed density on yield loss of chickpea. Australian Journal of Agricultural Research, 53(12), 1335-1340.

Yung, L., Chandler, J., & Haverhals, M. (2015). Effective weed management, collective action, and landownership change in western Montana. Invasive Plant Science and Management, 8(2), 193-202.

Zimdahl, R. L. (2004). Weed Crop Competition a Review (2nd ed.). Blackwel publishing. USA. P 220.

Research Article 6Open Access

Impact of Six Distinct Growth substrates on the Survival and Root Elongation of Grafted Tomato and Pepper Seedlings

Fayrouz Buojaylah

Corresponding author:

fayrouz.buojaylah@omu.edu.ly
Department of Horticulture,
Faculty of Agriculture, Omar
Al-Mukhtar University, ElBeida, Libya

Received: 01.12.2024

Accepted: 30.04.2025

Publish online:

.

الباحث الاول^{1*}: فيروز علي بوبكر بوعجيلة، البستنة، كلية الزراعة، جامعة عمر المختار، البيضاء، ليبيا. **Abstract:** A study was conducted at the Horticulture Department at Omar Al Mukhtar University, Al Jabal Al-Khader, Libya in 2022 to investigate the impact of six growth media; peat moss, sand, soil, peat moss and sand (1:1), peat moss and soil (1:1), and soil and sand (1:1), on the survival and root elongation of grafted tomato (Solanum lycopersicum) and sweet pepper (Capsicum annuum) seedlings. The experiment comprised 12 treatments representing all combinations of the two factors and followed a randomized complete block split-plot design with 4 replications. Findings indicated that among the growth substrates tested, peat moss, followed by the combination of peat moss and sand, exhibited the highest survival rates and root elongation for grafted tomato and pepper seedlings, surpassing the outcomes observed with alternative treatments.

Keywords: Peat moss; Sand; Survival; Grafting; Root elongation; Splice.

تأثير ستة بيئات نمو مختلفة على بقاء واستطالة جذور شتلات الطماطم والفلفل المطعمة المستخلص: أجريت هذه الدراسة في قسم البستنة بجامعة عمر المختار، الجبل الأخضر، ليبيا في عام 2022، لدراسة تأثير ستة بيئات نمو؛ البتموس، والتربة، والرمل، و البتموس والرمل (1:1)، و البتموس والتربة (1:1)، والتربة والرمل (1:1)، على بقاء واستطالة جذور الشتلات المطعمة للطماطم (Capsicum annuum) والفلفل الحلو (Capsicum annuum). وتضمنت التجربة 12 معاملة تمثل جميع تركيبات العاملين واتبعت تصميم القطعات العشوائية الكاملة مع 4 مكررات. أشارت النتائج إلى أنه من بين بيئات النمو المختبرة، أظهر ا البتموس، يليه مزيج البتموس والرمل، أعلى معدلات بقاء واستطالة جذور لشتلات الطماطم والفلفل، متجاوزة النتائج التي لوحظت مع المعالجات البديلة.

الكلمات المفتاحية: البتموس، الرمل، التطعيم، استطالة الجذور، الأصل و الطعم.

INTRODUCTION

Grafting is a well-established horticultural technique in which a scion (aboveground part) is fused with a rootstock through a graft union, resulting in a composite plant that combines the favorable traits of both components (Davis et al., 2008; Kawaguchi et al., 2024). This method has been extensively applied in commercial vegetable production across Asia, Europe and United States, where it is utilized to manage soil-borne diseases, enhance plant vigor, and improve overall yield performance (Bahadur et al., 2024; Buojaylah et al., 2024; Nagila; Dabirian et al., 2017; Lee et al., 2010; Reshma et al., 2024; Sakata et al., 2007; Wimer et al., 2015). However, in North Africa, particularly in Libya, the use of grafting in vegetable crop production remains limited. One of the key barriers to its widespread adoption among small-scale farmers in the region is the lack of comprehensive, research-driven information to support its implementation.

The Author(s) 2025. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium ,provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

This gap in knowledge hinders the potential benefits grafting could offer to local vegetable production systems.

Solanaceous crops (family Solanaceae) are typically regarded as easy to graft, primarily due to the simplicity and efficiency of the splice grafting technique (Johnson et al., 2011). This method is widely used and yields high graft success rates, with over 95% survival reported for tomatoes when healing is performed under controlled conditions.

Although the grafting procedure itself requires less than a minute per plant, the healing phase, which is crucial for graft success, spans approximately two weeks. During this healing process, a functional vascular connection is established between the scion and rootstock, allowing for the integration of the two plant components (Davis et al., 2008; Fernandez-Garcia et al., 2004). In horticultural research, the choice of growth substrate plays a critical role in influencing the growth and development of vegetable seedlings, particularly in species such as tomato (Solanum lycopersicum) and pepper (Capsicum annuum). A study was conducted in 2025 by Erdal and Aktas compared several substrates, including peat moss, perlite, leonardite, and vermicompost, as well as their mixtures with cocopeat. The results of the study illustrated that plants grown solely in peat moss exhibited the highest biomass and fruit yield. This demonstrates how peat moss's exceptional aeration and water retention qualities are advantageous for tomato cultivation. In addition, nine distinct growth media compositions were investigated by Lohani et al., (2023) for tomato and sweet pepper seedlings in Pokhara, Nepal. According to the study, for both crops, cocopeat by itself produced the highest seedling emergence. In particular, tomato seedlings demonstrated the highest rates of emergence in cocopeat, but sweet pepper seedlings grew best in vermicompost and perlite. These results imply that enhanced seedling development is supported by peat-based medium because of their advantageous water retention and aeration qualities. Growth substrate play a pivotal role in influencing the overall development and health of vegetable seedlings, particularly during the critical early stages of growth. A study examined the impact of various growth substrates on tomato stem cuttings' rooting response in a greenhouse. In comparison to other media, the results showed that pure peat moss considerably increased plant height, root length, and overall survival %. This demonstrates how well peat moss works to encourage tomato plant root development (Alam et al., 2020). The choice of substrate affects several key physiological and biochemical processes. Numerous studies have explored the effect of various growth substrates to optimize plant growth, focusing on factors such as water retention, aeration, and nutrient availability (Gruda, 2019), however, the impact of these substrates on the survival and growth of grafted vegetable seedlings has not yet been quantified. This study was aimed to investigate the effects of six distinct growth substrates on the survival and root elongation of grafted tomato and pepper seedlings.

MATERIALS AND METHODS

Experimental Design and Treatment Establishment: A study was conducted in 2022 at the Horticulture Department of Omar Al Mukhtar University, Al Jabal Al-Khader, Libya, to investigate the effects of six distinct growth substrates on the survival and root elongation of grafted tomato cv. Cheyenne E488 and sweet pepper cv. Gedeon F1 seedlings (Syngenta, Cairo, Egypt). The main plot treatments were different growth substrates that included peat moss, soil, sand, peat moss-sand (1:1), peat moss-soil (1:1), and soil-sand (1:1) combinations, and the subplot treatment was vegetable crops; sweet pepper and tomato. Peat moss and soil substrates analysis were explained in tables 1 and 2, respectively. The experiment followed a randomized complete block split-plot design with 12 treatments, representing all combinations of media, and was replicated four times to ensure the reliability of the results. Plants were self-grafted on 8 August 2022, using the splice technique, and were placed in the healing chamber for 9 days. Self-grafting was employed to mitigate the risk of genetic incompatibility and to avoid discrep-

ancies in graft union alignment between the rootstock and scion, which could negatively impact graft survival. Grafting procedures were conducted between 8:30 AM and 11:30 AM, characterized by reduced transpiration rates and minimal water stress, as recommended by Rivard and Louws (2006).

Grafting Technique Utilized in the Study: To ensure the formation of a successful graft union, proper alignment and contact between the cambium layers of the rootstock and scion are essential. Therefore, the scion and rootstock must have similar stem diameters at the time of grafting. In this experiment, self-grafting was employed to standardize stem diameters, allowing the investigation to focus solely on the effects of six distinct growth substrates selected for this study. To graft seedlings, the splice grafted method was used following the method of Johnson et al. (2011), where both rootstock and scion plants were watered 12–24 hours before grafting, watering plants was avoided immediately right before grafting. Grafting clips were reused, so they were thoroughly cleaned and sterilized. To increase the relative humidity, we sprayed the inner surfaces of the healing chamber with water a few hours before grafting. Clean, sharp razor blades were utilized for cutting, and hands were continuously sanitized with antibacterial soap or hand gel. Two spray bottles with tap water were prepared to mist the plants frequently during the grafting process. Plants were at the 2-4 true leaf stage for optimal grafting. Grafting was performed early morning at 8:00 AM to ensure low plant transpiration, and to reduce water stress in newly grafted plants. The grafting process was performed as each plant stem was severed just below the cotyledons at an approximate 45° angle using a razor blade. The cut surfaces were then aligned and secured using a silicone grafting clip to ensure proper contact between the scion and rootstock (Fig. 1, right).

Healing Process of Grafted Seedlings: The graft healing process commenced on the day of grafting, designated as day 1. Following grafting, the healing chamber remained sealed, and plants were undisturbed for the remainder of day 1 and throughout day 2. To gradually acclimate the grafted plants to the greenhouse environment, the chamber was opened for increasing durations: 5 minutes on day 3, 30 minutes on day 4, 1 hour on day 5, 3 hours on day 6, and 6 to 8 hours on day 7. On day 8, the plants were removed from the healing chamber at 4:00 PM and transferred to a laboratory bench, where they remained for the rest of the study. During the 8-day healing period, temperature and relative humidity within the healing chamber were continuously monitored to ensure optimal conditions for graft union formation (Fig 1, left).

Figure: (1). Splice grafting method and healing process for grafted tomato and sweet pepperseedlings at the Horticulture Department of Omar Al Mukhtar University, Al Jabal Al-Khader, Libya.

Table:(1). Soil characteristics and properties

Mea	surements	
Particle Size distribution	Sand (%) Silt (%)	13.22 50.60
	Clay (%)	36.18
	Organic Matter (%)	2.30
	E.C (Mmhos/cm)	1.30
	Total Nitrogen (%)	0.21
	Soil pH	7.87
	CO ₃ %	1.35
	P ppm	111 237
	K ppm	231

Table:(2). Peat moss characteristics and properties.

Measu	rements	Values
	Organic Matter (%)	85–98
	E.C (Mmhos/cm)	0.2-1.0
	Moisture (%)	40–60
	pН	5.5-6.5
	(%)Organic carbon	40–50
	(%) Total nitrogen	0.5-1.0
	C:N ratio	50:3

RESULTS AND DISCUSSION

Survival Percentage (%) of Grafted Pepper and Tomato Plants: Peat moss, either used alone or in combination with sand, provided the most favorable conditions for graft survival, while soil, both independently and when mixed with sand, resulted in significantly lower survival rates (Table 3). Peat moss demonstrated the highest and most consistent survival rate of 95% across all time points (10, 14, 18, and 22 days), without any notable decline throughout the study. Similarly, the peat moss and sand mixture (1:1) showed high survival rates, ranging from 91% on day 10 to 89% on day 22, reflecting the performance of peat moss and sand when applied individually. Sand alone also exhibited a high survival rate, beginning at 89% on day 10 and remaining relatively stable at 87% on day 22.

In contrast, the peat moss and soil mixture (1:1) resulted in moderate survival rates, starting at 74% on day 10 and slightly decreasing to 70% by day 22. The soil and sand mixture (1:1) produced lower survival percentages compared to peat moss-based treatments, with an initial survival rate of 65% on day 10 that declined to 35% by day 22. Soil alone had the poorest performance, with a survival rate of 63% on day 10, which further decreased to 30% by day 22.

The P-values < 0.0005 for the crop type effect indicate significant differences in survival rates between grafted tomato and pepper plants. Tomato grafts consistently exhibited higher survival rates than pepper grafts at each estimating date. On day 10, tomato grafts had a survival rate of 88%, compared to 84% for pepper grafts. By day 22, the survival rate for tomato grafts remained higher at 76%, while pepper grafts had a survival rate of 70%.

Al-Mukhtar Journal of Agricultural, Veterinary and Environmental Sciences 3 (1): 25-32, 2025 Doi:

Table:(3). Survival of grafted pepper and tomato in the healing chamber after 10, 14, 18, and 22 days of grafting.

		Survival (%) ²	:	
Treatment	10 d ^y	14 d	18 d	22 d
Peat moss	95 a	95 a	95 a	95 a
Soil	63 d	52 d	40 c	30 e
Sand	89 b	88 ab	90 ab	87 b
Peat moss and Sand (1:1)	91 a	90 a	92 a	89 ab
Peat moss and Soil (1:1)	74 bc	70 b	71 b	70 c
Soil and Sand (1:1).	65 c	57 c	44 bc	35 d
P-value	0.0002	0.0004	0.0002	< 0.0001
Crop				
Pepper	84	76	75	70
Tomato	88	80	79	76
P-value	0.0002	0.0005	< 0.0001	< 0.0001

^zAll data were analyzed using analysis of variance (ANOVA) in JMP software (Version 11.0 for Windows; SAS Institute, Cary, NC). Survival was evaluated by visually estimating the turgidity of scion leaves and stems using a scale ranging from 0 to 3, where 0 indicated completely turgid leaves and stems, 1 indicated more than 50% of leaves and stems were flaccid, 2 indicated more than 70% of leaves and stems were flaccid, and 3 indicated complete wilting of leaves and stems. Only plants with a turgidity rating of 0 were classified as "surviving."

^yMeans followed by different letters within the same sampling date are significantly different at P < 0.05.

Plant Growth Parameters for Grafted Pepper and Tomato: The analysis of plant growth parameters for grafted pepper and tomato grown in six different media revealed significant differences in plant height and root elongation (Table 4). Peat moss produced the tallest plants (10.4 cm) and the greatest root elongation (4.8 cm), significantly outperforming other treatments (P < 0.005, and P < 0.0003, respectively). The combination of peat moss and sand (1:1) also supported relatively tall plants (9.4 cm) with moderate root elongation (3.8 cm). These findings are consistent with those reported in previous studies (Alam et al., 2020; Erdal & Aktas, 2025; Lohani et al., 2023). In contrast, soil, either alone or mixed with sand, resulted in the shortest plants and the least root elongation. Soil and sand mixtures (1:1) had the lowest root elongation at 1.8 cm. The number of leaves per plant did not show significant variation across treatments (P = 0.54). Regarding crop type, tomato plants exhibited greater height (7.8 cm) compared to pepper plants (5.4 cm), with P-values < 0.0001, although no significant differences were observed in leaf count or root elongation between the two crops. No significant interactions were observed between the six-growth substrates evaluated and crop types in this experiment (P > 0.05).

Table:(4). Mean plant growth parameters for grafted pepper and tomato with six different growth media.

Treatment ^z	Plant Height (cm)	Number of leaves/plants	Root elongation (cm)
Peat moss	10.4 a ^y	3.2	4.8 a
Soil	4.6 c	2.5	2.5 c
Sand	4.7 c	2.8	2.7 c
Peat moss and Sand (1:1)	9.4 ab	3.3	3.8 b
Peat moss and Soil (1:1)	9.6 ab	2.9	3.6 bc
Soil and Sand (1:1).	4.4 c	2.8	1.8 d
<i>P</i> -value	0.005	0.54	0.0003
Crop			
Pepper	5.4 b	2.8	2.3
Tomato	7.8 a	3	2.4
<i>P</i> -value	< 0.0001	0.12	0.62

^zAll data were analyzed using analysis of variance (ANOVA) in JMP software (Version 11.0 for Windows; SAS Institute, Cary, NC). ^yMeans followed by different letters within the same sampling date are significantly different at P < 0.05.

This study highlights the substantial influence of growth substrate composition on the survival and development of grafted pepper (Capsicum annuum) and tomato (Solanum lycopersicum) plants. Peat moss, either utilized independently or in combination with sand, was identified as the most effective substrate, consistently yielding high survival rates (95%) and promoting optimal plant height and root elongation. These outcomes can be attributed to the inherent properties of peat moss, including its exceptional water retention capacity and aeration, which are essential for facilitating graft union formation and supporting overall plant vigor. (Oberpaur et al., 2010). The peat moss and sand mixture (1:1) also performed well, benefiting from both moisture retention and improved drainage. In contrast, soil-based media, whether used alone or mixed with sand, resulted in markedly lower survival rates, likely attributable to insufficient aeration, compaction, and suboptimal moisture regulation. This is supported by Gardner et al. (1999), who demonstrated that soil texture defined by the relative proportions of sand, silt, and clay has a significant influence on soil aeration and overall soil health. Tomato grafts consistently showed higher survival rates than pepper grafts, likely due to physiological differences such as greater tolerance to healing conditions or plant vigor, suggesting that tomatoes are more resilient or better suited to the healing environment. Peat moss produced the tallest plants and greatest root elongation, confirming its superiority as a growth medium. Significant differences in growth between peat moss-based and soil-based treatments highlight the importance of growth substrate composition. The peat moss and sand mix (1:1) also supported good growth, though sand slightly reduced peat moss's effects. Soil, especially when mixed with sand, led to the poorest growth and root elongation, likely due to its denser structure and reduced nutrient availability. While tomato plants showed greater height than pepper plants, there were no significant differences in leaf count or root elongation between the two crops. This suggests that despite tomatoes growing taller, the basic growth processes, including root elongation, were similar for both species under these conditions.

CONCLUSION

Overall, these findings underscore the importance of selecting appropriate growth substrate for graft healing and subsequent plant growth. Peat moss, either alone or in combination with sand, provided the most conducive environment for graft survival and growth, while soil-based treatments were largely inadequate. The significant crop type effect observed, particularly the superior performance of tomato grafts, provides further insight into species-specific responses to grafting and healing environments. Further research could explore the physiological mechanisms underlying these differences and evaluate the potential of alternative growth substrates or their combinations to enhance graft success in both crops.

ACKNOWLEDGMENT:We extend our gratitude to all who assisted in this study, especially the faculty members of the Horticulture Department at Omar Al-Mukhtar University, Al-Bayda, Libya, for their support and professional guidance.

DUALITY OF INTEREST: The authors declare that they have no duality of interest associated with this manuscript.

AUTHOR CONTRIBUTIONS: Fayrouz Buojaylah conceived and designed the study, supported by Fatma Mohamed, Alsunousi Masoud, and Ali Omar. All the authors in this manuscript contributed to plant grafting, data collection, data analysis, writing the manuscript and approval of the final manuscript version.

Al-Mukhtar Journal of Agricultural, Veterinary and Environmental Sciences 3 (1): 25-32, 2025

REFERENCES

Alam, M., Hussain, Z., Ullah, I., Samiullah, Ahmad, I., Asif, M., Shah, M. A., Shah, S. Q. A., & Khan, J. R. (2020). Effect of growing media on rooting response of tomato (Lycopersicum esculentum L.) stem cuttings. *Pure and Applied Biology*, 9(1), 884–896. https://doi.org/10.19045/bspab.2020.90093.

Bahadur, A. and Kumar, R. (2024). Grafting in Tomato for Improving Abiotic Stress Tolerance, Yield and Quality Traits. Vegetable Science 51(spl): 22-33.

Buojaylah, F., Castrejon, Y., & Wang, Z. (2014). Evaluating Trichoderma-containing Biofungicide and Grafting for Productivity and Plant Health of Triploid Seedless Watermelon in California's Commercial Production. *HortScience* 59(12):1709–1717. https://doi.org/10.21273/HORTSCI18048-24.

Dabirian, S., Inglis, D., & Miles, C. A. (2017). Grafting watermelon and using plastic mulch to control Verticillium wilt caused by Verticillium dahliae in Washington. *HortScience*, 52(3), 349–356. https://doi.org/10.21273/HORTSCI11403-16.

Davis, A. R., Perkins-Veazie, P., Sakata, Y., Lopez Galarza, S., Maroto, J. V., Lee, S. G., Huh, Y. C., Sun, Z., Miguel, A., King, S., Cohen, R., & Lee, J. M. (2008). Cucurbit grafting. *Critical Reviews in Plant Sciences*, 27(1), 50–74. https://doi.org/10.1080/07352680802053940.

Erdal, İ., Aktaş, H. (2025). Comparison of the Perlite, Leonardite, Vermicompost and Peat Moss and Their Combinations with Cocopeat as Tomato Growing Media. *J Soil Sci Plant Nutr*. https://doi.org/10.1007/s42729-025-02294-2.

Fernandez-Garcia, N., Carvajal, M., & Olmos, E. (2004). Graft union formation in tomato plants: Peroxidase and catalase involvement. *Annals of Botany*, 93(1), 53–60. 10.1093/aob/mch014.

Gardner, C. M. K., Laryea, K. B., & Unger, P. W. (1999). Soil physical constraints to plant growth and crop production. Food and Agriculture Organization of the United Nations.

Gruda, N. (2019). Increasing sustainability of growing media constituents and stand-alone substrates in soilless culture systems. *Agronomy*, 9(6), 298. https://doi.org/10.3390/agronomy9060298.

Johnson, S., & Miles, C. (2011). Effect of healing chamber design on survival of grafted eggplant, tomato, and watermelon. *HortTechnology*, 21(6), 752–758. https://doi.org/10.21273/HORTTECH.21.6.752.

Kawaguchi, K., Notaguchi, M., Okayasu, K., Sawai, Y., Kojima, M., Takebayashi, Y., Shiratake, K. (2024). Plant hormone profiling of scion and rootstock incision sites and intra- and inter-family graft junctions in Nicotiana benthamiana. *Plant Signaling & Behavior*, 19(1). https://doi.org/10.1080/15592324.2024.2331358.

Lee, J. M., Kubota, C., Tsao, S. J., Bie, Z., Echevarria, P. H., Morra, L., & Oda, M. (2010). Current status of vegetable grafting: Diffusion, grafting techniques, automation. *Scientia Horticulturae*, 127(1), 93–105. https://doi.org/10.1016/j.scienta.2010.08.003.

Lohani, S., Adhikari, S., Aryal, L. N., Bhusal, Y., Kadariya, M., & Aryal, S. (2023). Evaluation of Different Growing Media for Tomato and Sweet Pepper Seedlings Raising in Pokhara, Nepal.

Al-Mukhtar Journal of Agricultural, Veterinary and Environmental Sciences 3 (1): 25-32, 2025 Doi:

Journal of Agriculture and Environment, 24(01), 109–118. https://doi.org/10.3126/aej.v24i01.58176.

Nagila, A., Crosby, K. M., & Leskovar, D. I. (2025). Evaluating suitable rootstocks for grafting in organic pepper system. *HortScience*, 60(1), 5–16. https://doi.org/10.21273/HORTSCI18132-24.

Oberpaur, C., Puebla, V., Vaccarezza, F., & Arévalo, M. E. (2010). Preliminary substrate mixtures including peat moss (Sphagnum magellanicum) for vegetable crop nurseries. Ciencia e Investigación Agraria, 37(1), 123-132. Retrieved from http://www.rcia.uc.cl.

Reshma, A., Syed, S., Reddy, P. S., Priya, T. B., Madhuri, K. V. N., & Padmaja, V. V. (2024). Effect of grafting on growth, yield, quality and nutrient uptake in tomato. International Journal of Agriculture, Biology & Research (IJABR), 8(10), 361–367. https://doi.org/10.33545/26174693.2024.v8.i10e.2519.

Rivard, C. L., & Louws, F. J. (2006). Grafting for disease resistance in heirloom tomatoes. *North Carolina State University Cooperative Extension Service*. https://content.ces.ncsu.edu/grafting-for-disease-resistance-in-heirloom-tomatoes.

Sakata, Y., Ohara, T., & Sugiyama, M. (2007). The history and present state of grafting in Japan. *Acta Horticulturae*, 731, 159–170. https://doi.org/10.17660/ActaHortic.2007.731.23.

Wimer, J., Inglis, D., & Miles, C. (2015). Evaluating grafted watermelon for Verticillium wilt severity, yield, and fruit quality in Washington State. *HortScience*, 50(10), 1332–1337. https://doi.org/10.21273/HORTSCI.50.9.1332. Research Article 6 Open Access

Utilization of tractors and implements owned by individual farmers in the Gezira Scheme, Sudan

Lotfie A. Yousif 1* Shaker Babiker Ahmed 2 and Mohammed A. Abd Elmowla 3

- ¹ lotfie.yousif@yahoo.com https://orcid.org/0009-0000-1594-431X
- ² DepartmenPt of Agricultural Engineering, Faculty of Agriculture, Omdurman Islamic University, Sudan shaker@oiu.edu.sd; https://orcid.org/0000-0001-6112-5796.
- ³ Dept. of Agricultural Engineering, Faculty of Agriculture, Nile Valley University, Atbara, Sudan, https://orcid.org/0000-0003-4315-3173.
- *Corresponding author: mohmedabdo@nilevalley.edu.sd
 Agricultural Engineering Research Program, ARCPP Medani, Sudan

Received: 07.01.2025 Accepted: 30.04.2025 Publish online:

.....

Abstract: Gezira Scheme, in Sudan, is the largest one in the region. Recently, many individual farmers owned tractors and implements. This study aimed to analyze the use of those tractors and implements. Data were collected through a questionnaire and analyzed statistically. 154 tractors (75 to 80 hp.) accompanied with 678 implements were studied. Massey Ferguson represented 58.4 % of the tractors. Tractors' average age was six years. Land preparation, seeding, spraying, threshing and post harvesting implements represented 86.7%, 4.1%, 2.1%, 6.0% and 1.1%, from the total number of implements, respectively. Implements average age was between two and six years. Sprayer obtained the highest work rate (9 fed/h). Disk plow consumed the greatest fuel (6.6 l/fed) and the highest annual working hours (310 hours). The ridger covered the highest annual area (365 fed). Tractor annual working hours was between 774 and 535 hours. Several combinations of implements accompanying a tractor were found. Combinations three and four implements were the most frequent, they repeated 36 and 35 times, respectively. The combination of disk plow, ridger and ditcher were repeated ten times; while the combination of disk plow, leveler, ridger and ditcher was repeated eight times. The information obtained helps determine which implements are necessary for the scheme. Economic feasibility of tractors and implements owned by individual farmers in the Gezira Scheme is suggested.

Keywords: Tractor, implements, performance, annual use, Gezira Rrrigated Scheme, Sudan.

استخدام الجرارات والمعدات الزراعية المملوكة للمزارعين الأفراد في مشروع الجزيرة، السودان المستخلص: يُعد مشروع الجزيرة في السودان أكبر مشروع زراعي في المنطقة. حيث إنه في الآونة الأخيرة، امتلك العديد من المزارعين جرارات ومعدات زراعية، لذا هدفت هذه الدراسة إلى تحليل استخدام هذه الجرارات والمعدات، جُمعت البيانات من خلال استبيان، وخللت إحصائيًا. دُرست 154 جرارًا (بقوة تتراوح بين 75 و 80 حصانًا) مُرفقة بـ 678 أداة. مثّلت جرارات ماسى فيرجسون 58.4% من الجرارات. بلغ متوسط عمر الجرارات ست سنوات، ومثلت معدات تجهيز الأرض، والبذر، والرش، والدرس، وأدوات ما بعد الحصاد، 86.7%، و 4.1%، و 2.1%، و 6%، و 1.1% من إجمالي عدد المعدات، على التوالي. وتراوح متوسط عمر المعدات بين سنتين وست سنوات، وحققت آلة الرش أعلى معدل إنتاج (9 فدان/ساعة). استهلكت المحراثات القرصية أكبر كمية من الوقود (6.6 لتر /فدان) وأعلى ساعات عمل سنوية (310 ساعة). أما المحراث ذو الحافة، فقد غطى أكبر مساحة سنوية (365 فدانً)، كما تراوحت ساعات العمل السنوية للجرار بين 774 و 535 ساعة، ووُجدت عدة مجموعات من الأدوات المصاحبة للجرار، وكانت المجموعات الثلاث والأربع الأكثر شيوعًا، حيث تكررت 36 و 35 مرة على التوالي، وقد تكررت مجموعة المحراث القرصي، والرافعة، والحفارة عشر مرات؛ بينما تكررت مجموعة المحراث القرصي، والتسوية، والرافعة، والحفارة ثماني مرات، تساعد المعلومات المُقدمة في تحديد الأدوات اللازمة للمشروع، ويُقترح الجدوى الاقتصادية للجرارات والأدوات المملوكة للمزارعين الأفراد في مشروع الجزيرة.

الكلمات المفتاحية: الجرارات، الأدوات، الأداء، الاستخدام السنوي، مشروع الجزيرة المروي، السودان.

The Author(s) 2025. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium ,provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

INTRODUCTION

Farm mechanization, which is a part of agricultural engineering, refers to the use of tractor and implements for carrying out farm operations. The importance, advantages, and benefits of using farm machinery are numerous and have been well documented by several authors (Ampratwun, et al., 2004; FAO and UNIDO, 2008; Abdel Rahman, et al., 2022). However, farm mechanization will continue to play an important role in agricultural production and the demand for agricultural machinery is expected to increase (Omofunmi and Olaniyan, 2018). Gezira Scheme represents 47% of the total irrigated area and 10% of the total area under crop production in the Sudan (Abdalla, et al., 2021). In the past, the Agricultural Engineering Department (AED), which affiliates to Sudan Gezira Board (SGB), owned a fleet of tractors and machinery. The AED was responsible for carrying out the mechanized operations for cotton and wheat crops. Besides, the AED, there were also some contributors in achieving the mechanized operations in the scheme, such as private sector companies, farmers' cooperatives, and some individual farmers who owned tractors and implements. However, Eldaw (2004) reported that there was dissatisfaction among farmers about the quality of work performed by the AED in the Gezira Scheme and the level of fees and costs charged. However, after the implementation of the Gezira Scheme's law for 2005, which regrettably proclaimed the dissolution of the AED and sale all of its machinery; and in order to compensate and offsetting the absence of the AED, some farmers began to purchase tractors and machinery to perform the mechanized operations in the scheme. The farmers in the Gezira Scheme have great and long experience in managing their farms and cultivating the grown crops. This experience is necessary for improving productivity. Ainembabazi and Mugisha0 (2014) suggested that farming experience is useful in early stages of adoption of a given technology. They mentioned that gradual advances in technology development and continuous retraining of farmers are essential for sustainable adoption of agricultural technologies. The use of tractors and implements is one of these technologies.

Owning and using of tractor and implements by smallholder farmers is usually beyond their financial capacities, especially in developing countries. However, wherever this situation is existed, it requires guarantees for sustainability and profitability. Several authors, worldwide, have investigated the usage of tractors and implements in agricultural production by using different methods (Saglam and Akdemir, 2002; Ampratwun, et al., 2004; Nkakini and Etenero, 2019). The demand for tractor and implements vary from farm to another according to farm size, cropping pattern, weather conditions, type of agricultural operations... etc. Therefore, the study of the pattern of the tractor and implements utilization may be useful in many ways. It will not only provide information about different type of operations being carried out but also gives details of their utilization during the year. Moreover, it imparts knowledge about their size and age, work rate (field capacity), fuel consumption and annual use (hours and area). The generated information may be utilized in scheduling and planning of agricultural operations. Moreover, one can determine quantities of the necessary inputs such as fuel quantity, grease and spare parts to run them. In addition, to organize the preventive maintenances program during the lean periods of demand. Unfortunately, there is inadequate knowledge on the utilization of tractors and accompanied implements owned by smallholder farmers in the Gezira Scheme. Therefore, there is a need to carryout field survey to appraisal these tractors and implements in accordance with their present conditions, types of mechanized operations and performance, besides the fixture to assess the need for introducing new types and new ones. The main objective of this study was to analyze the usage of tractor and implements owned and managed by individual farmers in the Gezira Scheme, Sudan. The specific objectives were to: Identify the available tractor makes and implements types and to determine their presence percentage and age. Determine the number of implements associated to each tractor. Identify the most popular combinations of implements accompanying a tractor and Analyze their performance in terms of work rate, fuel consumption and annual usage (area and hours).

MATERIALS AND METHODS

Study area : The Gezira Scheme is located between the Blue Nile and White Nile Rivers to the south of Khartoum. It is one of the largest irrigated scheme in the region, comprising about 2.2 million feddans (one feddan = 0.42 hectare). The scheme is located in semi-arid region. Where rainfall is ranged between 150 and 300 mm/year, which occurs during July to September. The soil is classified as Vertisols, which has high clay content (50-60%). The soil is characterized by cracks when dry and become hard to work. Each farmer has, on the average, 20 feddans, which is divided into 5 equal farms. Farmers are responsible for managing their farms including irrigation. Irrigation system consists of two main canals running from Sennar Dam. The main canals deliver the water to major canals and then to the minor canals. The minor canals convey water to farms canals, locally called Abu Ishreen and then to Abu Sitta (Elshaikh, *et al.*, 2018). The existence of this intensive network of irrigation system canals may impede the use of big and heavy machinery.

Crops and farming system: Nowadays, crop diversity is a common characteristic in the Gezira Scheme. Seven field crops in addition to vegetable crops are currently grown. These crops are grown in summer and winter seasons. These crops include cotton, groundnut, sorghum, soybean and pigeon pea, as summer crop; besides wheat and chickpea as winter crops. Since its establishment, a lot of crop rotations were applied (Mahgoub, 2014). However, due to rapid increase in population and the need for more production, 80% of the total area is cultivated one-time a year by adopting five-course crop rotation, and the remaining 20% are left as fallow lands. The summer and winter cultivated crops make the use of tractors and implements almost during the year.

Data collection and analysis: The required data, for the purposes of this study, was collected during season 2022/2023. The targeted individuals were farmers who owned tractor and machinery, which works in the Gezira Scheme. A total of 154 respondents were directly interviewed through structured questionnaire. The questionnaire was fairly distributed throughout villages in the scheme. Simple random sampling technique was followed. The questionnaire included data such as tractor make and model, purchase price and current age. implement types (names), purchase price, current age. In addition, to work rate, fuel consumption and annual covered area were also included. Moreover, data related to variable cost and operation custom price was included. The collected data were prepared in excel worksheets for each implements type. Then the data was subjected to descriptive statistical analysis indicators, such as maximum, minimum, average and percentage in addition to standard deviation. Annual working hours of use for each implement was calculated by dividing the annual covered area by its work rate. However, the annual working hours of use for each tractor was calculated by the summing the annual working hours of use for each implement associated with that tractor. Appendix A shows implements type, description and utilization that available in the Gezira Scheme.

RESULTS and DISCUSSION

In this study 154 tractors, of medium power size (75 to 80 hp.), were statistically analyzed. The results revealed that there were more than six makes of tractor owned by individual farmers in the Gezira Scheme (Table 1). These makes included Massey Ferguson, Tafe, John Deere, Hatat, New Holland and others. These tractor makes varied in frequency, presence and age. The results showed that the Massey Ferguson tractor is the most popular make as it recorded the highest frequency (90) and presence (58.4%). Dahab and Saeed (2022) reported similar result, they mentioned that Massey Ferguson represented 60% of the total number of tractors available in Sudan's

market during the period from 2000 to 2010. On the other hand, the age of Massey Ferguson tractors was ranged between one and 28 years with an overall average of 7 years. The frequency and presence of Tafe and John Deere tractor makes were 36, 12, 23.4% and 7.8%, respectively. It is evidence that Massey Ferguson tractor was introduced early whereas John Deere tractor recently introduced. The minimum values of age for all tractors' makes was one year, showing that tractor owners are purchasing tractors and tractor dealers providing and availing them in the market. The maximum age of for all tractors makes was ranged between 5 and 28 years. The overall age of the tractors was six years and the standard deviation was about five years this indicates that the age of the majority of the tractors was between one year and eleven years. The established information helps in scheduling replacement or overhauling programs needed, especially for oldest tractors. However, for planning purposes, a comprehensive enumeration of tractors in the Gezira Scheme is needed to explore their sufficiency and geographical distribution.

Table:(1). Tractor's make, frequency, percentage of presentence and ages in the Gezira Scheme

Tractor Make	Frequency	%		Curre	nt age (years)	
			Max	Min	Average	STD
Massey Ferguson	90	58.4	28	1	7	6.0
Tafe	36	23.4	12	1	4	2.7
John Deere	12	7.8	6	1	2	1.6
Hatat	6	3.9	7	1	4	2.1
Newholland	5	3.2	17	1	5	6.8
Others	5	3.2	5	1	3	1.7

The results showed that the above studied tractors were associated with 678 of implements, including 14 different types (Table 2). These implements types were classified in to five major groups according to the operations they performed. Nine types of these implements were allotted for land preparation operations. Two types of machines for planting operation (row-planter and seed drill). One implement for each of weed control (sprayer), harvesting (thresher) and post harvesting (cotton stalks up rooter) operations. Generally, and referred to the total number of implements and their groups, land preparation, planting, weed control, harvesting and post harvesting implements represented about 86.7%, 4.1%, 2.1%, 6.0% and 1.1%, respectively. These results indicated that the bulk of the available implements in the scheme were for land preparation operation. This in agreement with the findings of Awadalla, *et al.*, (2019). They mentioned that land preparation is fully mechanized operation in the Gezira Scheme, whereas other operations were of lower level of mechanization. The existence of higher number of land preparation implements indicate that there are many options for land preparation operation. This may due to diversity of crops grown farm specific conditions.

On the other hand, and referring to the total number of tractors studied (154), ridger implement recorded the highest frequency (124), this is because it is used either for ridging or for split-ridging or for re-ridging or for green ridging. The disk plow is ranked as a second famous tillage implement after ridger as its frequency was 117 and ditcher implement is ranked third one as it recorded 105 frequencies. Their respective accompanying presence was 82%, 76.5% and 69%, respectively (Table 2).

In addition, the results showed that row planter recorded the least frequency (4) among the other implements. This inferred that, although 60% of the total area is allotted to row crops, farmers still depend on hand sowing to seed their crops. This situation does not encourage the tractors' owners to possess this type of implements. The unwillingness of farmers to use seeding implement needs further investigation. In this regard, it is worth to mention that the use of row planter for sowing crops will save much effort, time and expense rather than manual sowing. We expected that if the performance of row planter is demonstrated in farms' farms for many crops they will believe and pursue to adopt it. The results showed that, it seems that there is a good number

of seed drills (24) (Table 2) as this implement is mainly used for sowing wheat crop in winter seasons in about 20% of total cropped area. The results showed that the recorded number of sprayers was 14 representing 9.2% of total number of tractors. The sprayer began to spread among farmers in recent years. However, no inter row cultivator was recorded in this study. These mean that farmers are greatly depend on hand labor for performing weed control. Availing such implement, as possible alternative for weed control, may decontrol the dependence on hand labor during peak periods and to avoid hazards from using chemicals.

Thresher is the only implement recorded for threshing grain crops. In the present study, the 41 grain threshers were recorded representing 27% of presence of implements those accompanying tractors (Table 2). This mean that the Scheme is lacking to harvesting implements for crops other than grain crops, such as peanut and cotton. Cotton-stalks up rooter is the only implement registered for post-harvest operation in this study. Its frequency and presence was 7 and 4.6%, respectively. This result suggests the introduction of other post-harvest implements like mower, rake and balers in the Gezira Scheme.

Table:(2). Type, frequency and percentage of presentence of the surveyed implements accompanying tractors in the

	Gezira Scheme	
Operations/ Implements and their types	Frequency	%
Land preparation	588	86.7
Disk plow	117	76.5
Chisel plow	52	34.0
Moldboard plow	34	22.2
Disk harrow	38	25.0
Leveler	57	37.0
Ridger	124	82.0
Ditcher-row	56	37.0
Ditcher	105	69.0
Bond maker	5	3.0
Planting	28	4.1
Row-planter	4	3.0
Seed drill	24	15.8
Weed control	14	2.1
Sprayer	14	9.2
Harvesting	41	6.0
Thresher	41	27.0
Post harvest	7	1.1
Cotton Up rooter	7	4.6

Table 3 shows the statistical analysis of age for the studied implements included average, maximum, minimum and standard deviation. Generally, the average age was ranged between two and six years, indicating that these implements were in the middle age of lifespan. The minimum age was ranged between one to two years indicating that tractor owners are still purchasing these implements and the dealers avail them in the market. This reflects that the farmers accept these machines to execute farm jobs to alleviate the problem of labor shortage. The maximum age was ranged between five and 21 years. However, the age of implement may increase total operation cost, through its effect on repair and maintenance costs (Dahab, *et al.*, 2021).

Table 4 shows the average, maximum and minimum work rate of the surveyed implements. The results showed that there were big variations between the implements in work rate. These variations may due to their function nature, working width and working conditions. Implement performance, in term of covered area per unit time, is one attractive factors to the investors.

Table:(3). Age (yrs.) of the surveyed implements accompanying tractors in the Gezira Scheme

Implement	Average	Max	Min	STD	
Disk plow	5	20	1	4.23	
Chisel plow	3	15	1	2.82	
Moldboard	2	7	1	1.48	
Disk harrow	3	18	1	3.06	
Leveler	6	20	1	3.98	
Ridger	5	21	1	4.5	
Ditcher-row	3	15	1	2.53	
Ditcher	5	20	1	4.61	
Bond maker	5	7	2	2.64	
Row-planter	6	12	1	5.44	
Seed drill	4	22	1	4.89	
Sprayer	2	5	1	1.28	
Thresher	3	11	1	2.58	
Cotton Up rooter	6	15	1	4.99	

Sprayer has the highest work rate (9 fed/h) among implements, followed by bond maker (8 fed/h). Whereas, disk plow and ditcher-row obtained the lowest work rate, 0.75 and 0.6 fed/h, respectively. The obtained values of work rate for the various implements are reasonable considering their working width and working conditions. Knowing the work rate of implements will help in determining the total number of implement to accomplish the specific tasks in specified period. The obtained results are in line with that reported by Abdalla *et al.* (2021). They found that chisel plow was superior in work rate over disk plow and moldboard plow. Moreover, the values of work rate obtained in this study were in the range used by Mohamed, *et al.*, (2017) for some implements in Elsuki Irrigated Scheme, Sudan. They reported that the work rate for chisel plow, disk harrow, ridger, row-planter and sprayer was 2.5, 3.0, 4.0, 3.0 and 10.8 fed/h, respectively.On the other hand, the statistical analysis showed that the standard deviations were close to the average values of the work rate of the studied implements, indicating the obtained average values of work rate were homogeneous for each specific implement.

Table: (4). Work rate (fed/h) of the surveyed implement accompanying tractors in the Gezira Scheme

Implement	Average	Max	Min	STD
Disk plow	0.75	1	0.5	0.24
Chisel plow	1.9	1	0.5	0.24
Moldboard	1	1.25	0.5	0.0
Disk harrow	3.4	4	3	0.74
Leveler	4	8	1	1.46
Ridger	4.5	5	3	0.65
Ditcher-row	0.6	1.0	0.5	0.18
Ditcher	5.4	10	2	1.32
Bond maker	8	10	6	3.5
Row-planter	5	5	5	2.24
Seed drill	4.1	6	3	0.98
Sprayer	9	24	5	5.13
Thresher	2	6	0.5	1.36
Cotton Up rooter	2.3	4	2	1.07

1 feddan = 0.42 ha

Table 5 shows the amount of fuel consumption by the surveyed tractor when attached to each implement. The results revealed that disk plow consumed the greatest amount of fuel (6.6 l/fed) followed by ditcher for bed (5.9 l/fed), moldboard plow (5.3 l/fed) and thresher (4.1 l/fed). On the other hand, sprayer consumed the lowest fuel (0.43 l/fed). The other implements consumed fuel ranged between 1.4 and 3.6 l/fed. Fuel price is increasing everywhere, and any deficiency in fuel affects the completion the mechanized farm operations and this in turn affects crop productivity. Therefore, the obtained results of fuel consumption may help in determining the total amount of

Al-Mukhtar Journal of Agricultural, Veterinary and Environmental Sciences 3 (1): 33-44, 2025

fuel required for the whole cropped area each season. However, Abdalla, et al. (2021) reported that moldboard plow consumed higher fuel compared to chisel plow and disk plow.

Figure 1 illustrates the number of implements associated with a tractor and their replications appeared in the surveyed sample. Irrespective to the implement type, the obtained results showed there were several combinations (1 to 10) of implements that accompanying a tractor. For example, seven different implements accompanying a tractor were appeared nine times in the surveyed sample.

Table:(5). Fuel consumption (1/fed) of the surveyed implement accompanied tractors in the Gezira Scheme

Implement	Average	Max	Min	STD	
Disk plow	6.6	7.88	4.5	0.74	
Chisel plow	3.6	4	3	0.6	
Moldboard	5.2	6.75	4.5	1.21	
Disk harrow	2.5	2.5	2.5	0.41	
Leveler	2.13	2.83	1.13	0.44	
Ridger	2.5	3.3	2.25	0.44	
Ditcher-row	5.9	9	4.5	1.33	
Ditcher	1.5	2.3	0.6	0.54	
Bond maker	1.4	2.25	1.125	0.71	
Row-planter	2.4	2.5	2.25	1.06	
Seed drill	2.25	2.25	2.25	0.45	
Sprayer	0.43	0.43	0.43	0.11	
Thresher	4.1	6.75	2.25	1.36	
Cotton Up rooter	3.3	4.25	2.25	1.56	

1 feddan = 0.42 ha

Three and four types of implements that accompanying a tractor were the most frequent ones, they were repeated 36 and 35 times, respectively. Followed by five and six implements that work with a tractor which were repeated 28 and 15 times, respectively. Moreover, the results showed that one, eight, nine and ten implements associated with a tractor were repeated less than six times (Fig.1). These variations in the number of implements that worked with a tractor reflect and confirmed the random distribution of the questionnaire among the tractors' owner. The number of implements that accompanying a tractor in any region is governed by many factors. These factors include fanatical capacity of tractor owners, type of grown crops and their required management practices in addition to availability of implements and allotted area around each tractor.

Figure 2 demonstrates in details the most frequent implements type (names) in the numbers of implements accompanying a tractor. For example, in six implements that accompanying a tractor, disk plow, leveler, ridger, ditcher for beds, ditcher and thresher implements were repeated four times (Fig.2). The results showed that the combination of disk plow, ridger and ditcher were repeated ten times in the surveyed sample. This confirmed the above findings (Table 2) as these implements are the most popular ones in the Gezira Scheme. In addition, it was found that the combination of disk plow, leveler, ridger and ditcher was repeated eight times in the surveyed sample. The combination of two implements (disk plow and ridger) as well the combination of (disk plow, leveler, and ridger, ditcher for bed and ditcher) were repeated five times in the surveyed sample. There is need to study the economic feasibility of these implements combinations to determine the most profitable combination.

Al-Mukhtar Journal of Agricultural, Veterinary and Environmental Sciences 3 (1): 33-44, 2025 Doi:

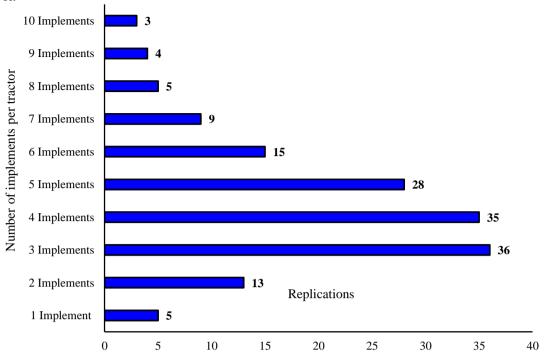


Figure: (1). Number of implements that accumpany a tractor and its replication in the samples surveyed in the Gezira scheme

Figure 3 illustrates the average annual use of the surveyed implements in terms of annual working hours and covered area (feddans). The results showed that, as expected, there was wide variations between the implements in the annual use. The highest annual working hours (310 hours) were achieved by disk plow and row planter obtained the lowest (14 hours). This confirmed that the disk plow is widely used and the use of row planter is very limited. Although, at certain cropped area, the annual hours of use of a given implement are inversely proportional to its work rate, but the disk plow resulted in high annual hours of compared to row planter. This suggests more investigation is needed on why farmers do not prefer to use row planter to seed their crops.

On the other hand, the results of annual covered area by these implements also showed wide variations. Row planter again resulted in the lowest annual area (68 feddans). This indicates that the use of row-planter is limited in the Gezira Scheme. The ridger resulted in the highest annual area (365 feddans). This is real as the majority of the crops in the Gezira Scheme are grown in ridge-furrow system to facilitate irrigation process. These results indicate that the ridger is the prevailing implement in the Gezira Scheme. The annual use of the surveyed tractor makes is illustrated in Figure. 4. There was variation between tractor makes in annual hours of use. The highest hour of use (774 hrs) was obtained by Tafe make and the lowest (535 hrs) was obtained by New Holland make. The result showed that the overall average annual hour of use was 620 hrs. Nkakini and Etenero (2019) reported a similar result, they found that the average annual use of private owned tractors was 572.6 hrs in Nigeria. The obtained annual hours of use did not meet the standards of 1000 hrs per tractor annually. This few hours of use by tractor in the Gezira Scheme offer the opportunity to introduce and use other types of implements.

The furnished information by this study can help in deciding which implements are necessary to be introduced in the Scheme to enhance crop production through improving operations timeliness.

DP= Disk plow, L=Leveler, RD= Ridger, D= Ditcher, DB= Ditcher for beds, THR= Thresher

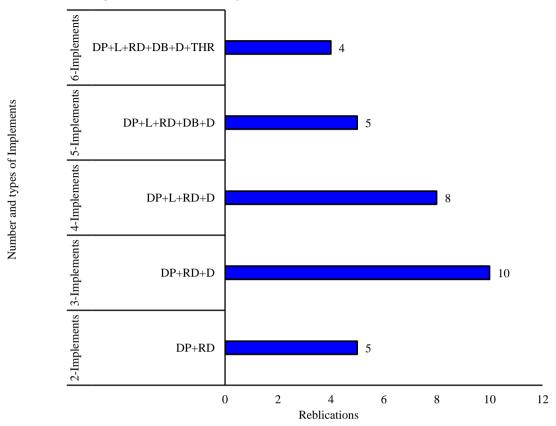


Figure: (2). Replications of type and number of implements that accumpany a tractor in the Gezira scheme

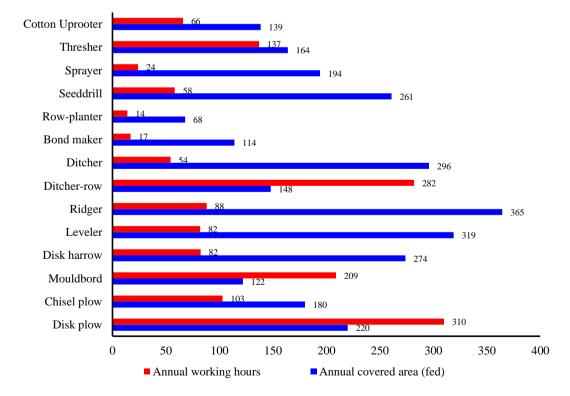


Figure: (3). Annual use (hours and area) of the implement surveyed in the Gezira scheme

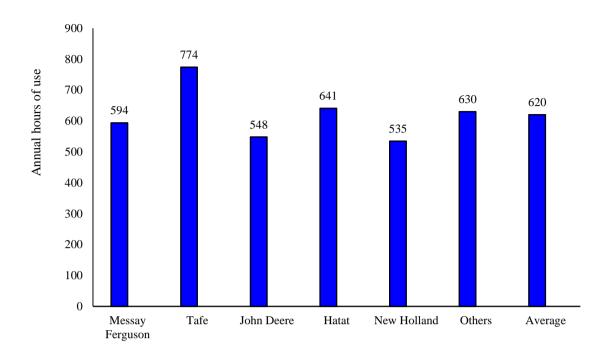


Figure: (4). Average annual hours of use for the surveyed tractor makes in the Gezira scheme

CONCLUSION

154 tractors of different makes (75 to 80 hp.) and 678 implements type associated with these tractors owned by individual farmers in the Gezira Scheme were studied. These tractors were in mid aged, the overall average age was six years. Referred to the total number of implements, land preparation, planting, spraying, threshing and post harvesting implements represented 86.7%, 4.1%, 2.1%, 6.0% and 1.1%, respectively. The age of these implements ranged between two and six years. There were big variations between the implements in work rate. Sprayer obtained the highest work rate (9 fed/h), while the ditcher-row obtained the lowest (0.6 fed/h). Disk plow consumed the greatest fuel (6.6 l/fed) and the sprayer consumed the lowest (0.43 l/fed). There were several combinations of implements that accompanying a tractor. Three and four types of implements were the most frequent ones, they were repeated 36 and 35 times, respectively. The combination of the disk plow, ridger and ditcher was repeated ten times, and the combination of disk plow, leveler, ridger and ditcher was repeated eight times. The disk plow achieved the highest annual working hours (310 hrs) and the row planter obtained lowest (14 hrs). The ridger resulted in the highest annual covered area (365 fed) and the row planter resulted in the lowest one (68 fed). Tractor annual working hours were ranged between 774 hrs obtained by Tafe and 535 hrs obtained by New Holland. The overall average annual use of tractor was 620 hrs. The furnished information can help in deciding which implements are necessary to be introduced in the Scheme to enhance crop production through improving operations timeliness.

REFERENCES

Abdalla, O. A., Dahab, M. H., Mudawi, A. M. and Babikir, E. S. N. (2021). Effect of tillage implement type and depth of ploughing on field performance parameters in Vertisol clay soil Gezira of Scheme (Sudan). *Journal of scientific and engineering research*, 8(1): 1-7.

Al-Mukhtar Journal of Agricultural, Veterinary and Environmental Sciences 3 (1): 33-44, 2025

Abdel Rahman, A. M., Abdalla, S. A., Elfadil, A. D. (2022). Farmers adoption of agricultural mechanization in rainfed sector, Gedarif State, Sudan, *Middle East Journal of Agricultural Research*, 11(2): 556 – 562.

Ainembabazi, J. H., and Mugisha, J. (2014). The Role of Farming Experience on the Adoption of Agricultural Technologies: Evidence from Smallholder Farmers in Uganda, *The Journal of Development Studies*, 50(5): 666–679, http://dx.doi.org/10.1080/00220388.2013.874556

Ampratwun, D., Dorvlo, A., and Opara, L. (2004). Usage of tractors and field machinery in agriculture in Oman, *journal of scientific research and development*, 5:1-9.

Awadalla, A. M. E., Sukwon, K., Taek-Ryoun, K., and Haider, S. A. (2019). Agricultural mechanization status for some crops in irrigated sector in River Nile State, Sudan, Journal of agricultural Science, 11(13): 127 – 133.

Dahab, M. H. and Saeed, A. B. (2022). Agricultural Mechanization in Sudan, The Development Over Years. Book in Arabic, Department of Agricultural Engineering, Faculty of Agriculture, University of Khartoum, Sudan.

Dahab, M. H., Gafar, M. A., Abdul Rahman, AB. M. (2021). Repairs and maintenance cost estimation for two power sizes of agricultural tractors as affected by hours of use and age in years: A case study, Dongola area, Sudan, Journal of engineering research and reports, 20(10): 113 – 121.

Eldaw, A. M. (2004). The Gezira Scheme: prospective for sustainable development, German Development Institute, report and working paper 2/2004.

Elshaikh, A. E., Yang, S., Jiao, X., and Elbashier, M. M. (2018). Impacts of legal and institutional changes on irrigation management performance: A case of the Gezira irrigation Scheme, Sudan, water, 10 (1579): 1-14.

FAO (Food and Agriculture Organization for the United Nations) UNIDO (United Nations Industrial Development Organization). (2008). Agricultural Mechanization in Africa...Time for action. Planning investment for enhancing Agricultural productivity, Report of an expert group meeting, Vienna, Austria.

Mahgoub, F. (2014). Current status of agriculture and future changes in Sudan, Nordic Africa Institute. Available at: http://nail.diva-ortal.org, Viewed at 5 May 2024.

Mohamed, M. A., Khiery, A. N. O. Rahama, A. E., and Alameen, A. A. (2017). Optimization model for machinery selection of multi-crops farms in Elsuki Agricultural Scheme, Turkish journal of agriculture - food science and technology, 5(7): 739 – 744.

Nkakini, S. O. and Etenero, F. O. (2019). Agricultural tractor and machinery performance and serviceability in Delta State, Nigeria. *Journal of engineering and technology research*, 11(5): 47 – 57.

Omofunmi, O. E. and Olaniyan, A. M. (2018). Present status and future prospects of farm mechanization and agricultural machinery industry in Nigeria. AMA, 49(2): 13-19.

Saglam, C., and Akdemir, B. (2002). Annual usage of tractors in North-West Turkey, Biosystem engineering, 1-6.

Appendix Implement types, description and utilization

Implement types	Description	Utilization
Disk plow	3 - bottoms, rear mounted, 0.8 to 1.0 m	Primary tillage
Chisel plow	5 to 7 shanks, rear mounted,	Primary tillage
Moldboard plow	4-units, rear mounted	Primary tillage
Disk harrow	18 disks arranged in 2 gangs, rear mounted	Secondary tillage
Scraper	One unit, rear mounted, 1.5 m	Leveling the farms
Ridger	4-units, rear mounted, 3.2 m width.	Constructing ridges and furrows spaced at 0.8 m.
Ditcher-row	Single unit, rear mounted, less than 1 m width	Constructing ditches and beds, deeper furrows than
		ridges, spaced
Ditcher	Single unit, rear mounted, 1 m width	Constructing Abu VI, a water channel in a farm
Bond maker	Single unit, rear mounted, 0.8 to 0.9 m width	Constructing <i>tangents and gradual</i> inside farms perpendicular to Abu VI to control irrigation water
Row-planter	4 - units, rear mounted, 3.2 m width	Seeding crops
Seed drill	Rear mounted or towed, 2.5 to 3.5 m width, with or	Broadcasting and covering wheat seeds on flat
	without fertilizer box	soils.
Sprayer	Rear mounted, 400 to 600 liters capacity, 10 to 14 m	Herbicides application
	width	
Thresher	Rear towed on two wheels, different sieves size	Threshing grain crops
Cotton up rooter	Rear mounted, two cutting plates, 1.6 m width	Cutting or uprooting standing stalks

Research Article 6 Open Access

العوامل المؤثرة في تبني مزارعى الزيتون لبرنامج المكافحة المتكاملة بمحافظة حمص بالجمهورية العربية السورية ختام ادربس 1 و فادى عباس 2*

1 ختـــام ادريـــس

Khetamedrees83@yahoo.com

fadiab77@gmail.com

دائرة الدراسات الاقتصادية والاجتماعية، مركز بحوث حمص، الهيئة العامة للبحوث العليمة الزراعية دمشق، سورية.

² Fadi Abbas fadiabyy@gmail.com General Commission for Scientific Agricultural Research, Damascus, Syria

*Corresponding author: :Khetam Adrees

Khetamedrees83@yahoo.com.

¹ Economic and Social Studies Department, Agriculture Research Center Homs, General Commission for Scientific and Agricultural Research, Damascus, Syria

Received: 29.07. 2024

Accepted: 30.04.2025

Publish online:

المستخلص: هدف البحث إلى دراسة مستوى معرفة وتبني مزارعي الزيتون ببرنامج الإدارة المتكاملة للآفات، وتأثير العوامل المؤثرة في تبنيهم قرار استخدام هذه التقنية، استخدم في تحليل البيانات أساليب الإحصاء الوصفية والتحليلية مثل التكرارات والنسب المئوية والمتوسط الحسابي، والانحراف المعياري والانحدار المنطقي الثنائي، كما أوضحت النتائج إن حوالي (72.55) %من المزارعين عينة البحث ذو معرفة محدودة، بينما حوالي (16.18) % مستوى معارفهم متوسطة، والنسبة الباقية وهي (11.27) %فقط ذو معرفة جيدة ، كما بلغت نسبة المبحوثين الذين يتبنون هذا التقنية (21.9) شقط، فضلاً عما سبق تبين وجود علاقة ارتباط معنوية عكسية بين التبني كمتغير تابع وكل من نسبة العمر والمساحة المزروعة بالزيتون، وعلاقة ارتباط معنوية طردية بين هذا التابع وكل من المستوى التعليمي ومستوى المعرفة ببرنامج الإدارة المتكاملة للآفات، ، فإن الدراسة توصى من المستوى التعليمي ومستوى المعرفة ببرنامج الإدارة المتكاملة للآفات، ، فإن الدراسة توصى واستخدام كل الطرق والوسائل التي قد تؤثر في اكتسابهم القدرة على تطبيق برنامج الإدارة المتكاملة مكافحة الآفات، الزيتون، الكلمات المفتاحية: الانحدار المنطقي الثنائي، التبني، الإدارة المتكاملة لمكافحة الآفات، الزيتون، حمص.

Factors affecting olive farmers adoption of the integrated pest management program in Homs Governorate, Syria

Abstract: The research aimed to study the knowledge and adoption of olive farmers for the pest integrated management, and to study impact of the factors affecting the decision to use this technology For data analysis, frequencies, percentages, mean standard deviations, and binary logistic regression were used. The results also showed that (72.55)% of the farmers had weak knowledge, while about (16.18)% had the medium level of knowledge, and the remaining percentage (11.27)% only had good knowledge. The rate of farmers who adopt this technique was only (19.12)%.. Statistical analysis showed that there was an inverse significant relationship between each of independent variables (age and the area cultivated with olives) and the dependant variable adoption, but there was a positive, significant correlation between adoption of IPM and educational level and the level of knowledge of the integrated pest management program, The study recommends that assistance Farmers through participatory training for develop their positivity and motivation to make the adoption decision, and to use all methods and means that may affect their acquisition of the ability for adoption for pest integrated management.

Keywords: binary logistic regression, adoption, pest integrated management, olive, Homs.

المقدمة

يُعدّ القطاع الزراعي في سورية من أهم القطاعات الاقتصادية المكّونة لهيكل الاقتصاد الوطني، لاعتماده بشكل جوهري على استثمار معظم الموارد الاقتصادية، بما فيها الطبيعية، والبشرية، والرأسمالية، في تحقيق الإنتاج الزراعي، ومساهمته الفاعلة في تكوين الناتج المحلى والإجمالي للبلاد، (فلفلة، 2023)، ويلعب إنتاج الأشجار المثمرة دوراً كبيراً كأحد القطاعات الزراعية الهامة في الاقتصاد الوطني, فقد ازدادت المساحات الزراعية في القطر العربي السوري ورافقها أيضاً زبادة ملحوظة في كميات الإنتاج وقد تبوأ القطر مراكز متقدمة في هذا القطاع الحيوي وأمن إلى حد كبير حاجة السوق المحلية, بل أصبح لديه فائض لابأس به عن الاستهلاك المحلى وهو في صدد تصريف هذا الفائض عن طريق التوسع في التصنيع الغذائي وزيادة الصادرات (ريا و تلي ,2004). وتُعد منطقة حوض المتوسط الموطن الأصلى للزيتون .Rhizopoulou) Olea europaea L)، وتعتبر سورية أحد هذه المناطق الغنية بالأصول الوراثية للزيتون، فقد تم إحصاء أكثر من سبعين صنفاً مزروعاً في مختلف أرجاء سورية، ومن أشهر أصناف الزبتون نذكر: الزبتي والصوراني والدعيبلي والخضيري والقيسي حيث تشكل هذه الأصناف حوالي (90)% من مجمل أشجار الزبتون المزروعة في سورية (دواي وفضلية، 2010). كما تتعرض شجرة الزبتون للإصابة بالعديد من الآفات الحشربة، التي تسبب أضراراً اقتصادية كبيرة، تؤثر على سلامة المحصول، وتؤدى إلى تدهوره كماً ونوعاً ومن أهمها: ذبابة ثمار الزبتون Bactrocera oleae Gmelin، عثة الزبتون Prays olea Bern، بسيلا الزبتون Bactrocera oleae Gmelin، Loginova وحفار ساق التفاح .Leuzera pyrina L (نمور وشيخ خميس، 2005)، ونظراً لزبادة تكاليف الإنتاج وخاصة الناتجة عن مكافحة الآفات، مما يتطلب التوجيه نحو تطبيق الإدارة المتكاملة للآفات (IPM) كأسلوب يمكن الاعتماد عليه في مكافحة الآفات في ظل السياسات الزراعية الحالية والمتوقعة مستقبلاً، وتعتمد المكافحة المتكاملة للآفات في المقام الأول على إقناع المزارعين باستخدام أساليب بديله لمكافحة الآفات بالأعداء الطبيعية وزراعة الأصناف الجديدة المقاومة للأمراض والآفات واستغلال الموارد الطبيعية المتاحة واستغلال عوامل البيئة للقضاء على الآفات وكذلك التوعية بالوقت والميعاد المناسب والفعال لرش المبيدات، (حسن، 2002). كما تعتمد استراتيجية (IPM) الإدارة المتكاملة للآفات على وضع برامج مختصة تختلف باختلاف الآفة والمحصول، ولا يوجد حتى الآن برنامج محدد لجميع الآفات ولكن هناك اتفاق عام على ترتيب طرق ووسائل المكافحة ضمن التوليفة التالية: المكافحة الزراعية، المكافحة الصنفية، الأعداء الحيوية، المكافحة بالميكروبات، المكافحة السلوكية (الفرمونات) + المصائد، المكافحة باستخدام الهرمونات ومثبطات النمو (مانعات الانسلاخ)، المكافحة الذاتية، المكافحة الوراثية، استخدام المبيدات الكيميائية المتخصصة، (مصة، 2011).

من المعروف أن تحديث قطاع الزراعة وتطويره يعتمد على ما يعرف بالنشر الواسع النطاق للممارسات والتكنولوجيا الزراعية الحديثة بين المزارعين وقبولهم لها،وكذلك الاستخدام الاقتصادي الأمثل لمواردهم والنهوض بمعدلات الإنتاج بطرق آمنة دون تأثيرات سلبية على الإنتاج الزراعي والبيئة (سلامة وآخرون، 2013)، وهنا تأتي أهمية الإرشاد الزراعي كمنظمة فاعلة تلعب دوراً هاماً في نقل المستحدثات العلمية إلى المزارعين قد تحقق نمو اقتصادي في القطاع الزراعي، كما تقوم بدور فاعل في خدمة المزارعين وأسرهم وبيئتهم ومساعدتهم على استغلال جهدهم الذاتي وإمكانياتهم المتاحة لرفع مستواهم الاقتصادي والاجتماعي، وذلك عن طريق إحداث تغيرات سلوكية مرغوبة في معارفهم ومهاراتهم واتجاهاتهم (مواقفهم)، فيقوم بإيصال المعلومات المفيدة من محطات البحوث العلمية الزراعية إلى المزارعين بأقصر وقت ممكن، وبالتالي مساعدتهم على كيفية تطبيقها ونقل العيوب والمشاكل المعترضة من جراء التطبيق إلى محطات البحوث لمعالجتها ووضع الحلول المناسبة لها، (غنوم وآخرون، 2009).

وشهدت زراعة الزيتون في محافظة حمص خلال السنوات الماضية انتشاراً واسعاً وإقبالاًكثيفاً من المزارعين نظراً للمرونة البيئية التي تتمتع بها هذه الشجرة، وإن أهم ما تعانيه هذه الشجرة هو ارتفاع تكاليف الإنتاج بشكل عام وخاصة تكاليف المكافحة، وعلى الرغم من الجهود التي تبذل لنشر مفهوم الإدارة المتكاملة للآفات بين أوساط المزارعين في المحافظة لا تزال مساحات كبيرة من الزيتون تكافح بالطرق التقليدية، غير أن تبني المزارعين لبرنامج الإدارة المتكاملة والتخلي عن استخدام المبيدات لا يتوقف على هذه المزايا فقط، بل يرتبط وبشكل أساسي بمدى قدرة هذه التقنية على زيادة الإنتاج وتحقيق الربحية الاقتصادية وتخفيض مخاطر الإصابة بالأمراض، خاصة في ظل تدني وهشاشة الأوضاع الاقتصادية لمزارعي الزيتون، إضافة إلى تقلبات الأسعار والظروف المناخية، وما رافقها من تغيرات في التكاليف الناجمة، لذلك لابد من التعرف على مدى معرفة وتبني مزارعي هذه المنطقة ببرامج المكافحة المتكاملة للآفات وتطبيقاتها والعوامل المؤثرة على قراراتهم، لذا هدف البحث إلى: 1-التعرف على مستوى معرفة مزارعي الزيتون في المنطقة المدروسة واعتبارها متغيرات أو عوامل الدراسة المستقلة والمؤثرة. وأيضاً التعرف على مستوى معرفة مزارعي الزيتون لبرامج الإدارة المتكاملة للآفات، ودراسة وتحديد أهم العوامل المؤثرة على قرار المزارعين في تبني الإدارة المتكاملة للآفات على أشجار الزيتون.

المواد وطرق البحث

مصادر البيانات: اعتمد البحث على نوعين من المصادر لغرض جمع البيانات، حيث قسمت إلى بيانات ثانوية: والتي تتمثل في المراجع والإحصاءات والتقارير والدراسات ذات الصلة بالموضوع، و بيانات أولية: لتحقيق أهداف البحث تم الاعتماد على أسلوب المسح الميداني لجمع البيانات باستخدام استمارة استبيان لجمع المعلومات اللازمة بالمقابلة الشخصية

مجتمع البحث: مجتمع مزارعي الزيتون في محافظة حمص، وقد تم الحصول على بيانات بخصوص مجتمع البحث من خلال الزيارات للوحدات الإرشادية التابعة لمحافظة حمص لمعرفة أعداد المزارعين الزيتون في محافظة حمص والذي بلغ عددهم (12448) مزارعاً. إستخدم أسلوب العينة العشوائية لاختيار عينة تمثل مزارعي الزيتون في منطقة البحث، وحدد حجمها وفق القانون التالى:(1967 ، Yamane).

 $n=N/1+N (e)^2$

n: حجم العينة (204)، N: حجم المجتمع المدروس، e: درجة الخطأ المسموح به.

منهجية البحث: نفذ البحث في محافظة حمص، سورية، عام 2022 من خلال عينة عشوائية بلغت 204 مزارع لتحقيق أهداف البحث تم الاعتماد على أسلوب المسح الميداني لجمع البيانات باستخدام استمارة استبيان لجمع المعلومات من مزارعي الزيتون في محافظة حمص، حيث أعدت بناء على مراجعة الأدبيات السابقة المتعلقة بالموضوع، ومن ثم تم تطويرها عن طريق عرض الاستمارة على باحثين من جامعة البعث وبعض المختصين في مجال الإرشاد، كما تم عرضها على مجموعة من المحكمين من المهتمين بالقضايا البيئية والإدارة المتكاملة للمكافحة (فحص الصدق)، ومن ثم اختبارها ميدانيًا على (15) مبحوثاً بطريقه عشوائية، وفي ضوء نتيجة التحكيم والاختبار الميداني، تم إجراء التعديلات اللازمة، ووضعت الاستمارة في صورتها النهائية، تم استخدام مقياس ليكرت الثلاثي (Likert, 1932) لقياس استجابة المبحوثين لفقرات الاستبيان، وقد كان معامل الثبات الكلي للاستبيان (0.87)، وهذا يدل على أن الاستبيان يتمتع بدرجة جيدة جداً من الثبات يمكن الاعتماد عليه في التطبيق الميداني، الأمر الذي يعكس الاتساق الداخلي لمقاييس البحث، وتم تحليل البيانات باستخدام برنامج (SPSS).واستخدمت بعض المقاييس الوصفية كالمتوسطات, والتكرارات, والنسب المئوية, والانحراف المعياري.

ولتحديد العوامل المؤثرة في قرار تبني مزارعي الزيتون لبرنامج المكافحة المتكاملة في محافظة حمص، تم تشكيل تابع التبني بحيث تم إعطاء مزارع الزيتون المتبني القيمة 1، في حين أعطي المزارع غير المتبني القيمة 0، وباستخدام الانحدار المنطقي الثنائي الثائي الشعب في حين Binary Logistic Regression

يمكن أن تكون المتغيرات المستقلة بأشكال مختلفة ثنائية، مصنفة، مستمرة، مزيج من متغيرات مستمرة وأخرى مصنفة. إن دراسة أسباب عدم التبني تعطي تصوراً ذا دلالة مباشرة عن موقف المزارع من التقنية، وتبين لماذا رفضت التقنية، إلا أنها لا تعطي تقسيراً عن مدى تأثر المزارع بها، لذلك فإن دراسة العوامل المؤثرة في قرار المزارع في رفض التقنية أو قبولها تمكن من تقدير مدى تأثر المزارع بالعوامل المباشرة أو الملموسة، والعوامل غير المباشرة، وكيف يمكن التحكم بها، وما أثرها في حال توافر الإمكانية للتحكم بكميتها كعامل مؤثر قابل للقياس، أو كيفي غير مباشر أو غير مقيس، ولتحقيق هذا الهدف فقد سيتم استخدام النموذج من الشكل Logit:

$$log = \left| \frac{P}{1 - P} \right| = B0 + Bxi$$

إذ تشير P إلى احتمال التبني وتأخذ القيمة (1)، وتشير القيم (1-1) إلى احتمال عدم التبني، ومن ثم فإن النسبة (p/1-p) تعبر عن غن أرجحية حدوث التبني، وهي تساوي إلى قيمة B0 عند عدم وجود أي مؤثر خارجي (Xi) في قرار المزارع، الذي يعبر عن العوامل المستقلة المؤثرة في إمكانية حدوث التبني، ويعبر الثابت B عن قيمة التأثير في لوغاريتم النسبة (p/1-p) أو في الأرجحية نتيجة التغير في العامل المستقل، (Pampel, 2000)

النتائج

الخصائص الاجتماعية والاقتصادية: تعتبر الخصائص الاجتماعية والاقتصادية لأي مجموعة مستهدفة باستخدام تقنية جديدة من أهم العوامل المؤثرة في نشر وتبنى تلك التقنية، بل في تحديد درجة ابتكارية المستهدفين بصورة عامة.

العمر والخبرة في الزراعة: يعتبر العمر من أهم الصفات التي أثبتت دراسات ونظريات الانتشار والتبني أنها من أهم محددات درجة ابتكارية المزارع، حيث بينت النتائج الموضحة في الجدول رقم (1). أن (12.25%) فقط من المبحوثين من صغار السن، و (32.48)% تراوحت أعمارهم بين (35 – 50) عام، بينما كانت أعمار أكثر من نصف المبحوثين (54.91%) مابين (51 – 65 وأكثر) عام، هذه النتيجة تعكس جزءاً هاماً من التحديات التي تواجه القطاع الزراعي بشكل عام حيث أن معظم المزارعين من كبار السن وربما يتوقع أن تكون درجة ابتكاريتهم عالية.

بلغ متوسط أعمار المبحوثين (49) عام بانحراف معياري وقدره (8.75)، ومعامل اختلاف (17.85)%.

أما الخبرة في الزراعة فقد تبين أن أكثر من ثلثي العينة لهم خبرة كبيرة في الزراعة نسبياً، الأمر الذي قد يقلل احتمالية تبني التقانات والأساليب الجديدة بشكل أسرع بسبب اعتماد أغلبهم على الخبرة الذاتية المتوارثة لديهم.

جدول: (1). توزيع المبحوثين وفقاً لفئاتهم العمرية

				٠,٠	3 03 .
النسبة المئوية	التكرار	الخبرة	النسبة المئوية	التكرار	الفئة العمرية
13.73	28	أقل من 15	12.25	25	أقل من 35
25.49	52	30 -15	32.84	67	50 - 35
40.19	82	45-31	35.30	72	65- 51
20.59	42	أكثر من 46	19.61	40	65 فأكثر
100	204	المجموع	100	204	المجموع

المصدر: عينة البحث (2022)

الحالة الاجتماعية وحجم الأسرة:

بينت النتائج الورادة في الجدول رقم (2) أن الغالبية العظمى من أفراد عينة البحث متزوجون وتعكس هذه النتيجة أن الاستقرار الاجتماعي للغالبية العظمى منهم ربما يمثل دافعاً لهم للمضي نحو تحقيق مستويات أفضل لهم ولأسرهم مما قد ينعكس إيجابياً على أدائهم الإنتاجي. كما أوضحت النتائج أن حوالي ثلث المبحوثين ذو أسر صغيرة الحجم (32.35)%، ونصفهم تقريباً ذو أسر متوسطة الحجم، بينما كان (22.06)% فقط لهم أسر كبيرة الحجم.

جدول:(2). توزع المبحوثين وفقاً للحالة الاجتماعية ولعدد أفراد الأسرة

النسبة المئوية	التكرار	الحالة الاجتماعية
93.14	190	متزوح
6.86	14	(أرمل، مطلق، أعزب)
النسبة المئوية	المتكوار	عدد أفراد الأسرة
32.35	66	م <i>ن</i> 2− 4 (<i>صغي</i> رة)
45.59	93	من 5-8 (متوسطة)
22.06	45	من 9- 12 (كبيرة)
100	204	المجموع

المصدر: عينة البحث (2022)

هذه النتيجة ربما تكشف عن وجود قوى عاملة أسرية يمكن أن تساهم إيجابياً في العمل المزرعي وبصفة خاصة فيما يتصل بتبني الأفكار والممارسات المزرعية المستحدثة إذا ما تمتع هؤلاء الأبناء بمستويات تعليمية عالية.

المستوى التعليمي والتفرغ للعمل المزرعي: يعتبر المستوى التعليمي للمزارع أيضاً من أهم العوامل المؤثرة على درجة ابتكاريتهم ومشاركتهم في نتمية القطاع الزراعي بصورة عامة، وأوضحت النتائج في الجدول رقم (3) أن (1.47)% من المبحوثين ملمين بالقراءة والكتابة، و (32.35)% تراوح مستوى تعليمهم بين الابتدائي والإعدادي (التعليم الأساسي)، و (21.57) % مستواهم التعليمي كان ثانوي، أما المتوسط فقد بلغت نسبته (18.63)%، ونال (16.18) تعليماً جامعياً، أما فوق الجامعي فقد بلغت نسبته (18.63)%، ونال (18.18) تعليماً مساعداً في عملية نشر وتبني التقنيات نسبتهم (9.8)%. هذه النتيجة تعكس الارتفاع النسبي للمستوى التعليمي وهذا يعتبر عاملاً مساعداً في عملية نشر وتبني التقنيات الزراعية الحديثة، ولكنه في نفس الوقت مؤشراً إلى أن الزراعة ليست المهنة الأساسية لمعظم المزارعين. وأكد ذلك المبحوثين أنفسهم حيث ذكر (58.33)% أنهم يمتهنون الزراعة بجانب أعمال أخرى (أعمال حرة) كما بينت النتائج المشار إليها في الجدول رقم (4)، ولكن على عكس ذلك فإن الزراعة بجانب أعمال أخرى (أعمال حرة) كما بينت النتائج المشار إليها في الجدول رقم (4)، ولكن على عكس ذلك فإن و (68.63)% من المبحوثين ذكروا أن جميع أفراد أسرهم لا يمارسون العمل الزراعي لذلك فإنهم يعتمدون على العمالة المستأجرة، و (13.38)% ذكروا أن فرداً واحداً من الأسرة يمارس العمل الزراعي، وغالباً ما يكون هو رب الأسرة وجميعهم أشاروا إلى أن لديهم عمالة وافدة للعمل في الزراعة.

جدول:(3). توزيع المبحوثين وفقاً لمستوياتهم التعليمية

		3 3 3 3 4 6 5 7 7 7 7
النسبة المئوية	التكرار	المستوى التعليمي
1.47	3	ملم بالقراءة والكتابة
15.19	31	ابتدائي
17.16	35	إعدادي
21.57	44	ثانو <i>ي</i>
18.63	38	متوسط
16.18	33	جامعي
9.80	20	جام <i>عي</i> فوق الجام <i>عي</i>
100	204	المجموع

المصدر: عينة البحث (2022).

رزبع المبحوثين وفقاً لمهنة المزارع الأساسية، والأعمال الأخرى التي يمارسها ومصدر العمالة

النسبة المئوية	التكرار		التفرغ للعمل المزرعي
41.67	85		الزراعة بشكل أساسى
27.94	57	وظيفة في قطاع عام	
20.59	42	وظيفة في قطاع خاص	الزراعة بشكل ثانوي (العمل في قطاعات
9.8	20	مهن حرة	أخرى إلى جانب الزراعة)
100	204	المجموع	
النسبة المئوية	التكرار	مصدر اليد العاملة	
68.63	140	عمالة مستأجرة	
31.37	64	عمالة عائلية	
100	204	المجموع	

المصدر: عينة البحث (2022).

صافي الدخل السنوي: تعكس الحالة الاقتصادية والاجتماعية للمزارع مدى قدرته على امتلاك معظم المقومات لتقديم عمليات الخدمة للنحصول من وسائل نقل ووسائل اتصال وغيرها، ومن هذه الأهمية للحالة الاقتصادية والاجتماعية للمزارع تم تقسيم أفراد العينة إلى ثلاث فئات، حيث أشار (25.49) % من المبحوثين إلي أن دخلهم السنوي أقل من ستة مليون ليرة سورية، وذكر (54.41) منهم أن دخلهم السنوي كان بين (6– 12) مليون ليرة سورية، في حين أن (25.49)% من أفراد العينة دخلهم أعلى من (12) مليون ليرة سورية، كما هو موضح في الجدول رقم (5)، وربما يهيئ الدخل المرتفع فرصة كبيرة للمزارع ليتبنى الأفكار الجديدة وذلك لإمكانية الحصول على تلك الأفكار ووسائل تنفيذها من ناحية، ولتلافي الأخطار التي قد تنجم عن فشل تلك الخبرات من ناحية أخرى، فكثيراً ما يعتقد المزارع بأن الإقدام على أسلوب جديد فيه مخاطرة وغير مأمون العواقب، وقد أخذت الدراسة بعين الاعتبار جميع أنواع الدخل من جميع الموارد المتاحة للمزارع، وهذا يتضمن الدخل الزراعي، والدخل من الأنشطة المساعدة الأخرى مثل الإنتاج الحيواني، تربية الدواجن والأعمال والخدمات.

جدول: (5). توزيع المبحوثين وفقاً لدخلهم السنوي

النسبة المئوية	التكرار	حجم الدخل السنوي الكلي
25.49	52	<6000000 منخفض
54.41	111	(12000000 –6000000) متوسط
20.10	41	>120000000 مرتفع
100	204	لمجموع

المصدر: عينة البحث (2022)

حجم الحيازة: لحجم الحيازة تأثير كبير في تبني وقبول الأفكار والخبرات الجديدة، وإن الفرد كلما كان يمتلك مساحة كبيرة كلما أدى ذلك إلي تبنيه لخبرات وأفكار جديدة للعمل علي زيادة الإنتاجية بعكس الفرد الذي يمتلك مساحة صغيرة، وإن أصحاب المساحات الصغيرة من المزارعين لا يخاطرون بتجريب جزء من حيازتهم بعكس أصحاب الحيازات الكبيرة، وتم قياسها باستخدام الرقم الخام لإجمالي حيازة الوحدة المعيشية للمبحوث من الأرض الزراعية بكافة أشكال الحيازة، ثم قسمت لثلاث فئات (صغيرة، متوسطة، كبيرة)، وتبين من الجدول رقم (6) أن نصف المبحوثين ذو حيازات صغيرة نسبياً أقل من (29) دونم، و (34.31)% من أصحاب الحيازات الكبيرة.

جدول: (6). توزيع المبحوثين وفقاً لحجم الحيازة

النسبة المئوية	التكرار	حجم الحيازة (دونم)
51.96	106	صغيرة (29 –8)
34.31	70	متوسطة (52 –30)
13.73	28	كبيرة (73 – 75)
100	204	المجموع

المصدر: عينة البحث (2022)

كما أن غالبية المزارعين يملكون الأرض التي يزرعونها، مما قد يكون له الأثر الإيجابي في تقبل الأفكار والخبرات الجديدة، وإن الفرد كلما كان صاحب ملك أدى ذلك إلي سرعة اتخاذ القرار المناسب في سبيل العمل بالخبرات والأفكار الجديدة للدفع بالإنتاجية إلي الأحسن ومن ثم تحسين دخله.

قيادة الرأي: يقصد به درجة إدراك المبحوث لقدرته على التأثير في الآخرين ومدهم بالمعلومات والنصائح أو الاستشارات التي يحتاجونها في المعلومات العامة، والزراعية (زراعة المحاصيل، تربية المواشي، شراء أو بيع الأطيان والعقارات)، وتعليم وزواج الأبناء والبنات، المصالحة وحل الخلافات العائلية، فض المنازعات بين الأفراد والعائلات، وكذلك مدى استعداد المبحوث في تمثيل الآخرين في المنظمات الاجتماعية، وتوصيل مشكلاتهم إلى المسؤولين والعمل على حلها، واستخدمت طريقة التقدير الذاتي في الكشف عن القدرة القيادية لدى المبحوثين، وذلك من خلال سؤال كل مبحوث عما إذا كان الآخرون يستشيرونه بأخذ الرأي أو النصح منه فإذا كانت الإجابة" دائما" أعطى المبحوث ثلاث درجات، أحياناً أعطى درجتين، نادراً أعطى المبحوث درجة واجدة، وبجمع الدرجات التي حصل عليها المبحوث في كل المجالات كانت المحصلة النهائية هي المؤشر الذي يعبر عن القدرة القيادية للمبحوث في التأثير على الآخرين أو ما يعرف بقيادة الرأي، وقد بلغت قيمة المتوسط الحسابي لهذا المتغير (13.36) درجة والانحراف المعياري (1.19) ومعامل اختلاف بلغ (8.9)%، حيث تبين أن (64.7)% من المبحوثين لهم قيادة رأي متوسطة وإلانحراف المعياري رودة رأى مرتفعة، جدول رقم (7).

جدول: (7). توزيع المبحوثين وفقاً لدرجة قيادة الرأي

قيادة الرأي	التكرار	النسبة المئوية
منخفضة (11-7)	55	27.0
متوسطة (12–16)	132	64.7
مرتفعة (17-21)	17	8.3
المجموع	204	100
•		

المصدر: عينة البحث (2022)

مصادر المعلومات الزراعية: يقصد بها عدد المصادر المرجعية التي يرجع إليها المبحوث للحصول على المعلومات المتعلقة بالزراعة عموماً والمكافحة المتكاملة خصوصاً، وتم قياسه من خلال سؤال المبحوث عن درجة تعرضه لـ (13) مصدر (الخبرة الموروثة عن الأهل والتجربة الذاتية، الأقارب والأصدقاء والجيران، المجلات والنشرات الإرشادية، المرشد الزراعي، البرامج الإذاعية الزراعية، البرامج التنفزيونية الزراعية، التجار والشركات الزراعية، الصحف والمجلات، اللقاءات والاجتماعات الإرشادية، المعارض الزراعية، الحقول الإرشادية، الجمعية التعاونية، الانترنيت)، وأعطيت درجات (1،2،3) لإجابات (دائماً، أحياناً، نادراً)، كما هو وارد في الجدول رقم (8).

المربون للحصول على المعلومات	التي يعتمد عليها	لأهم المصادر	جدول:(8) . توزع المبحوثين وفقاً

مصدر الاتصال	دا	ئمأ	أد	ياناً	ü	<u>.</u> رأ
	التكرار	%	التكرار	%	التكرار	%
الخبرة الموروثة عن الأهل والتجربة الذاتية	133	65.2	52	25.5	19	9.3
الأقارب والأصدقاء والجيران	131	64.2	48	23.5	25	12.3
المجلات والنشرات الإرشادية	55	27	38	18.6	111	54.4
المرشد الزراعي	53	26	92	45.1	59	28.9
البرامج الإذاعية الزراعية	42	20.6	43	21.1	119	58.3
البرامج التلفزيونية الزراعية	36	17.6	35	17.2	133	65.2
التجار والشركات الزراعية	45	22.1	39	19.1	120	58.8
الصحف والمجلات	112	54.9	47	23	45	22.1
اللقاءات والاجتماعات الإرشادية	36	17.6	32	15.7	136	66.7
المعارض الزراعية	29	14.2	57	27.9	118	57.9
الحقول الإرشادية	26	12.7	86	42.2	92	45.1
الجمعية التعاونية	52	25.5	49	24	103	50.5
الانترنيت	55	27	100	49	49	24

المصدر: عينة البحث (2022)

وجمعت الدرجات التي حصل عليها المبحوث واستخدمت كمؤشر يعكس درجة مصادر المعلومات التي يعتمد عليها المبحوث، حيث بلغ متوسط مجموع درجات هذا المؤشر (25.29) بانحراف معياري وقدره (2.57) ومعامل اختلاف بلغ (10.87)%. حيث بينت النتائج في الجدول رقم (9) أن أكثر من نصف المبحوثين بنسبة (53.4)% كانوا ممن يعتمدون على عدد منخفض من مصادر المعلومات وأن (25.5)% منهم يعتمدون وبلجؤون لعدد متوسط من مصادر المعلومات.

جدول: (9). توزع المبحوثين وفقاً لعدد مصادر المعلومات التي يعتمدون عليها للحصول على معلوماتهم الزراعية

النسبة المئوية	التكرار	مصادر المعلومات
53.4	109	منخفض (13–21)
25.5	52	متوسط (32–30)
21.1	43	مرتفع (31–39)
100	204	المجموع

المصدر: عينة البحث (2022)

درجة المشاركة في الأنشطة الإرشادية: ويقصد بها مدى مشاركة المبحوثين في أنشطة الوحدات الإرشادية، سواءً المتواجدة في قراهم أو في قرى مجاورة وذلك من ندوات واجتماعات إرشادية، أيام حقلية، دورات تدريبية، وحقول إرشادية والتي تعد دليلاً على مدى اقتناعهم بالعمل الإرشادي في تحقيق أهدافه. وأعطيت الاستجابات دائماً (بشكل مستمر):3, أحياناً (بشكل متقطع):2, نادراً:1.

جدول:(10). توزع المبحوثين وفقاً لدرجة مشاركتهم في الأنشطة الوحدات الإرشادية

	ادرأ	i	ىياناً	_ i	دائماً		* 1 5 2 2 1	
المتوسط	%	التكرار	%	التكرار	%	التكرار	نوع النشاط	
1.89	33.33	68	44.12	90	22.55	46	— ندوات واجتماعات إرشادية	
1.8 1.79	42.16 37.25	86 76	35.78 46.08	73 94	22.06 16.67	45 34	يوم حقلى دورات تدريبية	
1.71	51.47	105	25.98	53	22.55	46	حقل إرشادي	

المصدر: عينة البحث (2022).

تشير النتائج الواردة الجدول رقم (10) الأنشطة الإرشادية التي تنفذها الوحدات الإرشادية بمنطقة البحث من منظور المبحوثين مرتبة تنازلياً وفقاً للمتوسط الحسابي، وقد تبين أن الوحدات الإرشادية تركز بالدرجة الأولى على إقامة الندوات والاجتماعات الإرشادية والأيام الحقلية ثم الدورات التدريبية والحقول الإرشادية.

المشاركة في عضوية الجمعيات والمنظمات الاجتماعية المحلية: إن عضوية الفرد ومشاركته الفعالة في أنشطة المنظمات الاجتماعية قد يساعده على تبني الأفكار والأساليب الزراعية الجديدة، وربما يرجع ذلك إلى الدور الفعال الذي تقوم به المنظمات في تطوير المجتمعات الريفية والذي يعتبر عاملاً مشجعاً لتبني الأفكار الجديدة، وتبين من نتائج الاستقصاء الميداني أن نسبة في تطوير المزارعين لا يميلون إلى المشاركة في جماعة أو منظمة بالمنطقة، وإن نسبه الذين يمثلون العضوية (37.75)%، كما هو موضح في الجدول رقم (11).

جدول:(11). توزع المبحوثين وفقاً لمشاركتهم في عضوية الجمعيات والمنظمات المحلية

النسبة المئوية	التكرار	المشاركة
37.75	77	نعم
62.25	127	¥
100	204	المجموع

المصدر: عينة البحث (2022)

مستوى معرفة المزارع ببرنامج المتكاملة للمكافحة:

إن المعرفة المسبقة من قبل المزارعين ببرنامج المكافحة المتكاملة تسهم بشكل فاعل في تطبيق المزارع لهذه التقانات وتسهل عملية تبنيها، وتم إعداد مقياس مستوى معرفة المزارعين ببرنامج المكافحة المتكاملة تضمن (6) عبارات تم الرجوع وأخذها من دليل الإدارة المتكاملة لآفات الزيتون، جدول رقم (12)، وتم تدريج هذا المؤشر إلى ثلاث إجابات محدودة/1/، متوسطة/2/، جيدة /3/ وإعطاء أوزان ترجيحية، تم تجميع الدرجات التي حصل عليها المبحوث في معرفته لهذه الممارسات بما يعكس مستواه المعرفي واستناداً للقيم الرقمية تم تقسيم المبحوثين لثلاث مستويات معرفة منخفضة ومتوسطة ومرتفعة.

أظهرت نتائج التحليل أن نحو (25)% من أفراد العينة كانت نسبة معرفتهم جيدة بأن هناك أصناف مقاومة والأكثر تحملاً الصوراني والخضيري والجلط والقيسي بما يتلاءم والمنطقة البيئية لكل صنف، والابتعاد عن الأصناف القابلة للإصابة مثل الزيتي والنيبالي، وأن القيام بالعمليات الزراعية التي تتطلبها إدارة إنتاج محصول الزيتون وبالأوقات والوسائل المناسبة سوف يقلل من الإصابة بالآفات ويحد من انتشارها وخصوصاً التقليم الجيد بنسبة حوالي (34)% حيث تساهم الحراثة والعزيق والتقليم والتخلص من بقاياه في تقليل أعدادها والقضاء على نسبة الأطوار المشتية فيها وإزالة السرطانات والخلفات النامية قرب جذع الشجرة وغيرها من العمليات الزراعية ، حين أن ما نسبته نحو (21)% قد عرفوا أن المضادات الجنسية الفيرمونية أو ما يسمى بالمصائد

الهرمونية في مكافحة بعض الآفات، وأن ما نسبته (11)% يعرفون بالمكافحة الحيوية وهي استخدام الأعداء الحيوية (المفترسات والمتطفلات) للحشرات التي تنقل الأمراض النباتية، إن انخفاض هذه النسبة لدى أفراد عينة البحث بأنهم يخشون أن المكافحة الحيوية بطيئة في إظهار النتائج وإنه لا يمكن أن يستخدموا المبيدات الكيماوية. في حين أن ما نسبته (28)% من عينة البحث فقط يعرفون بالطرق الميكانيكية والفيزيائية في المكافحة الأمراض، والتي تشمل بعض العمليات الزراعية من عزق وتعشيب وإزالة وحرق الأجزاء النباتية المصابة بالأمراض والحشرات، والقضاء على العوائل النباتية للأمراض إلى غير ذلك من الإجراءات الميكانيكية والعمل اليدوي (قتل يرقات حفار الساق بالسلك المعدني وسد ثقوب الخروج بعد قتل عذارى حفار الساق بالسلك المعدني وبالضغط باليد) والآلي لتجنب الإصابات بالآفات أو التقليل من انتشارها، في حين أن (28)% من مزارعي العينة يعرفون الطريقة الكيميائية في المكافحة.

جدول: (12). توزع المبحوثين وفقاً ببعض ممارسات المكافحة المتكاملة

دودة	<u>ــــ</u>	سطة	متو	يدة	÷	" 1 - N
%	التكرار	%	التكرار	%	التكرار	العبارة
19.12	39	55.88	114	25	51	— أصناف نباتية مقاومة للأمراض
18.14	37	48.04	98	33.82	69	العمليات الزراعية
26.96	55	45.1	92	27.94	57	المكافحة الكيميائية بالوقت المناسب
61.76	126	17.16	35	21.08	43	استخدام المصائد الفرمونية
60.79	124	27.94	57	11.27	23	صيانة الأعداء الحيوية المحلية
52.94	108	19.12	39	27.94	57	المكافحة الميكانيكية

المصدر: عينة البحث (2022)

أما عن المستوى المعرفي الكلي للمبحوثين أظهرت نتائج جدول رقم (13) أن نسبة (72.55%) ذو مستوى معرفي محدود بأساليب المكافحة المتكاملة للزيتون، بينما نسبة (16.8%) منهم ذو مستوى معرفي متوسط، وبلغت نسبة ذو المستوى المعرفي المعرفي المعرفة عن المكافحة المتكاملة لأشجار الجيد (11.27%) من المبحوثين، مما يتطلب بذل المزيد من الجهود الإرشادية لنشر المعرفة عن المكافحة المتكاملة لأشجار الزيتون من خلال الندوات والاجتماعات الإرشادية والأيام الحقلية وغيرها كطرق إرشادية فعالة في نشر المعارف من قبل الإرشاد الزراعي لنشر المكافحة المتكاملة.

جدول:(13). توزع المبحوثين وفقاً لمستوى معرفتهم ببرنامج الإدارة المتكاملة للآفات

 النسبة المئوية	التكرار	مستوى المعرفة
72.55	148	6 وما دون (محدودة)
16.18	33	7–17 (متوسطة)
 11.27	23	18 فما فوق (جيدة)
100	204	المجموع

المصدر: عينة البحث (2022)

بناء نموذج الانحدار اللوجستي الثنائي للمتغيرات المستقلة:

- فحص مشكلة تعدد العلاقات بين المتغيرات التوضيحية:

بالنظر إلى طبيعة الظاهرة المدروسة وكذا المتغيرات المتعامل معها، فمن الممكن أن نقع في مشكلة التعدد الخطي بين متغيرين أو أكثر من المتغيرات التوضيحية، فوجود علاقة خطية بين متغيرين أو أكثر سيؤدي إلى ظهور مشكلة مما يترتب عليه العديد من المشكلات عند تحليل الانحدار اللوجستي (Multicollinearity) تعدد العلاقات من حيث انخفاض دقة التقديرات، لأن زيادة درجة الارتباط الخطي بين المتغيرات التوضيحية يؤدي إلى زيادة تباين التقديرات ومن ثم ارتفاع في قيمة الخطأ المعياري لهذه المعاملات مما سيؤدي إلى تخفيض معنويتها، ولتفادي ذلك تم فحص تعدد العلاقات الخطية بين المتغيرات التوضيحية بالاعتماد على إحصائية أو من خلال إحصائية معامل تضخم التباين (Tolerance) معامل القدرة على الاحتمال للمتغير المستقل VIF عطية، وذلك على النحو المبين في الجدول التالي:

جدول: (14). اختبار معامل تضخم التباين والتباين المسموح للمتغيرات المستقلة.

		Collinear	ity Statistics
	Model	VIF	Tolerance
	العمر	3.445	.290
	الخبرة في الزراعة	2.071	.483
	حجم الأسرة	1.089	.919
	العمالة الدائمة	1.144	.874
	المستوى التعليمي	2.360	.423
	التفرغ للعمل المزرعي	1.086	.921
1	صافي الدخل السنوي	3.778	.265
	حجم الحيازة	1.437	.696
	قيادة الرأي	4.291	.233
	مصادر المعلومات	2.351	.425
	المشاركة في الأنشطة الإرشادية	1.184	.845
	المشاركة في عضوية المجتمعات المحلية	1.085	.922
	مستوى المعرفة	3.056	.327

المصدر: نتائج برنامج التحليل الإحصائي SPSS.

نلاحظ من الجدول رقم (14) أن قيم إحصائية Tolerance لجميع المتغيرات التوضيحية المعتمدة في النموذج الذي سيتم تقديره قد تجاوزت الحد الأعلى للإقرار بأن هناك ارتباط بين متغيرين، حيث أن أقل قيمة لهذا الاختبار كانت بالنسبة لمتغير حجم الأسرة إلا أن الإحصائيين يتفقون على أن الحد الأعلى يتمثل في (0.2) وعليه فإنه لا وجود لتعدد العلاقة بين أي من المتغيرات المختبرة، كما أن إحصائية معامل تضخم التباين (VIF) الذي يساوي معكوس إحصائية عامل توكد النتيجة ذاتها حيث أن أعلى قيمة لهذه الإحصائية بلغت (4.343) إلى أنه أقل من القيمة المعيارية لهذا المؤشر والتي تزيد عن (5) للحكم على أن المتغير المستقل يتأثر بمشكلة التعدد الخطي، وهذا فإن متغيرات الموجودة صالحة لأن تكون ممثلة في النموذج.

- تقدير معلمات النموذج اللوجستى:

جدول: (15). التصنيف للنموذج اللوجستي في المرحلة الصفرية

	المشاهد		-	المتوقع	
			التبني		
			¥	نعم	التصنيف الصحيح
المرحلة الصفرية	التبني	¥	165	0	100.0
	-	نعم	39	0	.0
	Overall Per	centage			80.9

المصدر: نتائج برنامج التحليل الإحصائي SPSS.

في البداية يتم تضمين الثابت فقط في النموذج ثم بعدها تضاف جميع المتغيرات التوضيحية للاستدلال على أثرها مجتمعة في المتغير التابع لتحديد كفاءة النموذج ككل، يبين النتائج الخاصة بالنموذج المبدئي الذي يحتوى على الثابت فقط.

جدول:(16). تكرارات تقدير الثابت فقط النموذج اللوجستي

		Iteration History ^{a,b,c}	
Iteration		−2 Log likelihood	Coefficients
			Constant
Step 0	1	270.428	490-
	2	270.423	500-
	3	270.423	500-

المصدر: نتائج برنامج التحليل الإحصائي SPSS.

يظهر من الجدول رقم (16) أن عدد الدورات التكرارية لمشتقات دالة الإمكان الأعظم للحصول على أقل قيمة لسالب ضعف لوغاريتم دالة الإمكان الأعظم تتوقف عند المحاولة الثالثة، حيث جاء تقدير إحصائية الإمكان الأعظم (270.423) -2 Log (270.423) وبالنسبة للتحقق من -2 Log (270.423) وبالنسبة للتحقق من -2 وهي نفس القيمة للمحاولة السابقة إلا أن هذا لا يعني أنها متماثلة، أما قيمة الثابت بلغت (20.500) وبالنسبة للتحقق من الدلالة الإحصائية للثابت، كما هو موضح في الجدول رقم (17) تثبتها قيمة Wald والبالغة (12.002) بمستوى معنوية متعلقة بهذه الإحصائية (-2 Sig -2 وهي أقل من مستوى المعنوية (-2 Co -2 الذلك نرفض الفرضية الصفرية وبالتالي قبول الفرضية البديلة التي تقر بمعنوية الثابت.

جدول:(17). اختبار معنوية الثابت

B S.E. Wald df Sig.	
	Exp(B)
Step 0 Constant 500- .144 12.002 1 .001	.606

المصدر: نتائج برنامج التحليل الإحصائي SPSS.

بعد التحقق من معنوية الثابت من خلال النموذج المبدئي، تأتي مرحلة إدراج المتغيرات التوضيحية الواحدة تلوى الأخرى وذلك بالاعتماد على اختبار قوة العلاقة بين المتغير التابع وكل متغير مستقل على حدا، حيث ندخل المتغيرات قوية التأثير وتحذف المتغيرات ضعيفة التأثير، مع الإشارة إلى أنه عندما يتم إدخال المتغير الثاني يتم حذف تأثير المتغير الذي سبق إدخاله في النموذج، ثم بعد إدخال المتغيرات التي لها علاقة دالية بالمتغير التابع يتم إعادة فحص المتغيرات الموجودة بالنموذج والتأكد من أنها مازالت مؤثرة على المتغير التابع بصورة معنوية وإن لم يتحقق هذا الشرط يتم حذفها، وعليه فقد جاءت النتائج كما يوضحها الجدول رقم (18).

جدول: (81). يبين قيمة R_2 للنموذج اللوجستى

	Model Summary							
Step	-2 Log likelihood	Cox & Snell R Square	Nagelkerke R Square					
1	57.714 ^a	.663	.889					
2	30.547 ^b	.705	.945					
3	21.251 ^b	.718	.963					
4	16.104 ^c	.725	.972					

المصدر: نتائج برنامج التحليل الإحصائي SPSS.

تشير النتائج التي يظهرها الجدول رقم (18) إلى عدد المحاولات التي تمت للحصول على أفضل تقديرات لمعالم النموذج اللوجستي، حيث نلاحظ أن النتائج استقرت عند المرحلة الرابعة، وذلك من أجل الوصول إلى أقل قيمة لسالب ضعف دالة الترجيح التي بلغت (16.104) وهي تعتبر أقل من قيمة النموذج في حالة ما احتوى الثابت فقط، وعليه فإن مقدار الفارق بين القيمتين يشير إلى مقدار إحصائية (18, 254.319) والتي قيمتها (254.319) حيث أن هذه الإحصائية تتبع توزيع كاي مربع عند درجة حرية تساوي عدد المتغيرات التوضيحية التي أدخلت في النموذج، والجدول رقم (19) يبين هذه النتائج:

جدول:(19). اختبار مدى ملائمة النموذج

			C -	, , ,			
Omnibus Tests of Model Coefficients							
		Chi-square	df	Sig.			
	Step	221.767	1	.000			
Step 1	Block	221.767	1	.000			
	Model	221.767	1	.000			
	Step	27.167	1	.000			
Step 2	Block	248.934	2	.000			
	Model	248.934	2	.000			
	Step	9.296	1	.002			
Step 3	Block	258.230	3	.000			
	Model	258.230	3	.000			
	Step	5.147	1	.023			
Step 4	Block	254.319	4	.000			
	Model	254.319	4	.000			

المصدر: نتائج برنامج التحليل الإحصائي SPSS.

لأن (R^2) للنموذج اللوجستي يمثل اختبار لقوة النموذج أو حجم تأثير المتغيرات المستقلة على المتغير التابع، والجدول رقم (R^2) يوضح لنا ما تفسره المتغيرات المستقلة من المتغير التابع بالاعتماد على احصائية R^2 Cox & Snell R^2 إذ نلاحظ ازدياد هذه القيمة بالخطوة الرابعة عن الخطوة الثالثة بمقدار (0.007) وكذلك إحصائية R^2 Pacultus المستقلة والوهمية في عن الخطوة الثالثة بمقدار (0.009)، حيث بلغت (0.972) بمعنى أن المتغير التابع تم تفسيره بالمتغيرات المستقلة والوهمية في نموذج الانحدار اللوجستي المقدر بـ (0.009) وهي نسبة تشير إلى أن النموذج له قوة تنبؤية عالية.

فيما يخص المطابقة بين القيم المشاهدة والقيم التي يتم الحصول عليها من خلال نموذج الانحدار اللوجستي الذي تم تقديره فإنه يتم التحقق منها من خلال اختبار Hosmer and Lemeshow الذي يعتمد على تقدير إحصائية كاي والجدول رقم (20) يظهر نتيجة هذا الاختبار على النحو الآتى:

جدول: (20). اختبار الدلالة الاحصائية للنموذج النهائي

Hosmer and Lemeshow Test					
Step	Chi-square	df	Sig.		
4	1.885	8	.984		

المصدر: نتائج برنامج التحليل الإحصائي SPSS.

تبين النتائج بأن قيمة إحصائية كاي مربع قد بلغت (1.885) عند درجة حرية (8) وبمستوى دلالة الاختبار (Sig.=0.984) وهي أكبر من مستوى المعنوية المعتمد وبالتالي يتم رفض الفرضية العدمية ومن ثم قبول الفرضية البديلة القائلة بتطابق القيم المشاهدة مع القيم المتوقعة وعليه فإن النموذج يمثل البيانات بشكل جيد وهذا ما يؤكد جودة التوفيق للنموذج بالكامل.

جدول: (21). جدول التصنيف للمرحلة الرابعة

Classification Table ^a						
Predicted			Observed			
Percentage Correct	التبني		-			
r crocinage correct	نعم	У				
92.7	12	153	A	11		
84.7	19	20	نعم	التبني	Step 4	
84.3	Overall Percentage					

المصدر: نتائج برنامج التحليل الإحصائي SPSS.

ويوضح الجدول رقم (21) بأن النسبة المئوية الكمية لدقة التنبؤ للمتغير التابع بالاعتماد على النموذج في الخطوة الرابعة قد بلغت نحو (84.3)%، والجدول رقم (22) يبين المتغيرات الداخلة في النموذج.

جدول: (22). المتغيرات الداخلة في النموذج المقدر

	المتغيرات التوضيحية	Bالقيم التقديرية لـ	الخطأ المعياري. S.E	احصائيةWald	df	Sig.
Step 4 ^d	العمر	127-	.059	4.656	1	.031
	المستوى التعليمي	1.562	.550	8.051	1	.005
	مستوى المعرفة	2.036	.959	4.510	1	.034
	المساحة المزروعة بالزيتون	-2.021-	.958	4.447	1	.035
	الثابت	-1.207-	4.118	.086	1	.769

المصدر: نتائج برنامج التحليل الإحصائي SPSS.

جدول: (23). احتمال حدوث التبنى

Exp(B)		احتمال حدوث التبني (%)
	.880	46.81
	4.766	82.66
	7.661	88.45
	.133	11.74

تبين نتائج الجدولين (22) و (23) بإن كلاً من المستوى التعليمي، ومستوى المعرفة بأساليب الإدارة المتكاملة لأشجار الزيتون كانت ذات تأثير معنوي إيجابي عند مستوى دلالة (5)% في أرجحية حدوث التبني، إذ أن أرجحية حدوث التبني لدى المزارعين المتعلمين تزيد على المزارعين غير المتعلمين بمقدار (4.766) مرة ومن ثم فإن احتمال التبني سيزداد في حال المزارعين الذين تلقوا تعليمياً بنسبة (82.66) % وكذلك الأمر بالنسبة لمستوى المعرفة إذ أن زيادة مستوى معرفة المزارع بمقدار درجة واحدة يؤدي

إلى زيادة أرجحية حدوث التبني إلى (7.661) وذلك عند بقاء العوامل المستقلة الأخرى ثابتة، إن كلاً من المتغيرات المستقلة العمر ومساحة المزرعة كانت من المتغيرات التنبؤية ذات التأثير المعنوي السلبي في أرجحية حدوث التبني، كما أن زيادة متغير العمر بمقدار نسبة مئوية واحدة تؤدي إلى إنقاص أرجحية حدوث التبني إلى (0.88) مرة ومن ثم إنقاص كبير جداً في احتمال التبني إلى (46.81)%، كما أن زيادة المساحة المزروعة بمقدار (1) يؤدي إلى إنقاص أرجحية حدوث التبني إلى (0.133) مرة ومن ثم إنقاص كبير جداً في احتمال التبني إلى 11.74% شريطة بقاء العوامل المؤثرة الأخرى ثابتة. وبالاعتماد على ثوابت العوامل المستقلة الداخلة في النموذج المؤثرة بشكل معنوي والموضحة في الجدول رقم (20)، يمكن كتابة معادلة الانحدار اللوغارتمي لتبني مزارعي الزيتون لبرنامج المكافحة المتكاملة على مستوى العينة:

Log(y/1-y) = Log(y/1-y) = 1.562 (المستوى التعليمي) 2.036 (مستوى المعرفة) 2.021 (المساحة المزروعة) نظراً لما أوضحته النتائج البحثية من انخفاض نسبى لمستوى تبنى المزارعين المبحوثين لبرنامج الإدارة المتكاملة لأشجار الزيتون، فإن الدراسة توصى بضرورة تعزيز دور الإرشاد الزراعي في تعليم وتوعية مزارعي الزيتون ونقل المعرفية الزراعية لهم عن طريق إعداد خطة علمية وعملية تتتاول بشكل دقيق النتائج النفصيلية لهذه الدراسة وفقاً للمستويات المعرفية للمزارعين، واستخدام كل الطرق والوسائل التي قد تؤثر في اكتسابهم القدرة على تطبيق برنامج الإدارة المتكاملة. أيضاً بأهمية إجراء المزيد من الدراسات والبحوث الإرشادية الزراعية المستقبلية التي تهتم بدراسة نشر وتبنى برنامج المكافحة المتكاملة لأشجار الزيتون بين المزارعين بمحافظات أخرى في سورية بهدف إلقاء المزيد من الضوء على أبعاد وجوانب أخرى للمشكلة، ودراسة تأثير متغيرات وعوامل أخرى لم تتطرق إليها هذه الدراسة حيث لوحظ أن ما كشفت عنه الدراسة الحالية لم يتعد 13 متغير. و بذل المزيد من الجهود الإرشادية: لمزيادة مستواهم المعرفي والتعرف على التقنيات الزراعية وتبنيها. كذلك التوجيه من قبل الجهات الحكومية لضبط أسعار المبيدات عن طريق تطبيق الإدارة المتكاملة لآفات الزيتون، ورفع سعره بشكل مقبول، مع توفير مسالك تسويقية له وضمان وصول المنتجات عن طريق تطبيق الإدارة المتكاملة لآفات الزيتون، ورفع سعره بشكل مقبول، مع توفير مسالك تسويقية له وضمان وصول المنتجات على طريق تطبيق اللأسواق الداخلية والخارجية على حد سواء.

المراجع

حسن، مجدي (2002). دور الإرشاد الزراعي في نشر وتبنى ممارسات المكافحة المتكاملة للآفات بين زراع القطن في محافظة الغربية، (رسالة دكتوراه) كلية الزراعة، جامعة القاهرة.

دواي، فيصل، وجيه زكريا، وجميل فضلية (2010). أشجار الفاكهة المستديمة الخضرة (زيتون - حمضيات)، منشورات جامعة تشرين، اللاذقية، سورية. صفحة 56.

بديع، ريا وتلي غسان (2004). إنتاج الفاكهة (الجزء النظري)، مديرية الكتب والمطبوعات الجامعية، جامعة البعث، كلية الزراعة. سلامة، فؤاد، محمد فرحات، وسالم سالم (2013) - تبنى مزارعي الخضر والفاكهة للممارسات غير الآمنة ببعض المناطق الريفية بمحافظة المنوفية، قسم الإرشاد الزراعي والمجتمع الريفي، كلية الزراعة، جامعة المنوفية.

عطية، عبد القادر (2004). الحديث في الاقتصاد القياسي بين النظرية والتطبيق"، الدار الجامعية للنشر والتوزيع، الإسكندرية، مصر.

غنوم، قتيبة، الرزوق طلال، والعلي جمال (2009). بعض العوامل الاجتماعية والجغرافية المؤثرة على تبني تقانات الري الحديثة في حوض العاصي، مجلة جامعة البعث، مجلد (31)، جامعة البعث، حمص.

Al-Mukhtar Journal of Agricultural, Veterinary and Environmental Sciences 3 (1): 45-60, 2025 Doi:

فلفة، صبا (2023). اقتصاديات تربية نحل العسل وقيمته الاقتصادية كملقح للمحاصيل المزروعة في منطقة الغاب من محافظة حماه، رسالة ماجستير، قسم الاقتصاد الزراعي، جامعة حلب.

مصة، وسام (2011). دراسة مدى تبني المزارعين للإدارة المتكاملة لآفات النفاح في المنطقة الوسطى، رسالة ماجستير، كلية الهندسة الزراعية جامعة دمشق، 103 صفحة.

نمور دمر، زياد شيخ خميس (2005). الحشرات الاقتصادية, منشورات جامعة البعث، الجمهورية العربية السورية، 514 ص.

Likert, R. (1932). "A technique for measurement of attitudes". Archives of Psychology, 140, 5-55.
- Pampel, K. and C. Fred. 2000, Logistic Regression, A primer. Sage Quantitative Applications in the Social Sciences Series #132. Thousand Oaks, CA: Sage Publications

Rhizopoulou, S (2007). *Olea europaea* L. A Botanical Contribution to Culture. American-Eurasian J. Agric. & Environ. Sci., 2 (4): 382-387, 2007

Yamane, T.(1967) "An Introductory Analysis" 2nd Ed., New York: Harper And Row.

Al-Mukhtar Journal of Agricultural, Veterinary and Environmental Sciences 3 (1): 61-71, 2025 Doi:

Research Article 6 Open Access

اختبار التوصية السمادية لأنواع مختلفة من الأسمدة في خصائص التربة الكيميائية والخصوبية وفي إنتاجية نبات الباذنجان.

أبابيل حمود **

أبابيل حمود:

ababelhamod@gmail.com البحوث العلمية الزراعية، إدارة الطبيعية – دمشق – سوريا

المستخلص: أجرى هذا البحث في منطقة ريف دمشق في محافظة دمشق للعامين (2023-2024) بهدف دراسة تأثير سماد الفيرميكومبوست وسماد روث الأبقار المخمر والسماد المعدني في بعض خواص الكيميائية والخصوبية وفي إنتاجية نبات الباذنجان، أدت الإضافات السمادية بالكميات المستخدمة حسب التوصية الزراعية للخضار الصيفية إلى عدم وجود فروق معنوية في حموضة وناقلية التربة، مما يظهر التأثير الأمن للمعاملات المدروسة، كما لم تسبب أي من المعاملات تملحاً للتربة، وزادت المعاملات السمادية العضوية (الفيرميكوميوست وروث الأبقار المخمر) زبادة معنوية في محتوى التربة من المادة العضوية مقارنة بمعاملة المعدني والشاهد، وتفوقت معاملة الفيرميكومبوست معنوياً على معاملة روث الأبقار المخمر، كما بينت النتائج تفوق معاملة الغيرميكومبوست على معاملة السماد المعدني والشاهد في محتوى التربة من الأزوت الكلي، بينما لم تظهر معاملة الفيرميكومبوست فروقاً معنوية بينها و بين معاملة سماد روث الأبقار المخمر، كما تظهر النتائج تفوق قيم البوتاسيوم والفوسفور المتاح في معاملة سماد روث الأبقار معنوياً على الشاهد وبفروق غير معنوية مع باقي المعاملات السمادية، بينما كانت الفروق غير معنوية ولصالح معاملتي الفيرميكومبوست والمعدني مقارنة مع الشاهد، وتفوقت جميع المعاملات على الشاهد في الإنتاجية، كما أظهرت النتائج فروقاً معنوية للمعاملات السمادية فيما بينها وكانت الإنتاجية بالترتيب السماد المعدني تليها معاملة فيرميكومبوست، ثم سماد روث الأبقار المخمر، وتدعم نتائج البحث أن الأسمدة العضوية المختلفة مهمة ولاغني عنها في رفع إنتاجية المحاصيل وخاصة الفيرميكومبوست لما يحويه من هرمونات ومنظمات النمو ولابد من تحديد معدل الاستفادة الأنسب لكل منها وصياغتها كتوصية سمادية عضوية إلى جانب التوصية السمادية المعدنية.

الكلمات المفتاحية: فيرميكومبوست. معدني. روث الأبقار المخمر .خصائص كيميائية. خصوبية. إنتاجية الباننجان.

*Corresponding author: ababelhamoud, <u>aba-belhamod@gmail.com</u> General Authority for Agricultural Scientific Research - Natural Resources

Received: 16 March 2025

Accepted: 30.04.2025

Publish online:

.....

Fertilizer Recommendation Test for Different Types of Fertilizers on Soil Chemical and Fertility Properties, and on Eggplant Productivity

Abstract: This research was conducted in the Damascus Countryside in Damascus Governorate in 2023 and 2024, with the aim of studying the effect of Fermi Compost, fermented cow dung manure and mineral fertilizer in some chemical properties and in the productivity of the eggplant. Fertilizer additives (Fermi Compost, mineral and cow manure) in the quantities used according to the agricultural recommendation of summer vegetables, led to the absence of significant differences in acidity and soil conductivity. This shows the safe effect of the studied transactions, and none of the transactions caused soil salinization, Organic fertilizers significantly increased the soil organic matter content compared to the mineral and control treatments, and the Fermicompost treatment exceeded clearly on the treatment of fermented cow manure, the results showed that the fermicompost treatment was superior to the mineral fertilizer coefficient and the control in the soil content of the total nitrogen, while the treatment of the Fermi-compost showed no significant different with the treatment of compost. Fermented cow manure, as the results show more than the values of potassium and phosphorous available in the treatment of cow manure on the control, and with non-clear differences with the rest of the compost treatments, while the differences were not clear and in favor of my fermi treatment. Compost and metal compared to the control. All transactions outperformed the control in productivity. The results also showed significant differences in the fertilizer transactions among themselves, and the productivity was in the order of mineral fertilizers, followed by the Fermi Compost treatment, then the fermented cow manure.

Keywords: Fermi Compost, mineral fertilizer, fermented cow dung manure, chemical properties, eggplant productivity.

المقدمة:

يتبع محصول الباذنجان (... Eggplant (Solanum melongena L.))، ويعتبر من المحاصيل المهمة اقتصادياً، وتأتي أهمية الباذنجان من خلال مساهمته في تزويد جسم الإنسان بمركبات الطاقة المهمة للبناء (الكربوهيدرات، المهمة اقتصادياً، وتأتي أهمية الباذنجان من خلال مساهمته في تزويد جسم الإنسان بمركبات الطاقة المهمة للبناء (الكربوهيدرات، البروتينات، الدهون)، وثماره الغنية بالفيتامينات والمعادن، إذ وجد أن كل 100 غرام من ثماره الطازجة تحتوي على 24 سعرة حرارية و 7.29% ماء و 4 غرام كربوهيدرات و 1.4 غرام بروتين و 0.3 غرام دهون و 1.3 غرام ألياف و 124مغ من فيتامين A و من فيتامين B و 0.1 غرام من فيتامين B و 0.1 مغ من فيتامين B و 0.1 مغ من فيتامين C مغ من فيتامين البول، وعلاج والحديد، وتمتلك ثماره أهمية طبية في معالجة مرضى السكري، الربو، خفض الكوليسترول في الدم، وحالات عسر البول، وعلاج أمراض الكبد (Samra و Youssef). إن الحاجة المتزايدة إلى إنتاج الغذاء بسبب النمو السكاني هي سبب التكثيف المستمر للإنتاج الزراعي، مما يدفع إلى زيادة غله المحاصيل الزراعية على حساب مساحة الأراضي، وهذه الأهداف قصيرة الأجل لإنتاج الغزاء، فبينما يركز المزارعون على زيادة أرباحهم من خلال زيادة التسميد، ينبغي أيضاً النظر فيما يتعلق بالحفاظ على خصائص التربة البيو كيميائية والخصوبية طويلة الأجل وفعاليتها (والمستمر للأسمدة غير المتوازن والمستمر للأسمدة غير العضوية أدى إلى بعض المشاكل في التربة ،حيث أدت إلى نقص العناصر الصغرى ،والتي تحد من إنتاجية واستقرار واستدامة صحة التربة، كما أن الكميات العالية من الأسمدة الكيميائية تقلل من تكوين العقيدات الجذرية وتقلل من تثبيت الأروت الجوى (Dong التورث كما أن الكميات العالية من الأسمدة الكيميائية تقلل من تكوين العقيدات الجذرية وتقلل من تثبيت الأروت الجوى (Dong

وآخرون، 2016). بينما تؤثر الأسمدة العضوية بشكل إيجابي على توافر المغذيات وعلى تكوينها الكلي بالإضافة إلى تأثيرها على مجموعات التربة البكتيرية (Qaswar وآخرون، 2020).

تؤدي المادة العضوية دوراً مهماً في تحسين الخصائص الفيزيائية والكيميائية والخصوبية للترب المختلفة، ونظراً لانخفاض المادة العضوية في ترب المناخات الجافة لأسباب عديدة إذ يُعد رفع المادة العضوية أمراً بالغ الأهمية، إن التغنية بالمخصبات العضوية لا تعد وسيلة لتحسين الإنتاجية فقط، بل أداة مهمة لخفض كمية الأسمدة الكيميائية المضافة (2011ه الدقيقة (2011ع ويرى البلخي (2006) أن أهم مايميز المادة العضوية هي تحولها في التربة بفعل الأحياء الدقيقة إلى دبال يعمل كصمام أمان يحد من دور الطور المعدني للتربة في تثبيت العناصر الكبرى والصغرى تثبيتاً غير عكوس ويعود ذلك إلى الدور الذي تقوم به الأحياء الدقيقة في اعتمادها على الدبال في التربة ونواتج تفككه كمصدر للطاقة يؤمن ديمومة حيويتها ونشاطها في رفع معدل جاهزية هذه العناصر في التربة والحيلولة دون تحولها في مركبات ضعيفة الذوبان وتحسين إضافتها للنبات، كما تنفرد الأحماض العضوية التي تساعد في زيادة الاستفادة من بعض العناصر غير الميسرة للنبات كالفسفور والحديد (العيد، 2020).

يعد الفيرميكمبوست من الأسمدة العضوية الناتجة عن التحلل البيولوجي المتسارع للنفايات العضوية من خلال التفاعلات بين ديدان الأرض والكائنات الحية الدقيقة، ويتفوق الفيرميكمبوست عن غيره من الأسمدة العضوية في احتوائه على مستويات عالية من العناصر الغذائية مثل: النتروجين والفوسفور والبوتاسيوم والكالسيوم و المغنزيوم، وكذلك العناصر الصغرى مثل: الحديد والزنك والنحاس والمنغنيز (Ceritoglu وآخرون، 2019) وهو سماد عضوي ثمين، حيث يعد سماداً غنياً بمضادات الأكسدة والفيتامينات والمواد الدبالية والفينولية والهرمونات المختلفة (2019، Joseph).

كما يمكن أن يلعب الفيرميكمبوست دوراً فعالاً في نمو النبات وأيضاً في تقليل الآثار الضارة لمختلف الضغوط البيئية على النباتات بسبب بنيته المسامية وتخزينها العالي للمياه بالإضافة إلى وجود مواد شبيهة بالهرمونات ومستويات عالية من المغذيات على اختلاف أنواعها، ويتم خلال عملية صناعة الفيرميكمبوست إنتاج العديد من هرمونات نمو النبات وخاصة الأكسينات والكينيتينات و الجبرلين والتي يمكن امتصاصها بواسطة الهيمات والفولفات في الفيرميكمبوست ويتم إطلاقها تدريجياً على نطاق زمنى وثيق مع زمن نمو النبات (Atiyeh وآخرون، 2002).

وفي دراسة قامت بها سعدية وآخرون (2023) لمعرفة دور التسميد بالفيرميكومبوست والأسمدة المعدنية في نمو وإنتاجية الفول تحت ظروف منطقة حمص -سوريا أظهرت النتائج أن التسميد بالفيرميكومبوست زاد إنتاجية الحبية وارتفاع النبات وعدد القرون في النبات الواحد، كما يمكن استبدال الاحتياجات السمادية المعدنية جزئياً، أو كليا بعد اختبار معدلات إضافته بالكميات التي يحتاجها النبات للحصول على أكبر عائد.

ودعم حسن وآخرون (2022) الدور الإيجابي لإضافة الفيرميكومبوست من خلال دراسة أثرها على بعض الخصائص الفيزيائية والكيميائية وإنتاجية فول الصويا حيث حسنت من الكثافة الظاهرية والمسامية لكلية وزيادة المادة العضوية وزيادة تيسر العناصر المعدنية الكبرى.

يعد التسميد العضوي من الخيارات التي يمكن أن تحافظ على خصوبة التربة وإمدادها المستمر للنبات بالمتطلبات الغذائية والمائية في ظل انخفاض المادة العضوية في الترب السورية، والارتفاع المفرط في أسعار المواد الكيميائية، والتوجه العالمي اليوم تجاه الحفاظ على سلامة البيئة وصحة الإنسان والحيوان، حيث يتوجه عدد كبير من الباحثين تجاه الأسمدة العضوية وتحسينها واختبارها ودراسة تأثيرها على مختلف المحاصيل الزراعية بسبب أمانها الصحي وقلة تكلفتها المادية وسلامة الغذاء الناتج. انطلاقا

مما تقدم يهدف هذ البحث إلى:دراسة فاعلية سماد الفيرميكومبوست ومقارنته بأنواع من الأسمدة (سماد روث الأبقار المخمر والسماد المعدني ، و دراسة تأثير سماد الفيرميكومبوست في بعض الخواص الكيميائية والخصوبية وفي إنتاجية نبات الباذنجان.

المواد وطرق البحث:

نفذ البحث خلال العامين (2023–2024) لموسم زراعي واحد، في منطقة ريف دمشق، والتي تقع شرق العاصمة دمشق، وعلى مسافة 10كم على خط طول 33 وخط عرض36 شمال خط الإستواء ويبلغ ارتفاعها عن سطح البحر 620 م، وتقع في منطقة الاستقرار الخامسة حيث يبلغ معدل الهطول المطري السنوي في المنطقة 145 مم، وتتراوح درجات الحرارة بين -4° م 21.75° م شتاءً وبين 39.75° م و 39.75° م صيفاً، وبلغ معدل الهطول المطري خلال موسم الزراعة 198م وتمتد مدة الهطول المطري من نهاية شهر أكتوبر حتى شهر مارس.

جدول: (1). تحليل التربة قبل الزراعة

	مغ/كغ			%	dS/m			پ %	، الميكانيكم	التحليل
N المعدني	K متاح	P متاح	الآزوت الكل <i>ي</i>	المادة العضوية	EC (1:5)	pH (1:2،5)	القوام	طین	سلت	رمل
14.63	310	10.86	0.02	0.38	1.61	7.70	طيني	58	22	20

يبين الجدول (1) نتائج تحليل عينة التربة قبل الزراعة، ويلاحظ أن التربة المستخدمة ذات قوام طيني و ذات تفاعل pH معتدل مائل للقلوية (7.8) وبمحتواها فقير من المادة العضوية وبمحتوى منخفض من الأزوت الكلي ومتوسطة المحتوى من الأزوت الكلي المعدني و الفسفور المتاح وذات محتوى عال من البوتاسيوم المتاح.

الأسمدة المضافة: تم استخدام ثلاثة أنواع من الأسمدة: فيرميكومبوست، تم تصنيعها في محافظة ريف دمشق، بكمية 4.6 كغ لكل مكرر، سماد روث أبقار مخمرة لمدة تزيد عن العام، مصدرها مزرعة أبقار في غوطة دمشق، بكمية 4 كغ لكل مكرر، سماد معدني N.P.K (20.20.20) البحوث العلمية الزراعية في محافظة دمشق، بكمية 0.3 كغ لكل معاملة.

جدول: (2). مواصفات الأسمدة العضوية المضافة

الرطوبة %	K %	P %	C/N	%O.M	C %	N %	EC dS/m	PH	الأسمدة العضوية
35.54	1.57	0.81	14.90	33.39	19.37	1.30	2.30	7.17	فيرميكومبوست
17.28	1.45	0.63	17.36	44.90	26.04	1.50	2.71	8.67	مخلفات بقر متخمر

يلاحظ من نتائج تحليل الأسمدة المستخدمة في البحث في الجدول (2)، أن درجة الحموضة تميل للقلوية وغناها بالأزوت والعناصر الخصوبية. هذا وقد أضيفت الأسمدة حسب التوصية السمادية لوزارة الزراعة لزراعة الخضار، حيث حددت التوصية السمادية لمحاصيل الخضار الصيفية بناءاً على محتوى التربة حسب نتائج التحليل المخبري: 150كغ $|K_2|$ هكتار و40 كغ $|K_2|$ هكتار و70كغ $|K_2|$ هكتار (الشاطر وأبو نقطة 2011). وتم الحساب كالآتي: كل 1 هكتار =10000 $|K_2|$ هكتار (X) كغ من $|K_2|$ هكتار فإن نقطة $|K_2|$ هكتار المعادلة $|K_2|$ هكتار (X) كغ من $|K_2|$ هكتار فإن نقطة $|K_2|$ هكتار (X) كنه من $|K_2|$ هكتار في المعادلة $|K_2|$ هكتار (X) كنه من $|K_2|$ هكتار في المعادلة $|K_2|$ هكتار (X)

من خلال التحليل المخبري للأسمدة (الفيرميكومبوست ،سماد روث الأبقار المخمرة) جدول (2) وبناءاً على محتواها من الأزوت يمكن تحديد كمية السماد كالآتي: كمية سماد الفيرميكومبوست = 4.62 = 0.06*100/1.5*100/1.5*100/1.5*100/1.5*100/1.5*2 كم من سماد روث الأبقار المخمرة الكل مكرر كمية سماد روث الأبقار المخمرة لكل مكرر كمية السماد المعدني=<math>0.06*100/1.5*100/1.5*2 كم من السماد المعدني، ومن خلال نتائج التحليل المخبري للأسمدة جدول(2) نجد

التحليل الإحصائي:

أن الكمية المضافة قد شملت كميات الفوسفور والبوتاسيوم.

تصميم التجربة: تم تصميم التجربة بطريقة تصميم تام العشوائية (Randomized Complete Design (RCD بأربع معاملات وبواقع ثلاثة مكررات لكل معاملة ، ومن ثم عدد القطع التجريبية 3 × 4 =12 قطعة، أما المعاملات كانت على النحو التالي (الشاهد دون إضافة، سماد معدني، سماد فيرميكومبوست وسماد روث الأبقار المخمر).

الدراسة الإحصائية: تمت دارسة النتائج إحصائياً باستخدام برنامج GenStat عند مستوى المعنوية 5%.

الزراعة والتحاليل الكيميائية: تمت زراعة شتلات الباذنجان بمعدل 9 شتلات والمسافة بين كل شتلة والأخرى (50سم) ضمن المكرر الواحد التي مساحتها (2م²). حيث تم زراعة ما يعادل 108 شتلات في كامل التجربة وكان موعد الزراعة في 10/3/2023 وتمت متابعة التجربة والقيام بعمليات التعشيب، وتم الإزهار في 2023/9/20 ، كما تم أخذ أول قطفة في2023/10/2 ، وتم حساب الإنتاجية وذلك بوزن حبات الباذنجان الكلية في كل قطعة تجريبية لعدة قطفات ،كما تم أخذ عينات تربة من كل قطعة تجريبية بعد الحصاد وأجربت عليها التحاليل الآتية :

درجة الحموضة (PH): في معلق تربة(1:2.5) باستعمال جهاز PH meter.

الناقلية الكهربائية EC : تم قياس الناقلية الكهربائية في مستخلص مائي للتربة بنسبة(1:5) وقياسها بجهاز التوصيل الكهربائي (Electrical conductivity meter).

الآزوت الكلي: بعد هضم العينات بالطريقة الرطبة (Walingaوآخرون، 1995) تم قدر بجهاز المطيافية الضوئية.

الفسفور المتاح: وتم الاستخلاص بطريقة (Olsenوآخرون، 1995) حيث قدر في جهاز المطيافية الضوئية الآلي (Richards).

البوتاسيوم المتاح: قدر بمستخلص أستيات الآمونيوم والقياس بجهاز Flame photometer (جهاز اللهب) المادة العضوية: بطريقة الأكسدة الرطبة (1958، Jackson).

النتائج والمناقشة:

تظهر نتائج التحليل الإحصائي في الجدول(3) لتأثير المعاملات المضافة في قيم الناقلية الكهربائية وفي قيم درجة الحموضة ومحتوى التربة من المادة العضوية عدم وجود فروق معنوية في درجة الحموضة للتربة تحت تأثير المعاملات السمادية المستخدمة في البحث، وقد يرجع الثبات في قيمة pH التربة عند إضافة المعاملات السمادية إلى القدرة التنظيمية للتربة والتي تلعب دور هاما في التغيرات المفاجئة في درجة اله pH وعوامل أخرى (Latterel والخرون، 1978؛ أبو نقطة وآخرون، 2012). كما يلاحظ من قيم الناقلية الكهربائية في الجدول (3) عدم وجود فروق معنوية بين مختلف المعاملات السمادية، وبينت الدراسة أن قيم الناقلية الكهربائية بقيت ضمن الحدود الطبيعية، فحافظت على التربة من التملح، وهو ما يعتبر آمناً للتربة على المدى البعيد وربما يمكن تقسير ذلك بقلة كمية السماد المضاف والغسل الناتج عن الري .

جدول:(3). تأثير المعاملات المضافة في قيم الناقلية الكهربائية وفي قيم درجة الحموضة ومحتوى التربة من المادة العضوية

المادة	EC(dS/m)	PH	المعاملة
العضوية %	(1:5)	(1:2.5)	المعاملة
0.48 ^d	0.74 a	7.78 a	شاهد
0.88 °	0.78 a	7.79°	سماد معدني
1.56 ^a	$0.69^{\rm \ a}$	7.82 a	سماد فيرميكومبوست
1.38 b	0.74 a	7.79 a	سماد روث الأبقار المخمر
0.17	0.15	0.04	LSD 5%

المتوسطات التي تشترك في نفس الحرف في كل عمود لا تختلف معنويا حسب اختبار أقل فرق معنوي (LSD) عند مستوى 5%.

كما بينت نتائج التحليل في الجدول (3) لمحتوى التربة من المادة العضوية أن إضافة المعاملات العضوية إلى التربة أدت إلى زيادة معنوية في محتوى التربة من المادة العضوية في التربة مقارنة بالشاهد والسماد المعدني، حيث سجلت المعاملة فيرميكومبوست أعلى محتوى من المادة العضوية بلغ 56.1% وبزيادة معنوية مقارنة مع معاملتي السماد المعدني والشاهد من جهة أخرى، ومع سماد روث الأبقار المخمر من جهة أخرى وسجلت معاملة الشاهد أقل محتوى من المادة العضوية بلغ 0.48 ويعزى ذلك بأن المعاملات السمادية العضوية المضافة مصدر المادة العضوية ، إضافة إلى أن السماد العضوي المضاف والسماد المعدني حسن من نمو النبات الخضري والجذري وبقاياه في التربة زادت من محتوى المادة العضوية ، أما تفوق معاملة الفيرميكومبوست على معاملة روث الأبقار المخمر فيعود ذلك إلى غنى الفيرميكومبوست بمضادات الأكسدة والفيتامينات والمواد الدبالية والفينولية والهرمونات المختلفة (Joseph ، 2019). بينما عند دراسة تأثير المعاملات المضافة في محتوى التربة من الأزوت الكلي والفوسفور المتاح والبوتاسيوم المتاح، أشارة نتائج التحليل الإحصائي في الجدول (4) أن محتوى التربة من الأزوت الكلي زاد بشكل معنوي في جميع المعاملات السمادية مقارنة مع الشاهد، وتفوق سماد الفيرميكومبوست على باقي المعاملات الكلي بغروق معنوية وذلك نتيجةً للدور الايجابي الذي تلعبه الأسمدة العضوية في التربة إذ تزيد من محتوى التربة من الآزوت الكلي بغروق معنوية وذلك نتيجةً للدور الايجابي الذي تلعبه الأسمدة العضوية في التربة إذ تزيد من محتوى التربة من الآزوت الكلي

وتوفر آزوتاً جاهزاً للامتصاص من قبل النبات (Hargitai ، 1985؛ بوعيسى، 1993)، وهذا يتفق مع ما وجده,.198 وتوفر آزوتاً جاهزاً للامتصاص من قبل النبات (Abbasi) بوعيسى، 25 الصافي المتحرر بنسبة 25 – 43% مقارنة بالشاهد حسب السماد العضوي المضاف ، وأشار فارس (1998) إلى أن إضافة الأسمدة العضوية للتربة يزيد من نسبة العناصر الغذائية في التربة كالآزوت والفسفور.

وتوضح نتائج الجدول (4) تقوقاً معنوياً للمعاملة فيرميكومبوست على السماد المعدني والشاهد، وأظهرت المعاملات (فيرميكومبوست وسماد روث الأبقار) فروقا غير معنوية مع بعضها ، وكذلك كانت الفروق غير معنوية بين الشاهد والسماد المعدني ولكنها لصالح السماد المعدني حيث بلغت (18.10)، ويمكن تفسير التفوق المعنوي للأسمدة العضوية على الشاهد مع ما بينه (Abbasi وآخرون، 2008) بأن الإضافات العضوية تزيد المتاح من الفسفور إما بشكل مباشر عبر تحللها أو بصورة غير مباشرة عبر تحريره كنتيجة لتأثير الأحماض العضوية وومن ثم تزيد نسبة المتاح منه أمام الامتصاص النباتي، وقد تكون بحسب Melero وآخرون (2007) نتيجة لازدياد النشاط الميكروبي بعد الإضافات العضوية وتسرعها لدورة الفسفور.

جدول: (4). . تأثير المعاملات المضافة في قيم الأزوت الكلى والفوسفور المتاح والبوتاسيوم المتاح

البوتاسيوم المتاح	الفسفور المتاح	- الأزوت الكلى	المعاملة
مغ/كغ	مغ/كغ	الأروك الكني	الفعاملة
365.50 b	17.28 °	0.03^{d}	شاهد
387.00 ab	$18.10^{\ \mathrm{bc}}$	0.04 $^{\rm c}$	سماد معدني
427.50 a	21.23 ab	0.07^{a}	سماد فيرميكومبوست
407.00 a	21.55 ^a	0.06 d	سماد روث الأبقار المخمر
57.57	3.44	0.005	LSD 5%

المتوسطات التي تشترك في نفس الحرف في كل عمود لا تختلف معنويا حسب اختبار أقل فرق معنوي (LSD) عند مستوى 5%.

كما تظهر نتائج التحليل الإحصائي تقوقاً معنوياً لمعاملة الفيرميكومبوست وسماد روث الأبقار المخمرة على معاملة الشاهد، في حين لم تكن هناك فروق معنوية بين معاملات الأسمدة العضوية والسماد المعدني من جهة والسماد المعدني والشاهد من جهة أخرى، ويمكن تفسير زيادة البوتاسيوم المتاح في التربة بأنه عند إضافة السماد العضوي يلعب دورا ايجابيا في زيادة إتاحة البوتاسيوم في التربة، وتوافقت هذه النتائج مع ما ذكره Charri وآخرون (2014) ،ويتقق مع ما لاحظته كريدي (2011) حيث وجدت أن استعمال الأسمدة العضوية أياً كان نوعها يزيد من كمية البوتاسيوم المتاح وهذا ينعكس بدوره في تحسين التغذية البوتاسية ومع ما توصل إليه أبو نقطة وآخرون (2011) إلى أن خاصية التخليب التي تميز العضوية تزيد التحركية ،ومن ثم إتاحة العديد من الكاتيونات للنبات. في حين تأثير أظهرت نتائج التحليل الإحصائي المعاملات المضافة في إنتاجية الباذنجان أن وزن حبات الباذنجان تقوق معاملة السماد المعدني وبلغ(8.771) كغ بفروق معنوية مع باقي المعاملات والشاهد، كما تقوقت معاملات التسميد العضوي على الشاهد بفروق معنوية، وأظهرت النتائج زيادة معنوية في الإنتاجية لصالح معاملة التسميد العضوي (الفيرميكومبوست) مقارنة مع نظيرها (سماد روث الأبقار المخمر).

هذه النتيجة توافقت مع ما ذكره Omidire وآخرون (2015) حيث أن الأسمدة المعدنية تحرر المغذيات بصورة أسرع وأعلى من تلك المطلوبة من قبل النبات عند زمن معين بسبب عدم حاجتها لعمليات التحلل والمعدنة كحال الأسمدة العضوية ،وتقوقت الأسمدة العضوية معنوياً على الشاهد وهذا يتقق مع ما بينه Abbasi وآخرون (2008) بأن الإضافات العضوية تزيد المتاح من

الفسفور والبوتاسيوم إما بشكل مباشر عبر تحللها أو بصورة غير مباشرة عبر تحريره كنتيجة لتأثير الأحماض العضوية ومن ثم تزيد نسبة المتاح منه أمام للامتصاص من قبل النبات.

جدول:(5). تأثير المعاملات المضافة في إنتاجية المحصول المزروع (كغ)

متوسط وزن الحبات الكلية لكل	المعاملة				
معاملة	المعاملة				
3.701 ^d	شاهد				
8.771 ^a	سماد معدني				
7.827 ^b	سماد فيرميكومبوست				
6.038°	سماد روث الأبقار المخمر				
0.782	LSD 5%				

المتوسطات التي تشترك في نفس الحرف في كل عمود لا تختلف معنويا حسب اختبار أقل فرق معنوي (LSD) عند مستوى 5%.

وقد تكون بحسب Melero وآخرون (2007) نتيجة لازدياد النشاط الميكروبي بعد الإضافات العضوية وتسرعها لدورة الفوسفور والبوتاسيوم. أوضح Hayes و Hayer (2001) والجلا (2002) أن المخصبات العضوية تساهم في تحسين الخواص الفيزيائية للتربة فهي تزيد من درجة تحببها نظراً لارتباط المواد العضوية مع حبيبات الطين الصغيرة وتشكيل حبيبات أكبر حجماً تزيد من مسامية التربة وتهويتها ,وتوفر الأكسجين اللازم لتنفس الجذور والأحياء الدقيقة ,كما تزيد من قدرة التربة على الاحتفاظ بالماء، وتقلل من الفقد عن طريق التبخر، وتحسن الصرف في الترب مما يساهم في زيادة الإنتاجية، أما تفوق معاملة الفيرميكومبوست معنوياً على سماد روث الأبقار المخمر، فيعود ذلك إلى أنه خلال عملية صناعة الفيرمي كمبوست يتم إنتاج العديد من هرمونات نمو النبات وخاصة الأكسينات و الكينيتينات و الجبرلين والتي يمكن امتصاصها بواسطة الهيمات والفولفات في الفيرميكمبوست ويتم إطلاقها تدريجياً على نطاق زمني وثيق مع زمن نمو النبات (Atiyeh وآخرون، 2002).

الاستنتاجات:

أدت الإضافات السمادية بالكميات المستخدمة في البحث الى عدم وجود فروق معنوية في حموضة وناقلية التربة، كما لم تسبب أي من المعاملات تملحاً للتربة، وسجلت المعاملات السمادية العضوية زيادة معنوية في محتوى التربة من المادة العضوية مقارنة بمعاملة المعدني والشاهد، وتفوقت معاملة الفيرميكومبوست معنوياً على معاملة روث الأبقار المخمر. كما بينت النتائج تفوق معاملة الفيرميكومبوست على معامل السماد المعدني والشاهد في محتوى التربة من الأزوت الكلي، بينما لم تظهر فروق معنوية بين معاملة سماد روث الأبقار المخمر من جهة وبين معاملة المعدني والفيرميكومبوست من جهة أخرى. أظهرت أيضاً النتائج تقوق قيم البوتاسيوم والفوسفور المتاح في معاملة سماد روث الأبقار معنوياً على الشاهد بينما كانت الفروق غير معنوية ولصالح معاملتي الفيرميكومبوست والمعدني مقارنة مع الشاهد. تقوقت جميع المعاملات على الشاهد في الإنتاجية، كما أظهرت النتائج فروقاً معنوية للمعاملات السمادية فيما بينها وكانت الإنتاجية بالترتيب السماد المعدني ثم معاملة فيرميكومبوست ثم سماد روث الأبقار المخمر. لذا يوصى باستخدام سماد الفيرميكومبوست كسماد آمن وبديل عن الأسمدة الكيميائية كما تعتبر الأسمدة العضوية المختلفة مهمة ولاغني عنها في رفع إنتاجية المحاصيل ولابد من تحديد معدل الاستفادة الأنسب لكل منها وخاصة الفيرميكومبوست نظراً لاحتوائه على هرمونات ومواد مهمة تنتجها الديدان.

الشكر والتقدير: أتقدم بجزيل الشكر للهيأة العامة للبحوث الزراعية ولمدير بحوث الموارد الطبيعية الدكتور محمد منهل الزعبي وأثمن كل الجهود المبذولة للمخبريين والعمال الزراعيين الذين ساهموا بهذه الثمرة المتواضعة.

المراجع:

أبو نقطة، فلاح وحبيب حسن و وطفة حياة. 2012: كيمياء التربة، كلية الزراعة، جامعة دمشق.

أبو نقطة، فالح ومحمد سعيد الشاطر. 2011 .خصوبة التربة والتسميد، كلية الزراعة، جامعة دمشق.

البلخي، أكرم.2006.دراسة تفاعلات بعض المواد العضوية الطبيعية والمنتجة ومعقداتها وفاعليتها في تخصيب التربة وإنتاجية المحاصبل ،أطروحة دكتوراه ،جامعة دمشق،132صفحة.

الجلا ,عبد المنعم محمد. 2002: الزراعة العضوية, الأسس وقواعد الإنتاج والمميزات-كلية الزراعة جامعة عين شمس ,302 صفحة.

الشاطر ،سعيد وابو نقطة، فلاح. 2011: خصوبة التربة والتسميد، منشورات كلية الزراعة، جامعة دمشق.

العيد،سلطان.2020:السماد المخمر (الكومبوست). المملكة العربية السعودية-وزارة الزراعة-مركز ابحاث الزراعة العضوية بمنطقة القصيم.

بوعيسى على عبدالعزيز زيدان ,1993:-خصوبة التربة وتغذية النبات, منشورات جامعة تشرين.

حسن ،إياس والعبدو ،عبد الإله وخزام، بشرى 2022 :تأثير إضافة الفيرميكومبوست على بعض الخصائص الفيزيائية والكيميائية للتربة المزروعة بفول الصويا، رسالة ماجستير، جامعة دمشق، سوريا.

فارس ، فاروق 1998: أساسيات علم الأراضي ، منشورات جامعة دمشق.

كريدي ،نبيلة.2011: دراسة أنواع مختلفة من كومبوست المخلفات الزراعية ومعرفة تأثيرها في بعض خواص التربة و إنتاجية النبات ، رسالة ماجستير. جامعة دمشق، سوريا.

Abbasi.M.K., Khizar. A. and Tahir. M.M. 2008. Forage production nitrogen fixation and soil N accumulation of white clover (Trifolium repense L.) in the hill farming system of Azad Jammu and Kashmir . Commun Soil. Sci. Plant. Anal. 40: 1546-1565.

Abbasi.M.K.:Hina.M.:Abdul-Khalique.and Razaq Khan.S.2007.Mineralization of three organic manures used as nitrogen source in a soil incubated under laboratory conditions .Communications in soil science and plant analysis .Vol .38 (13&14).P.1691-1711.

Atiyeh RM, Lee S, Edwards CA, Arancon NQ, Metzger JD (2002) The infl uence of humic acids derived from earthwormprocessed organic wastes on plant growth. Bioresour Technol 84:7–14.

Ceritoglu M, Şahin S, Erman M, (2019) Effects of vermicompost on plant growth and soil structure. Selcuk J.Agric. & Food Sci. 32(3), 607-615.

Charri, L., Elloumi, N., Mseddi, S., Gargouri, K., Bourouina, B., Mechichi, T. and Kallel, M. 2014. Effects of olive mill wastewater on soil nutrients availability. Int J Interdiscip Multidiscip Stud, 2, pp.175-183.

Dong TY, Zhang BW, Weng QF and Hu QB.(2016). The production relationship of destruxins and blastospores of Metarhizium anisopliae with virulence against Plutella xylostella. Journal of Integrative Agriculture 15(6).

Hargitai.L.1985- Soil organic mater and soil fertility. Eur. J. Agron. 20:71-87.

Hayes ,M.H.B.; Clapp ,C.E.(2001): Humic substances: considerations , aspECts of structure and environment influences .J. Soil Sci .166(11):723-737.

Jackson M. L. (1958): .Soil chemical analysis. Prentice Hall Inc.Englewood Cliffe N J.pp 151-153 and 331-334.

Joseph PV, (2019) Efficacy of Different Substrates on Vermicompost Production. In: A Biochemcal Analysis, OrganicFertilizers - History, Production and Applications (Ed. by M, Larramendy, S, Soloneski) IntechOpen: DOI:10.5772/intechopen.86187.

Latterel, J.J., Dowdy, R.H. and Larson, W.E. 1978. Correlation of Extractable Metals and Metal Uptake of Snap 80 Beans Grown on Soil Amended with Sewage Sludge 1. Journal of Environment.al Quality, 7(3), pp.435-440.

Magdi, T.A., E. M. Selim and M. El-Gamrya. 2011. Integrated effect of bio and mineral fertilizer and humic substances on growth yield and nutrient of fertigated cowpea (Vigna unguiculata L.) grown on sandy soil. Journal of agronomy, 10(1): 34-39.

Melero. S., Madejon. E., Ruiz. J.C and Herencia. J.F. 2007. Chemical and biochemical properties of a clay soil under dryland agriculture system as affected by organic fertilization. European Journal of Agronomy. 26: 327-334.

Olsen R. S, C. V. Cole, F. S. Watanabe, L. A. Dean; 1995. Estimation of available phosphorus in soil by extraction with sodium bicarbonate. USDA Circular No.939.

Omidire. N.S., Shange R., Khan. V., Bean. R and Bean. J. 2015. Assessing the impacts of inorganic and organic fertilizer on crop performance under a microirrigation – plastic mulsh regime. Professional Agricultural Workers Journal . 3(1): 6.

Qaswar M, Jing H, Ahmed W, Dongchu L, Shujun L, Lu Z and Huimin Z. (2020). Yield sustainability, soil organic carbonsequestration and nutrients balance under long-term combined application of manure and inorganic fertilizers in acidic paddy soil. Soil and Tillage Research 198.

Radocaj Dorijan, Juriši Mladen and Gašparovi Mateo (2022): The Role of Remote Sensing Data and Methods in a Modern Approach to Fertilization in Precision Agriculture j.Remote Sens.Research Station, Rajikot, Jumla, Nepal Journal of Agriculture and Natural Resources 3(2): 257-275.

Richards L. A. 1962. Diagnosis and improvement of saline and alkaline soils. Science direct.Geoderma.123:355-361.

Shehata, S. A., A. A. Ghrib, M.M. EI-Mogy, K. F. Abdel Gawad and E. A. Shalaby. 2011. Influence of compost, amino and humic acids on the growth, yield and chemical parameters of strawberries. Journal of Medicinal Plant Research, 5(11): 2304-2308

Walinga I., J. J. Van Der Lee, V. J. G. Houba, W. Van Vark, I. Novozamsky 1995. Plant Analysis Manual. Kluwer Academic Publishers. London.

Youssef Jana and Samra Badie.2024:Studying the Effect of Treatment with Gibberellic Acid (GA3) on the Growth and Productivity of Eggplant (Solanum melongena L.) -Syrian Journal of Agricultural Research – SJAR 11(2): 96.

Research Article 6 Open Access

تقييم جودة الحبوب لعشر سلالات من القمح الطري (قمح الخبز) .Triticum aestivum L مزروعة تحت ظروف الزراعة البعلية

جمال عمر نصر 1* ، ناصر محمد خطاب 2 ، صالحة علي البكوش 3 ، نادية شميلة 4 ، سعاد زريق

المستخلص: هدفت الدراسة إلى تقييم جودة حبوب عشر سلالات من قمح الخبز المزروعة بمنطقة العويلية بالمنطقة الشرقية بليبيا. أجريت التجربة في الموسم الزراعي 2020–2021 م تحت ظروف الزراعة البعلية، وقد أظهرت النتائج وجود فروق معنوية بين الأصناف المختبرة في صفات جودة الحبوب المتمثلة في الوزن النوعي ووزن الألف حبة ورقم السقوط والصلابة ومحتوى الرطوبة ومحتوى البروتين والجلوتين الرطب ومؤشر الجلوتين ورقم الترسيب، وتمكنت السلالات المختبرة من استيفاء متطلبات الجودة للوزن النوعي ولوزن الألف حبة ولمحتوى الرطوبة ولمؤشر الجلوتين بمتوسطات متطلبات الجودة للوزن النوعي ولوزن الألف حبة ولمحتوى الرطوبة ولمؤشر الجلوتين بمتوسطات متطلبات الجودة لرقم السقوط وصلابة الحبوب، وقد تمكنت السلالة 22 EBW من بين السلالات الأخرى من تسجيل أعلى قيمة لمحتوى البروتين والجلوتين الرطب بقيم 13.02% و 26.3% على التوالي، وتجاوزت السلالة EBW 11 بشكل منفرد الحد الأدنى لمتطلبات الجودة لرقم الترسيب بقيمة التوالي، وتجاوزت السلالة EBW 11 بشكل منفرد الحد الأدنى لمتطلبات الجودة لرقم الترسيب بقيمة والضرورية لصنع خبز جيد.

الكلمات المفتاحية: قمح طري، سلالات، قمح الخبز، الزراعة البعلية، جودة الحبوب.

Grain Quality Evaluation of Ten Soft Wheat (Bread Wheat) Genotypes *Triticum aestivum* L. Grown under rain-fed Conditions

Abstract: The aim of this study was to evaluate the grain quality of ten bread wheat genotypes grown in the Al-Awailia zone in the eastern region of Libya. The experiment was conducted during the 2020-2021 agricultural season under rain-fed conditions. The results showed significant differences among the tested genotypes in grain quality characteristics, including test weight, thousand kernel weight, falling number, hardness, moisture content, protein content, wet gluten, gluten index, and sedimentation volume. The tested genotypes met the quality requirements for test weight, thousand kernel weight, moisture content, and gluten index, with mean values of 80.5 kg/hl, 43.3 g, 11.4%, and 83.1%, respectively. While, all of them failed to meet the quality requirements for falling number and grain hardness. Genotype EBW 22 recorded the highest values for protein and wet gluten content among the genotypes, with values of 13.02% and 26.3%, respectively. Only the genotype EBW 11 exceeded the minimum quality requirement for sedimentation volume with value of 17 ml. None of the tested genotypes possessed all the quality characteristics required for good bread making.

Keywords: soft wheat, genotypes, bread wheat, rain-fed, grain quality

جمال عمر نصر: قسم بحوث علوم وتقنية الأغذية، مركز البحوث الزراعية، ط

.jamalbulgasem@gmail.com

ناصر محمد خطاب: قسم المحاصيل الحقلية، مركز البحوث الزراعية، البيضاء/ ليبيا.

صالحة علي البكوش: قسم بحوث علوم وتقنية الأغذية، مركز البحوث الزراعية، طرابلس/ لببيا.

نادية شميلة: قسم بحوث علوم وتقنية الأغذية، مركز البحوث الزراعية، طرابلس/ ليبيا.

سعاد زريق: قسم بحوث علوم وتقنية الأغذية، مركز البحوث الزراعية، طرابلس/ ليبيا.

*Corresponding author:

Jamal Omar Nasr,: jamalbulgasem@gmail.com Food Science & Techn. Research Department, Agricultural Research Center, Tripoli, Libya.

Nasir M. Khatab, Naserktab2@gmail.com Field Crops Department, Agricultural Research Center, El-Baidha, Libya.

Salha A. El-bakoush, salha@gmail.com, Food Science & Techn. Research Department, Agricultural Research Center, Tripoli, Libya.

NadiaShmaila, nadiachamila85@gmail.com, Food Science & Techn. Research Department,Agricultural Research Center, Tripoli, Libya.

Souad Zraig,

maiseali505@gmail.com, Food Science & Techn. Research Department,Agricultural Research Center, Tripoli, Libya.

Received: 04.04. 2025 Accepted: 30.04. 2025

Publish online:

تُعد دول منطقة البحر المتوسط في شمال إفريقيا من أكثر دول العالم استهلاكاً للقمح (2002، Curtis)، وقد ازداد الإقبال على استهلاك منتجات القمح النهائية عالية الجودة بشكل ملحوظ فيها (Rharrabti وآخرون، 2001)، وتستورد هذه الدول غالبية احتياجاتها من القمح من الخارج، ومعظم إنتاجها من القمح يتم تحت ظروف الزراعة البعلية باعتبارها تقع في نطاق منطقة شمال إفريقيا والشرق الأدنى التي تشكل فيها الأراضي البعلية حوالي 75% من الأراضي الصالحة للزراعة (Crespo-Herrera) وآخرون، 2018؛ Curtis (2002 (Curtis باستوردت دول البحر المتوسط في شمال افريقيا حوالي 61% من متطلباتها السنوية من القمح في 2020 (FAO) (2022).

تستورد ليبيا ما يُقارب من 90% من متطلباتها من القمح سنوياً باعتبارها من أكثر دول المنطقة والعالم جفافاً (ICARDA، 2004)، إنتاجها من القمح بلغ حوالي 130 ألف طن في 2020 م وهو ما يُعادل 10.3% من احتياجاتها للاستهلاك البشري (FAO، 2022). وقد سعت ليبيا منذ عقود لإنتاج أكبر قدر ممكن من القمح محلياً عبر قطاع الزراعة من خلال زراعة أصناف محلية من القمح وأُخرى مُدخلة introduced معروفة في مواطنها الأصلية بالإنتاجية العالية higher yield potential وجودة الحبوب grain quality إلا أن الظروف البيئية المعاكسة كانت تحول دون بلوغ ذلك.

تتميز ليبيا بظروف مناخية تتأثر بالبحر المتوسط من الشمال وبالصحراء الكبرى من الجنوب، وبهطول محدود للأمطار يحدث عادة من شهر أكتوبر إلى مارس ويتنبنب من مكان لآخر ومن سنة لأخرى، وتقتصر معظم الأراضي المنتجة زراعياً على شريط يمتد على طول ساحل البحر متضمناً منطقتي الجبل الأخضر في شرق البلاد وجبل نفوسة في غربها، حيث يبلغ متوسط هطول الأمطار في منطقة الجبل الأخضر حوالي 400 - 500 مليلتر سنوياً، وهو أعلى من الحد الأدنى الضروري لاستدامة الزراعة البعلية (Heemskerk و Abagandura (2012، Koopmanschap و 2023). خصائص البعلية (Park (2023) Aquastst (2016) و Park (2023) المتوسط إلى حد كبير المودة الحبوب محكومة وراثيا genetically controlled الإراعة البعلية وتقافي منطقة البحر المتوسط إلى حد كبير في جودة حبوبها نتيجة الاختلافات في مكونات الحبوب (Iraja البعلية المتمثلة في الإجهاد المائي والحراري grain composition النسبية لتراكم النشا فيها الناجم عن تفاعل العوامل الوراثية مع العوامل البيئية المتمثلة في الإجهاد المائي والحراري water and heat stress والتي عادة ما تظهر في صيغة علاقة ارتباط سلبي ما بين الإنتاجية ووزن الحبوب من ناحية مع محتوى الحبوب من البروتين كمعيار مهم في جودة الحبوب لتأثيره الواضح على خصائص العجين dough properties من ناحية أخرى (2004 Aydin و 2014).

تختلف استجابة الأنماط الجينية للتسميد النيتروجيني، فالأنماط التي تتسم بالإنتاجية العالية لها كفاءة أعلى في امتصاص واستخدام النيتروجين، والتباين في امتصاص النيتروجين يُمكن أن ينتج عنه تقلبات ملحوظة في محتوى الحبوب من البروتين. وفي ظل العلاقة السلبية التي تربط الإنتاجية ووزن الحبوب مع محتوى الحبوب من البروتين، يُمكن للنيتروجين أن يلعب الدور الأهم لزيادة محتوى الحبوب من البروتين، خاصة عند إضافته في مرحلة الإزهار anthesis قبل طور تعبئة وامتلاء الحبوب Ozturk وOzturk وOxtiz-Monasterio) phase لمعرفة خصائص الجودة لحبوب القمح المدروسة التي تمت زراعتها تحت نظام الري البعلي.

المواد وطرق البحث:

أجريت الدراسة على عشر عينات حبوب لسلالات مختلفة من قمح الخبز وهي EBW 7 ،EBW 2 ،EBW 1 ،EBW 22 و EBW 12 ،EBW 12 ،EBW 11 لتقييم جودتها، عينات حبوب القمح للسلالات المدروسة المزروعة خلال الموسم الزراعي 2020–2021 م كانت ضمن الأنشطة البحثية لمركز البحوث الزراعية في منطقة

العويلية بالمنطقة الشرقية على بعد 75.5 كم جنوب غرب مدينة البيضاء و250.5 كم شمال شرق مدينة بنغازي، عينات حبوب القمح جميعها نظفت ونقيت من الشوائب وحفظت إلى حين إجراء الفحوصات اللازمة عليها، أجريت التجربة تحت ظروف الزراعة البعلية بمعدل تسميد 120 كيلوجرام للهكتار من السماد فوسفات ثنائي الأمونيوم /18) Di-ammonium phosphate الزراعة البعلية بمعدل تسميد 200 كيلوجرام للهكتار من السماد فوسفات ثنائي الأمونيوم /18)

قُدر الوزن النوعي Test Weight بالتحدام أسطوانة قياسية سعة 1 لتر، قسمت الأوزان التي تم الحصول عليها بالجرام المتاس من القمح على 10، وقدرت القيم بالكيلوجرام/هيكتولتر. كما قُدر وزن الألف حبة Automatic Seed Counter من القمح على 10، وقدرت القيم بالكيلوجرام/هيكتولتر. كما قُدر وزن الألف حبة Automatic Seed Counter، وضمن تجهيز العينات لاختبارات المستهدفة. طاحونة اللاجودة الإضافية، طُحنت عينات حبوب القمح في أربع مطاحن معملية مختلفة وفقاً للاختبارات المستهدفة. طاحونة Buhler اللجودة الإضافية، طُحنت عينات حبوب القمح في أربع مطاحن معملية مختلفة وفقاً للاختبارات المستهدفة. طاحونة 10-44 Mill Moisture Content وعن تقدير محتوى الرطوبة Falling Number طبقاً للطريقة القياسية 13-88 وكذلك Wet Gluten & Gluten Index في تقدير محتوى البروتين الرطب ومؤشر الجلوتين لاوطاله للإواطالية المواطنة الطريقة القياسية 14-10 لاتخدام والمنافذين المعملية المزودة بالقرص الناعم طبقاً للطريقة القياسية Particle Size Index باستخدام واستخدام واستخدام والمعملية المرودة القياسية الماء المعملية المواطنة العلامية المواطنة المنوب التحليل القياسي للتباين الأحادي (1162)، وقد أُجريت اختبارات تحليل الجودة لكافة العينات بمكررين. استخدام أسلوب التحليل القياسي للتباين الأحادي (ANOVA one way)، وتمت مقارنة المتوسطات والفروق باستخدام (2010 عند مستوى معنوية (P = 0.05).

النتائج والمناقشة:

جودة حبوب القمح هي مزيج من بعض الخصائص الفيزيائية والكيميائية التي يتم التعبير عنها من خلال مجموعة معقدة من المؤشرات التي تتضمن حالتها الفيزيائية وتركيبها الكيميائي وخصائصها الكيموحيوية، ويعتمد تعبيرها على طبيعتها الوراثية والمؤشرات البيئية ومعاملات التسميد (Aissaoui) و Aissaoui و Rao (2018 و Penni و Aissaoui) ويعد الإجهاد الناجم عن الجفاف أحد عوامل الظروف البيئية التي تؤثر على الجودة، ودرجات الحرارة و أو الرطوبة التي يتم ملاحظتها أثناء مرحلة تعبئة الحبوب هي في الغالب التي تؤثر بشكل كبير على جودة حبوب القمح (Sakr) و أخرون، 2021) كما تلعب الأسمدة fertilizer خاصة النيتروجينية منها دوراً مهما في تحسين الإنتاجية بالإضافة لجودة الحبوب grain quality كما تلعب الأسمدة عليما في جميع الصفات (P 20.05)، أظهرت جميع سلالات قمح الخبز المستخدمة في هذه الدراسة تبايناً معنوياً في جميع الصفات المقاسة عند مستوى (2005 (1 e 2)). الجزول (1 و 2). الوزن النوعي Test Weight هو أحد المقاييس التي يُعتمد عليها في تصنيف جودة القمح، فكلما زادت القيمة زادت كمية المادة الجافة ومن ثم إنتاجية الدقيق، ويختلف الوزن النوعي اعتمادًا على التراكيب الوراثية وعلى الظروف البيئية وكذلك على الممارسات الزراعية، ويُشترط في حبوب القمح المقبولة للاستخدام الصناعي ألا التراكيب الوراثية وعلى الظروف البيئية وكذلك على الممارسات الزراعية، ويُشترط في حبوب القمح المقبولة للاستخدام الصناعي ألا يقل وزنها النوعي عن 76.0 كيلوجرام/هيكتولتر، بينما تصنف أصناف القمح التي يصل وزنها النوعي إلى 80.0

كيلوجرام/هيكتولتر على أنها أصناف قمح جيدة جدًا (Dhaka وآخرون، 2012؛ Yıldırım و 2020، Atasoy و Yıldırım و Yıldırım و 2021، Deger

جدول (1). الخصائص الطبيعية لأصناف القمح

صلابة الحبوب (%)	رقم السقوط (ثانية)	وزن الألف حبة (جم)	الوزن النوعي (كجم/ هكتولتر)	السلالة
7.4	477	43.8	79.1	EBW 1
13.1	580	41.8	81.4	EBW 2
9.1	416	39.6	79.8	EBW 7
9.5	476	40.7	81.8	EBW 8
10.7	570	36.5	77.4	EBW 11
10.8	398	46.2	81.8	EBW 12
12.1	570	47.9	80.7	EBW 14
12.6	563	47.0	79.8	EBW 17
8.6	612	42.5	83.5	EBW 18
12.2	506	47.2	79.8	EBW 22
10.6	517	43.3	80.5	المتوسط
0.89	136	1.56	1.76	LSD (0.5%)
3.8	11.8	1.6	1.0	CV (%)

بلغ متوسط قيم الوزن النوعي للحبوب للسلالات كافة في هذه الدراسة 80.5 كيلوجرام/هيكتولتر، وسجلت السلالة EBW 11 قيمة وكانت 77.4 كيلوجرام/هيكتولتر، بينما سجلت السلالة EBW 18 أعلى قيمة وكانت 83.5 كيلوجرام/هيكتولتر (جدول 1). الأوزان النوعية الجيدة والمرتفعة لحبوب السلالات المدروسة يعود في الغالب لانخفاض محتواها من الرطوية باعتبارها أنتجت تحت ظروف الزراعة البعلية، فالجفاف يزيد من معدل فقدان الماء من الحبوب (Ozturk) و Ozturk، كوجنت علاقة ارتباط سلبية جيدة (0.510) ما بين الوزن النوعي ومحتوى الرطوية للسلالات المختلفة في هذه الدراسة (جدول 3)، ويمكن تصنيف السلالات المختبرة في هذه الدراسة على أنها سلالات قمح ذات أهمية اقتصادية بالنظر لأوزانها النوعية. وتظهر النتائج أيضاً أن وزن الألف حبة المدتبرة في هذه الدراسة على أنها سلالات قمح ذات أهمية اقتصادية بالنظر وازن الألف حبم الحبة المدتبة وحجم الحبة المدروسة ما بين 36.5 و 47.5 جرام بمتوسط عام 13.3 وسجلت السلالة EBW 11 أدرون، 2015). تراوحت قيم اختبار وزن الألف حبة للسلالات المدروسة ما بين 36.5 و 47.5 جرام بمتوسط عام 43.5 جرام، وسجلت السلالة EBW 11 أدرون الألف حبة في هذه الدراسة تعد جيدة من الناحية الاقتصادية، فقيم وزن الألف حبة البالغة 30.0 جرام فأقل غير مقبولة لمردودها المتدني من الدقيق، وعلاقة الارتباط الضعيفة الموجبة المسجلة في وزن الألف حبة ومحتوى الحبوب من البروتين (جدول 3) تشير لانخفاض احتمالية تعرض المحصول دراستنا (0.10) ما بين وزن الألف حبة ومحتوى الحبوب من البروتين (جدول 3) تشير لانخفاض احتمالية تعرض المحصول وزن الألف حبة تكون مصحوبة عموماً بانخفاض في محتوى الحبوب من البروتين في غياب أو مع تراجع شدة الإجهاد البيئي وزن الألف حبة تكون مصحوبة عموماً بانخفاض في محتوى الحبوب من البروتين في غياب أو مع تراجع شدة الإجهاد البيئي وزن الألف حبة عموماً بانخفاض في محتوى الحبوب من البروتين في غياب أو مع تراجع شدة الإجهاد البيئي

(Aissaoui) Tatar (2021 وآخرون، 2012) Sakr (2002 ، Pena (2004 ، Aydin وآخرون، 2011) Aissaoui وآخرون، 2020). أما رقم السقوط Falling Number هو اختبار يؤشر لمدى إنبات حبوب القمح الناضجة في سنابلها في α- نتيجة تعرضها للظروف الجوية الرطبة المحيطة، وبنشط انزيم آلفا أميليز pre-harvest sprouting amylase بشكل عام نتيجة عملية الإنبات، ويعمل على تكسير جزبئات النشا إلى سكر جلوكوز، وبتم تقدير هذا النشاط الإنزيمي من خلال اختبار رقم السقوط الذي يمكن من خلاله توقع حجم الرغيف المنتج من محصول القمح، حيث يتراوح المدى الأمثل لرقم السقوط في دقيق القمح ما بين 220- 250 ثانية (Aissaoui و Fenni 2018؛ Tatar وآخرون، 2020). وتراوحت قيم رقم السقوط للسلالات المختلفة في هذه الدراسة ما بين 398 و 612 ثانية، وكان متوسط رقم السقوط للسلالات كافةً 517 ثانية، حيث سجلت السلالة EBW 12 أقل قيمة لرقم السقوط وسجلت السلالة EBW 18 أعلى قيمة له (جدول 1). والارتفاع الحاصل في قيم رقم السقوط يشير إلى محدودية الإنبات نتيجة جفاف الجو المُحيط بشكل عام، بينما التباين في القيم بين السلالات من الممكن أن يعود لتراكيبها الجينية، فقد ذكر Tatar و آخرون (2020)، بأن رقم السقوط يختلف وفقاً للأصناف، كما ينخفض مع الري. علاقة الإرتباط السلبية (0.303-) ما بين رقم السقوط ومحتوى الرطوبة في الحبوب (جدول 3) تتوافق مع نتائج Aissaoui و 2018)، التي أظهرت انخفاضاً في رقم السقوط بما يُقارب 25% تحت نظام الري التكميلي. في حين كانت صلابة الحبوب Grain Hardness سمة من سمات الجودة لحبوب القمح المرتبطة بخصائص الطحن وعاملاً مهمًا في تحسين جودة المنتج النهائي للقمح (Pena، 2002). تتدخل خاصية الصلابة التي نتأثر بالعوامل الوراثية وبالظروف البيئية في تحديد مسارات عملية الطحن من زمن وطاقة مُستهلكة وفي العائد من الدقيق المرغوب، وتعد من أهم خصائص الجودة المؤثرة في تكاليف المنتج النهائي(Famera وآخرون، 2004؛ Hruskova و Švecc، 2009؛ Pena (2002). يُستخدم اختبار مؤشر حجم الجسيمات Particle Size Index لتقدير صلابة حبوب القمح، والذي تزداد فيه الصلابة مع انخفاض القيمة أو النسبة. تتراوح صلابة حبوب القمح الصلبة أو المتوسطة الصلابة hard or medium hard المفضلة لصناعة الخبز الجيد ما بين 17− 25% وفق اختبار مؤشر حجم الجسيمات، وتزداد جودة الخبز المنتج مع استخدام حبوب قمح متوسطة الصلابة medium hard تتراوح صلابته ما بين 17- 20%. ومستويات النشا المُتهتك damaged starch الناتج عن طحن هذه الفئات من القمح تكون مناسبة أكثر الإنتاج الخبر الجيد بالنظر لقدرتها على امتصاص أعلى كمية مرغوبة من الماء في العجين (Başçiftçi و Kınacı، Hruskova (2015؛ 2006، 2009، Pena (2009، Pena). وقد تراوحت قيم الصلابة لحبوب القمح للسلالات كافةً في هذه الدراسة ما بين 7.4 و 13.1% وفق مؤشر حجم الجسيمات وبمتوسط عام 10.6%، حيث كانت حبوب القمح للسلالة EBW 1 الأقل قيمة والأكثر صلابة من بين كافة السلالات المدروسة، في حين كانت حبوب القمح للسلالة 2 الأعلى قيمة والأقل صلابة (جدول 1). حبوب سلالات القمح المدروسة اتسمت بصلابة زائدة إلى مُفرطة ومن الواضح أنها كانت نتيجة تأثير العوامل البيئية باعتبارها مُنتجة تحت ظروف الري البعلى، فالارتباط الإيجابي الذي ظهر في الدراسة (0.544) ما بين قيم محتوى الرطوبة لحبوب السلالات المختلفة وصلابتها (جدول 3)، يشير في الحقيقة لعلاقة عكسية " سلبية " ما بين محتوى الحبوب من الرطوبة والصلابة بالنظر الى أن سمة الصلابة تزداد مع نقص القيمة أو النسبة وفق مؤشر حجم الجسيمات، والتي تتوافق مع ما ذكره Rao وآخرون، (2021)، بأن الصلابة تزداد مع نقص مياه الري.

محتوى الرطوبة Moisture Content ليس له أي تأثير مباشر على جودة الحبوب، إلا أن ذلك يمكن أن يؤثر بشكل غير مباشر على الحبوب الرطوبة في الحبوب لزيادة النشاط الميكروبي وإلى انخفاض على الجودة من خلال عمليات ما بعد الحصاد، حيث تؤدي زيادة الرطوبة في الحبوب لزيادة النشاط الميكروبي وإلى انخفاض المادة الجافة فيها وهو أمر غير مرغوب لحفظ وتجارة وطحن الحبوب (Aissaoui) و Aissaoui).

مستويات الرطوبة لحبوب القمح في حدود 11% أو أقل تكون أكثر ملاءمة لظروف التخزين ولعمليات الطحن، بينما زيادة الرطوبة عن الحدود الموصى بها يعمل على الحد من فترة التخزين للحبوب (Aissaoui و Aissaoui و آخرون، 2015). بلغ المتوسط العام لمحتوى الرطوبة للسلالات المختلفة في دراستنا 11.4%، وسجلت السلالة EBW 18 أدنى مستوى للرطوبة من بين السلالات المدروسة وكانت 10.1%، بينما سجلت السلالة EBW 12 أعلى مستوى وبلغ 11.6% (جدول 2).

جدول (2). الخصائص الكيميائية لأصناف القمح:

رقم الترسيب (مل)	مؤشر الجلوتين (%)	جلوتين رطب (%)	محتوی بروتین (%)	محتوى رطوبة (%)	السلالة
13.3	71.5	23.2	11.07	11.3	EBW 1
11.6	75.5	23.0	11.64	11.3	EBW 2
12.7	84.5	22.0	11.64	11.4	EBW 7
13.1	72.0	21.8	11.63	11.1	EBW 8
17.3	93.0	21.6	12.07	11.4	EBW 11
11.7	93.0	17.5	11.31	11.6	EBW 12
12.2	89.5	18.9	11.86	11.5	EBW 14
11.7	92.5	21.0	12.14	11.5	EBW 17
12.6	75.0	23.8	12.39	10.1	EBW 18
11.7	84.5	26.3	13.02	11.5	EBW 22
12.8	83.1	21.9	11.87	11.4	المتوسط
1.21	9.05	1.53	0.39	0.12	LSD (0.5%)
4.3	4.9	3.1	1.5	0.5	CV (%)

المعدل المنخفض لمحتوى الرطوبة للحبوب لكافة السلالات المدروسة يعود في الغالب للظروف البيئية الجافة في مناطق الزراعات البعلية، فقد ذكر Aydin و Ozturk (2004)، أن الجفاف يزيد من معدل فقدان الماء من الحبوب. كما يُعد محتوى البروتين الموجود وي البروتين في القمح بخصائص Protein Content لحبيد، وتعتمد جودة الخبز المنتج بشكل كبير على كمية quantity وجودة yuldity البروتين ألموجود في الحبوب صنع الخبز الجيد، وتعتمد جودة الخبز المنتج بشكل كبير على كمية quantity وجودة yuldity البروتين الموجود في الحبوب القمح ما بين 8 الى 18% ويعتمد ذلك جزئيا على النوع والصنف ويتأثر بالعوامل البيئية وبالعمليات الزراعية من تسميد نيتروجيني ومعدلاته ووقت إضافته بالإضافة إلى متبقياته في التربة (Aissaoui) بالعوامل البيئية وبالعمليات الزراعية من تسميد نيتروجيني ومعدلاته ووقت إضافته بالإضافة إلى متبقياته في التربة (2021) المحتوى Protein Content و Price (2002) والصنف ويتأثر الحبوب من البروتين للسلالات المختلفة في دراستنا ما بين 11.07 و 13.02% بمتوسط عام 11.87%، وسجلت السلالة EBW 1 أدنى قيمة بينما سجلت السلالة EBW 22 أعلى قيمة من بين السلالات كافة (جدول 2). يُشار الى أن التركيز المناسب من البروتين في حبوب القمح المطلوب لإنتاج الخبز الجيد يتراوح ما بين 11.5 الى 15.0% (apple وأخرون) (2002). غالبية السلالات في دراستنا تجاوزت الحد الأدنى لكمية البروتين المطلوبة لإنتاج الخبز، إلا أنه لوحظ انخفاض نسبي في محتوى حبوبها من البروتين بشكل عام، وقد يعود ذلك لنظام التسميد المتبع في الزراعات البعلية والذي يقتصر على دفعة واحدة من التسميد النيتروجيني عند البذر، فقد ذكر Sameen وآخرون (2002)، بأن التسميد النيتروجيني له تأثير كبير على محتوى الحبوب من البروتين، ويلعب دوراً هاماً في تحسين الإنتاجية لوحدة المساحة بالإضافة إلى إنتاجية وحودة الحبوب، وبأن

إنتاج أقماح خبز bread wheat تتسم بالجودة العالية مُمكن من خلال تعديل معاملات التسميد، فالتسميد النيتروجيني المبكر مع بداية الموسم يعمل على زيادة الإنتاجية لوحدة المساحة بالشكل المطلوب إلا أن تأثيره محدود على جودة الحبوب، بينما التسميد النيتروجيني عند الإزهار anthesis يزيد ويعدل من مستويات محتوى الحبوب من البروتين (Acevedo وآخرون، 2002؛ Ortiz-Monasterio، 2002). الجلوتين القمح، ويُشكل حوالي functional protein يُعرف ببروتين القمح، ويُشكل حوالي 78 الى 85% من مجموع بروتينات دقيق القمح، وهو المسؤول عن بنية العجين dough structure وعلى جودة المنتج النهائي للخَبْزُ baking. يتكون الجلوتين أساساً من اتحاد جزيئات ببتيدية من الجلوتينين glutenin والجلايدين gliadin التي تُضفي خاصية المرونة elasticity واللزوجة viscocity والانسيابية extensibility للعجين (Pena)، 2002). محتوى الجلوتين الرطب wet gluten ما دون 20% في الدقيق يعتبر منخفضاً، وما بين 20 الى 27% يعتبر متوسطاً، وما بين 28 الى 35% يعتبر جيداً، وأعلى من 35% يعتبر عالياً، وبؤدي الدقيق الذي يحتوي على نسبة عالية من الجلوتين بشكل عام إلى نتائج أفضل لصنع الخبز الجيد (Delibaltova وآخرون، 2014؛ Yıldırım و 2021 ،Deger و Yıldırım و 2020، Atasoy). تراوحت نسبة الجلوتين الرطب في دراساتنا لكافة السلالات ما بين 17.5 و 26.3% وبمتوسط عام 21.9%، وسجلت السلالة EBW 12أدنى قيمة بينما سجلت السلالة EBW 22 أعلى قيمة من بين السلالات كافةً (جدول 2)، كمية الجلوتين الرطب في الدقيق لمختلف السلالات في دراستنا كانت متوسطة إلى ضعيفة، ويعود ذلك للانخفاض النسبي في محتوى حبوب السلالات المختلفة من البروتين، والذي جسدته علاقة الارتباط الموجبة (0.555) التي ظهرت في دراستنا ما بين الجلوتين الرطب ومحتوى البروتين (جدول 3)، فقد ذكر Curic وآخرون (2001)، بأن كمية الجلوتين في الدقيق تزداد بزيادة محتواه من البروتين. يُعبر مؤشر الجلوتين Gluten Index عن قوة الجلوتين gluten strength، ويُستخدم لتحديد ما إذا كانت بنية الجلوتين في القمح ضعيفة أو قوية (Yıldırım و Deger، 2021). يحتوى الدقيق على كميات متساوية تقريباً من جزيئات الجلوتينين والجلايدين، ويمثل الجلوتينين الشق الرئيس المسؤول عن التباين في قوة العجين dough strength، والتغيرات التي تحدث في نسب الجلوتينين إلى الجلايدين في الدقيق يمكن أن ينتج عنها تغيراً في خصائص المرونة واللزوجة viscoelasticity للعجين، فجودة الجلوتين تُحدد فقط بدرجة تمدده extensibility ومرونته (Curic وآخرون، 2001؛ Pena ، 2002). تتراوح قيم مؤشر الجلوتين المقبولة في تجارة قمح الخبز ما بين 60 - 90%، فالأعلى قيمة أكثر قوة وأفضل جودة (Tayyar، 2010). تراوحت قيم مؤشر الجلوتين في دراساتنا لكافة السلالات ما بين 71.5 الى 93.0% وبمتوسط عام 83.1%، وسجلت السلالة EBW 1 أدنى قيمة بينما سجلت كل من السلالة EBW 11 والسلالة EBW 12 أعلى قيمة من بين السلالات كافةً (جدول 2). قيم مؤشر الجلوتين المتحصل عليها لكافة السلالات المدروسة كانت جيدة، وقد سُجل ارتباط إيجابي جيد (0.708) ما بين مؤشر الجلوتين مع محتوى الرطوبة، فيما كان الارتباط سلبياً (0.502-) مع محتوى الجلوتين الرطب (جدول 3)، فكمية البروتين والجلوتين في الدقيق لا يعتبران مقياساً لجودة الجلوتين (Curic وآخرون، 2001). وتشير الدلائل إلى أن اختبار الترسيب Sedimentation volume أو اختبار زبليني zeleny يعطي بشكل فردي أفضل تنبؤ بقوة القمح وبإمكانات الخَبْزْ baking، وقد اكتسب هذا الاختبار قبولًا واسعاً باعتباره اختبارًا مفيدًا وسربعاً يُمكن من خلاله إعطاء مؤشراً جيداً للاختلافات لكل من محتوى البروتين وجودة الجلوتين باعتبارهما العاملان المؤثران في جودة الخبز، حيث يرتبط رقم الترسيب العالي بجلوتين أقوى وأكثر جودة (Carter وآخرون، 1999؛ Dhaka و آخرون، 2012). فالتوصيف الكامل لدقيق القمح يتطلب قياس رقم الترسيب بالإضافة إلى معرفة بالبروتين ومحتوى الجلوتين، ورقم الترسيب عادة ما يرتبط بشدة بمحتوى البروتين (Iqbal وآخرون، 2015). رقم الترسيب الأقل من 15 مل يشير إلى ضعف في قوة الدقيق، ومن 16 إلى 24 مل دقيق متوسط القوة، ومن 25 إلى 36 مل دقيق قوي وأعلى من 36 مل دقيق قوي جداً (Başçiftçi و Xınacı، 2015؛ Tayyar، 2015). تراوحت قيم رقم الترسيب في دراساتنا لكافة السلالات ما بين

11.6 الى 17.3% وبمتوسط عام 12.8%، وسجلت السلالة 2 EBW أدنى قيمة، بينما سجلت السلالة 11 EBW أعلى قيمة من بين السلالات كافةً (جدول 2). تشير النتائج إلى ضعف في قوة الدقيق للسلالات المختلفة ناتج عن تدني محتوياتها من الجلوتين بشكل عام رغم تميز الجلوتين لكافة السلالات بالجودة، فرقم الترسيب الذي يشير إلى الارتباط بين محتوى الجلوتين وجودته يؤشر كذلك لجودة الخبز وحجم الرغيف المعتمدان بشكل كبير على كمية وجودة البروتين الموجود في الحبوب (Iqbal) وآخرون، 2015؛ Pena (2002).

جدول: (3). معاملات الارتباط

رقم	مؤشر	الجلوتين	محتوى	محتوى	صلابة	رقم السقوط	وزن الألف	الوزن	
الترسيب	الجلوتين	الرطب	البروتين	الرطوبة	الحبوب	رقم السفوط	حبة	النوعي	
									الوزن النوعي
								0.259	وزن الألف حبة
							-0.037	0.027	رقم السقوط
						0.273	0.386	-0.082	صلابة الحبوب
					0.544	-0.303	0.424	-0.510	محتوى الرطوبة
				-0.030	0.402	0.406	0.172	-0.042	محتوى البروتين
			0.555	-0.413	-0.113	0.207	-0.168	-0.108	الجلوتين الرطب
		-0.502	0.156	0.708	0.462	0.012	0.211	-0.320	مؤشر الجلوتين
	0.127	0.015	-0.019	-0.120	-0.300	0.226	-0.739	-0.593	رقم الترسيب

الاستنتاج: من خلال نتائج هذه الدراسة اتضح أن معظم السلالات ذات إنتاجية عالية للدقيق، إلا أن الدقيق المُنتج من هذه السلالات يتميز بتدني الجودة لارتفاع نسب النشا المتهتك فيه الناتج عن ارتفاع صلابة الحبوب ولافتقاره لأنزيم آلفا أميليز الناتج عن قلة إنبات الحبوب في الحقل قبل الحصاد لدورهما الأساسي في إنتاج غاز ثاني أكسيد الكربون أثناء التخمر، كما أن الدقيق المنتج منها يتميز بالضعف نتيجة انخفاض مستويات الجلوتين باعتباره العامل الرئيس المسؤول عن جودة الرغيف.

المراجع

AACC. American Association of Cereal Chemists (2000): Approved methods of the AACC, 10th Edition. 2000. methods 38-12, 44-15, 46-10, 55-30 and 56-81. St. Paul, MN.

Abagandura, O. G. and D. Park. 2016. Libyan Agriculture: A Review of Past Efforts, Current Challenges and Future Prospects. Journal of Natural Sciences Research. 6 (18): 57-67.

Acevedo, E., Silva, P. and Silva, H. 2002. Wheat Growth and Physiology. In B. C. Curtis, S. Rajamram and H. Gomez Macpherson, eds. Bread wheat improvement and production. Plant production and protection, Series No. 30. Rome, Italy.

Aissaoui, M. R. and Fenni, M. 2018. Grain Yield and Quality Traits of Bread Wheat Genotypes under Mediterranean Semi-arid Conditions. Sch. J. Agric. Vet. Sci.5 (3): 166 – 171.

AQUASTAT. 2023. Country Profile – Libya. Food and Agriculture Organization of the United Nations (FAO). Rome, Italy.

Başçiftçi, Z. B. and Kınacı, G. 2015. Investigation on Quality Characters and Correlations Among Hardness with Others in Bread Wheat. GIDA (2015) 40 (4): 187-192.

Carter, B. P., Morris, C. F. and Anderson, J. A. 1999. Optimizing the SDS sedimentation test for end-use quality selection in a soft white and club wheat-breeding program. Cereal Chem 76: 907-911.

Crespo-Herrera, L. A., J. Crossa, J. Huerta-Espino, M. Vargas, S. Mondal, G. Velu, T. S. Payne, H. Braun and R. P. Singh. 2018. Genetic Gains for Grain Yield in CIMMYT's Semi-Arid Wheat Yield Trials Grown in Suboptimal Environments. Crop Science. 58:1890–1898.

Curic, D., Karlovic, D., Tusak, D., Petrovic, B. and Dugum, J. 2001. Gluten as a Standard of Wheat Flour Quality. Food Technol. Biotechnol. 39 (4): 353–361.

Curtis, B. C., 2002. Wheat in the world. In B. C. Curtis, S. Rajamram and H. Gomez Macpherson, eds. Bread wheat improvement and production. Plant production and protection, Series No. 30. Rome, Italy.

Delibaltova, V., Kirchev, H., Zheliazkov, I. and Dyulgerski, Y. 2014. Investigation on the Yield and Grain Quality of Bread Wheat Varieties in Southeast Bulgaria. Bulgarian Journal of Agricultural Science, 20 (1): 96-100.

Dhaka V., Gulia, N. and Khatkar, B. S. 2012. Application of Mixolab to Assess the Bread Making Quality of Wheat Varieties. 1 (3): 183-193. doi:10.4172/scientificreports. 183.

FAO. 2022. World Food and Agriculture – Statistical Yearbook 2022. Rome. https://doi.org/10.4060/cc2211en.

Faměra, O., Hrušková, M. and Novotná, D. 2004. Evaluation of methods for wheat grain hardness determination. Plant Soil Environ. 50 (11): 489–493.

Heemskerk, W. and Koopmanschap, E. 2012. Agribusiness development in Libya "A fact-finding mission". Project Report. Centre for Development Innovation, Wageningen UR.

Hruskova, M. and Švecc, I. 2009. Wheat Hardness in Relation to Other Quality Factors. Czech J. Food Sci. 27 (4): 240-248.

ICARDA. 2004. Libya and ICARDA: Ties that Bind, No. 18. ICARDA, Aleppo, Syria, 20 pp. En.

ICC. 1994. Standard No: 116/1. Determination of the sedimentation value (according to Zeleny) as an approximate measure of baking quality. International Association for Cereal Science and Technology, Huddinge, Sweden.

Iqbal, Z., Pasha, I., Abrar, M., Masih, S. and Hanif, M. S. 2015. Physico-chemical, Functional and Rheological Properties of Wheat Varieties. J. Agric. Res., 2015, 53 (2): 253-267.

Ortiz-Monasterio, R, J. I. 2002. Nitrogen Management in Irrigated Spring Wheat. In B. C. Curtis, S. Rajamram and H. Gomez Macpherson, eds. Bread wheat improvement and production. Plant production and protection, Series No. 30. Rome, Italy.

Ozturk, A. and Aydin, F. 2004. Effect of Water Stress at Various Growth Stages on Some Quality Characteristics of Winter Wheat. J. Agronomy & Crop Science 190, 93-99.

Pena, R. J. 2002. Wheat for Bread and Other Foods. In B. C. Curtis, S. Rajamram and H. Gomez Macpherson, eds. Bread wheat improvement and production. Plant production and protection, Series No. 30. Rome, Italy.

Rao, D. S., Raghavendra, M., Gill, P., Madan, S. and Munjal, R. 2021. Effect of Drought Stress on Grain Quality Attributes in Wheat (Triticum aestivum L.) Varieties. Biological Forum – An International Journal. 13 (3): 58-63.

Rharrabti, Y., Villegas, D., Royo, C., Martos-Nu'nez, V. and Garci'a del, M. 2003. Durum wheat quality in Mediterranean environments II. Influence of climatic variables and relationships between quality parameters. Field Crops Research 80: 133–140.

Sakr, N., Rhazi, L. and Aussenac, T. 2021. Bread Wheat Quality under Limiting Environmental Conditions: I-Molecular Properties of Storage Proteins and Starch Constituents in Mature Grains. Agriculture 11, 289-301.

Sameen, A., Niaz, A., and Anjum, F. M. 2002. Chemical Composition of Three Wheat (Triticum aestivum L.) Varieties as Affected by NPK Doses. Int. J. Agri. Biol., 4 (4): 537-539.

Tatar, O., Cakalogulları, U., Tonk, F., Istipliler, D. and Karakoc, R. 2020. Effect of Drought Stress on Yield and Quality Traits of Common Wheat During GRAIN Filling Stage. Turkish Journal of Field Crops. 25 (1): 236-244.

Tayyar S. 2010. Variation in grain yield and quality of Romanian bread wheat varieties compared to local varieties in northwestern Turkey. Romanian Biotechnological letters. 15 (2): 5189-5196.

VSN International. 2010. GenStat software for windows. Release 14. VSN Intl., Hemel, Hempstead, UK.

Yıldırım, A. and Deger, O. 2021. Physical, physicochemical (technological) and chemical characteristics of common bread wheat (Triticum aestivum L.) varieties grown in Mardin region. Harran Tarım ve Gıda Bilimleri Dergisi, 25 (2): 151-162.

Yıldırım, A. and Atasoy, A. F. 2020. Quality characteristics of some durum wheat varieties grown in Southeastern Anatolia Region of Turkey (GAP). Harran Tarım ve Gıda Bilimleri Dergisi, 24 (4): 420-431.

Research Article 6 Open Access

تأثير التسميد المعدني المركب (NPK) والعضوي بحامض الهيومك على الصفات الخضرية والزهرية لنبات الكوسا Cucurbita pepo L

حسن بن ادريس البابا1، فاطمة عقوب حسين محمد2، عبدالله عتيق 3

1. قسم الإنتاج النباتي، بنغازي، ليبيا،

2.قسم البستنة جامعة عمر المختار، البيضاء، ليبيا،

قسم الإنتاج النباتي جامعة سرت، لسنا.

المستخلص: أجريت الدراسة لمعرفة تأثير التسميد المعدني المركب NPKوالعضوي بحامض الهيومك على الصفات الخضرية والزهرية لنبات الكوسا، حيثُ تم إجراء التجرية خلال موسمي الزراعة 2020 و 2021 في منطقة الوسيطة بالجبل الأخضر، واستخدم تصميم القطاعات العشوائية الكاملة المنشقة مرة واحدة ، حيث المنتملت التجرية على 25 معاملة عاملية تمثل جميع التوافيق الممكنة بين مستويات العوامل المدروسة لكل من البيضاء، ليه السماد المركب NPK (0, 20, 0, 40, 0) ومستويات من سماد الهيومك (0, 20, 0, 0, 0, 0) و البيضاء، ليه و 80 كجم/هـ) وأظهرت النتائج أن الزيادة في مستويات السماد المعدني قد أدت إلى وجود اختلافات معنوية المعدل المركب NPK حيث أعطى المعدل المركب NPK حيث أعطى المعدل المركب NPK حيث أعطى المعدل المركب NPK كجم المهاد الهيومك قد قابلتها زيادة معنوية لصفات النمو الخضري و الصفات الزهرية حيث أعطى المعدل كل المعدل المعدل المعدل 80 كجم هيومك/ ه أعلى القيم المعنوية مقارنة بمعاملة الشاهد .

وأشارت نتائج تأثير التفاعل بين السماد المعدني هذه النتيجة توافقت مع ما ذكره Omidire وآخرون (2015) حيث أن الأسمدة المعدنية تحرر المغذيات بصورة أسرع وأعلى من تلك المطلوبة من قبل النبات عند زمن معين بسبب عدم حاجتها لعمليات التحلل والمعدنة كحال الأسمدة العضوية ،وتفوقت الأسمدة العضوية معنوياً على الشاهد وهذا يتفق مع ما بينه Abbasi وآخرون (2008) بأن الإضافات العضوية تزيد المتاح من الفسفور والبوتاسيوم إما بشكل مباشر عبر تحللها أو بصورة غير مباشرة عبر تحريره كنتيجة لتأثير الأحماض العضوية ومن ثم تزيد نسبة المتاح منه أمام للامتصاص من قبل النبات

* * Hasan Bendres Albaba hasan.albaba@omu.edu.ly Plant productiondepartment, Benghazi, Libya

*F. A. H. Muhammad fatmaalshlmany@omu.edu.ly
Horticulture department Omar Almukhtar University, ,Al-Bayda, Libya.
*and Abdella Ateq.
Plant production department Sirte University, Sirte, Libya.
abdooateeg@gmail.com

Received: 19. 04. 2025

Accepted: 30. 04. 2025

Publish online:

The effect of compound mineral fertilizer (NPK) and Humic acid on the vegetative and flowering characteristics of Squash plants (*Cucurbita pepo* L)

Abstract: The study was conducted to determine the effect of combined mineral NPK and organic fertilization with humic acid on the vegetative and flowering characteristics of Squash plants. A field experiment was conducted during the 2020 and 2021 in Al Jabal Al Akhdar in the Al-Wasita area. A randomized complete block design split in three replications was used, as the experiment included 25 factorial treatments representing all possible combinations between the levels of the factors studied for both NPK complex, fertilizer (0, 45, 90, 135 and 180 kg/ha) and levels of The results showed that the increase humic fertilizer (0, 20, 40, 60 and 80 kg/ha. in the levels of mineral fertilizer led to significant differences in all the vegetative and floral traits response to the increase in the levels of NPK. The rate of 180 NPK kg/ha gave the highest values compared to the control treatment for all vegetative and floral traits The study showed that the increase in humic fertilizer rates from 0 kg/ha to 80 kg/ha was accompanied by a significant increase in vegetative growth and floral traits, The rate of 80 kg Humic/ha gave the highest significant values compared to the control treatment for all traits The results of the effect of the interaction between NPK and humic on the vegetative and floral traits indicated that there were clear significant differences, and that the best compatible treatment that gave the highest significant increase in both vegetative and floral traits was (180 NPK and 80 kg/ha humic.Keywords: Key words: humic acid, mineral fertilizer (NPK), organic fertilization, Squash plants

The Author(s) 2025. This article is distributed under the terms of the *Creative Commons Attribution-NonCommercial 4.0 International License* ([http://creativecommons.org/licenses/by-nc/4.0/] (http://creativecommons.org/licenses/by-nc/4.0/]), which permits unrestricted use, distribution, and reproduction in any medium, *for non-commercial purposes only*, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

المقدمة

تُعد الكوسا (Summe Squash (Cucurbita pepo L أحد أهم محاصيل الخضر التابعة للعائلة القرعية Cucurbitacea وهي من محاصيل الخضر المهمة في ليبيا والعالم وثمارها ذات قيمة غذائية عالية، إذ تحتوي على الكربوهيدرات والألياف كما أنها غنية بالسيانين (البابا، 2006)، كما تمتاز بذورها باحتوائها على الدهون 46% وبروتينات 34% وكربوهيدرات 10% والألياف Whitaker) %2.8 وتبلغ المساحة الكلية المزروعة من نبات الكوسة في ليبيا حسب تقديرات منظمة الزراعة والغذاء العالمية للعام 2020م حوالي 1810هكتار وبمتوسط إنتاجية قدرها 19.5 طن/ هكتار، أما على المستوى العالمي فتبلغ المساحة الكلية المزروعة حوالي 2.019.564 هكتار وبمتوسط إنتاجية قدرها 13.8 طن/هكتار (FAO) على الرغم من محدودية قدرة الإنسان على السيطرة على البيئة إلا أنه يسعى جاهداً للتحكم في جزء من أجزاء أحد مكوناتها وهو خصوبة التربة عن طريق استحداثه لمعاملات تسميدية محددة، إلا أنه تبقى النتائج المتحصل عليها أسيرة مكان منطقة تنفيذ التجرية، ويعد السماد المركب NPK أحد أهم الأسمدة الغذائية الضرورية للنباتات حيث يلعب دوراً مهماً في زيادة نموها الخضري والثمري، فعناصر النيتروجين والفوسفور والبوتاسيوم تحتل المرتبة الأولى بين العناصر الغذائية الضرورية الكبرى من حيث الأهمية لنمو وتطور النباتات، حيث يدخل النيتروجين في تخليق الأحماض الأمينية والكلورفيلات والأكسينات والإنزيمات والبروتينات وغيرها من نواتج عملية البناء الضوئي (Thompsonو Kelly)، Kelly)، ويؤدي نقصه إلى اصفرار الأوراق المسنة وبطء النمو وصغر حجم الأعضاء النباتية عن حجمها الطبيعي (Lorenz و Maynard، 1980)، بينما يدخل الفوسفور في تكوبن الأحماض النووية ،وفي تكوين مركبات الطاقة ويتراكم جزء كبير من الفوسفور الذي يمتصه النبات في البذور والثمار (أستينو وآخرون، 1963)، كما يلعب دوراً مهماً في نقل الكريوهيدرات إلى البذور (حسن، 1989)، في حين يلعب البوتاسيوم دوراً حيوياً في النبات على الرغم من أنه عنصر غير تركيبي إذ يعتبر مسؤولاً عن انتقال الكثير من العناصر بين خلايا النبات لتأثيره على لزوجة المواد الغروية في سيتوبلازم الخلايا، كما يزيد من قدرة النبات على تحمل ظروف انخفاض الرطوبة الأرضية لتأثيره على حركة فتح وغلق الثغور، و يرفع من القدرة التخزبنية للثمار كنتيجة لتأثيره على نشاط بعض الإنزيمات (Marschner، 1986) كما يؤثر البوتاسيوم في حفظ التوازن المائي وذلك لسيطرته على فتح وغلق الثغور (Taiz و Zeiger)، 2003). وتتراوح نسبته في الأنسجة النباتية بين (2-6) % من وزن النبات الجاف بينما يتواجد في التربة بكميات مختلفة، يتراوح البوتاسيوم الكلي بين (0.1-4) % (الجميلي والجميلي، 2012)، كذلك لاحظ AL-Mukhtar وآخرون، (1988)عند دراستهم تسميد قرع الكوسا بالسماد المركب (5:18:18) من (K: P:N) من طول النبات وعدد الأفرع عند الأفرع النبات وعدد الأفرع النبات وعدد الأفرع الجانبية /النبات وعدد الأوراق عند مستوى السماد 1000 كجم /هكتار كما أن المستوى 500 كجم /ه، أعطى أعلى حاصل من الثمار وزبادة في متوسط ووزن وقطر الثمرة، وأكد Grazia وآخرون، (2005) عند استخدام تراكيز مختلفة من (NPK) على محصول القرع أن هناك زيادة معنوية في عدد الإزهار المؤنثة /النبات والحاصل المبكر وعدد الثمار /نبات، وذكر Manjunath وآخرون، (2008) تأثير التغذية ومنظمات النمو في حاصل الثمار و البذور للقرع العسلي الصنف Arka chandan باستخدام التسميد بالسماد المركب (NPK) إن حاصل البذور قد ازداد بزيادة مستويات السماد، كما أشارت دراسة قام بها Oloyede وآخرون، (2013) على تأثير سماد (NPK) على قرع الكوسا أن للسماد تأثيراً معنوياً على جميع الصفات الخضربة والمحصولية التي تم تقديرها، كما تحصل Mbhele وآخرون،(2017) على نتائج مشابهة فيما يتعلق بالنمو الخضري وانتاجية قرع (Cucurbita argyrosperma) مع مراعاة أن الزبادة المفرطة بالتسميد الكيميائي للمحاصيل الزراعية تؤدي إلى تلوث التربة والهواء والماء لذلك يعتمد التوجه الحديث في الزراعة الى استخدام الأسمدة العضوية و قد برز أخيراً الدور المهم لحامض الهيوميك في تسميد الحاصلات الزراعية، وهو عبارة عن مادة دُبالية مغذية للنبات (Sennو Senn، 1973) يمكن الحصول على إنتاج مرتفع ومستدام للمحاصيل مع الاستخدام العقلاني والمتوازن لسماد NPK جنباً إلى جنب مع المواد العضوية (Palm وآخرون، 1997؛ Bayu وآخرون، 2006).

يعتبر حامض الهيوميك (Humic acid) من الأحماض العضوية ويتكون أساساً من التحلل النهائي للمادة العضوية، وقد وُجد أن أحماض الهيوميك تعمل على زيادة جاهزية العناصر ويمكن لمجموعة الأمين في أحماض الهيوميك إدمصاص أنيونات الفوسفات وتحسين إتاحتها للنبات (Lützow وآخرون،2006)، ويستخدم حامض الهيوميك لتقليل الأثر الضار للأسمدة المعدنية في التربة (Hartwigson و Evans) كما يحفز نمو الجنور (2004 ، Pettit) حيث إن لها دوراً فعالاً في تنشيط العمليات الفسيولوجية للنبات مما ينعكس بشكل إيجابي على النمو ومحتوى النبات من العناصر الغذائية (Chen و Avaid و Chen) العمليات الفسيولوجية للأزهار المؤنثة لنباتات القرع Bahuguna وآخرون،2022)، كذلك تؤثر المعاملة بالهيوميك إيجابيا على النسبة المئوية للأزهار المؤنثة لنباتات القرع (أيشو وسعيد،2017). تهدف هذه الدراسة إلى تحديد تأثيرمستويات مختلفة من حامض الهيوميك الإنتاج منتج خالٍ من التلوث تحت إمكانية تخفيض الكميات المضافة من السماد الكيماوي بالاعتماد على حامض الهيومك الإنتاج منتج خالٍ من التلوث تحت الظروف البيئية في منطقة الجبل الأخضر.

المواد وطرق البحث:

نَفذت هذه الدراسة خلال الموسم الصيفي لعامي 2020 و 2021 م في منطقة الوسيطة شمال مدينة البيضاء بالجبل الأخضر 32.76°شمال 21.76°شرق 631 متر فوق سطح البحر تسود المنطقة الخصائص المميزة لمناخ البحر المتوسط فتتركز الأمطار في فصل الشتاء ، أما الصيف فهو جاف وحار (هابيل وآخرون، 2019). حيث اشتمات الدراسة على تنفيذ تجربتين حقليتين وذلك لدراسة تأثير التسميد المعدني المركب (NPK) وتأثير حامض الهيومك على النمو والإنتاجية نبات الكوسة. تحليل التربة: جدول (1) طبقاً للطربقة التي اتبعها (Black)

جدول: (1). خصائص التربة في موقع الدراسة

القيم		خصائص التربة
15.25	رمل	
53.60	سلت	تركيب التربة (%)
31.15	طین	
2.45	بة,O.M (%)	مادة عضوب
1.30	ئي (مليموز/cm)	توصيل كهرباة
0.23	نْ كَلِّي (%)	نيتروجير
7.96	pH	
1.26	يوم (Ca CO ₃) %	كربونات الكالسب
118	رم (ppm)	بوتاسيو

العمل الحقلي: زرعت البذور في يوم 15 مايو لعامي 2020 و 2021 على التوالي.

العوامل الرئيسة المدروسة: السماد المركب المعدني NPK اختبار 5 مستويات من السماد المركب وهي (0، 45، 90، 135، 130) كيلو جرام سماد مركب(NPK) للهكتار تحليله (20:20:20) وهو السماد الأكثر استخداما من قبل مزارعي الجبل

الأخضر، تم إضافتها على أربع دفعات متساوية وتم إضافة الجرعة الأولي بعد 15 يوم من الزراعة (بعد الخف) أما الجرعات المتبقية فقد أضيفت بعد 15، 30 و 45 يوم من إضافة الجرعة الأولى.

حامض الهيومك :(Humic acid) اشتملت هذه الدراسة على خمسة مستويات من حامض الهيومك وهي: (0، 20، 40، 60، 60، 60، 60) كجم/ ه تمت الإضافة على أربع دفعات متساوية، وتم إضافة الجرعة الأولي قبل يوم من إضافة السماد المعدني وبنفس الكيفية كانت إضافة الجرعات المتبقية في اليوم السابق لإضافة السماد المعدني .

الصفات المدروسة: صفات النمو الخضري: تم اختيار ثلاثة نباتات عشوائياً من الخط الأول في كل وحدة تجريبية sub-plots و ذلك بعد 10 أيام من إضافة الدفعة الأخيرة السماد المركب و ذلك لقياس الصفات الآتية:

- الوزن الطازج للمجموع الخضري (جم/نبات)
- الوزن الجاف للمجموع الخضري (جم/نبات)
 - متوسط عدد الأوراق/نبات.
- المساحة الورقية للنبات (سم2/نبات): باستخدام الطريقة الوزنية: اعتمادا على (Abo dahe) حيث تم أخذ 5 أوراق لكل نبات من كل معاملة ثم سجل وزن كل ورقة على حدة وأخذ المتوسط وقطعت منها أقراص بمساحة 1سم باستخدام الثاقب الفليني معلوم المساحة وسجل الوزن الطازج لها وحسبت مسداحة الورقية حسب المعادلة الآتية
 - مساحة الورقة (max) = متوسط وزن الورقة × متوسط مساحة الأقراص المقطوعة / متوسط وزن الأقراص تم حساب المساحة الورقية (max) = مساحة الورقة × عدد الأوراق
- صفات التزهير: تم اختيار ثلاثة نباتات عشوائياً من كل معاملة قبل بداية التزهير وذلك لحساب عدد الأزهار المذكرة والمؤنثة والنسبة الجنسية، حيث تم عد الأزهار يومياً خلال مرحلة التزهير، وحسبت النسبة الجنسية بقسمة متوسط عدد الأزهار المذكرة على متوسط عدد الأزهار المؤنثة للنبات.

التصميم والتحليل التجارب نفذت التجربتين باستخدام تصميم القطاعات العشوائية الكاملة بنظام القطع المنشقة مرة واحدة Split التصميم والتحليل plot design بثلاثة مكررات:العامل الرئيسي (السماد المركب) ومستويات العامل الثاني حمض الهيومك. أجرى التحليل الإحصائي (تحليل التباين) لكل صفة تحت الدراسة في كلا الموسمين وتم مقارنة متوسطات المعاملات المختلفة با ستخدام طريقة أقل فرق معنوي LSD عند مستوى معنوية (5%) تبعاً لما ذكره (Gomez و Gomez) النتائج والمناقشة:

صفات النمو الخضري: النتائج التي تبين التأثيرات الرئيسة للمستويات المختلفة للعوامل المدروسة (السماد المركب وحامض الهيومك) والتداخل بين هذه العوامل على صفات النمو الخضري، موضحة في جدول (2).

تأثير السماد المركب: نتائج المقارنات التي تعكس تأثير المستويات المختلفة للسماد المركب على صفات النمو الخضري التي تم دراستها في موسمي الدراسة مبينة في جدول (2). حيث أظهرت نتائج موسمي الزراعة أن الزيادة المتدرجة في معدلات السماد المركب المضافة من 0 كجم سماد مركب /الهكتار الى 180 كجم سماد مركب/هكتار قد قابلها زيادة مطردة في صفات النمو الخضري لكل من الوزن الطازج والجاف للنبات، وكذلك المساحة الورقية وعدد الأوراق، ويمكن أن تعزى هذه الزيادات للدور الحيوي للسماد المركب (NPK) حيث إن النيتروجين يدخل في تركيب كل من البروتين الذي يعتبر المكون الأساسي في البروتوبلازم وتركيب الأحماض النووية، لذلك يجب توافر النيتروجين بكميات مناسبة للنمو الجيد للنبات Mengel و الأعضاء النباتية (1987) كما أن للنيتروجين دوراً فعالاً في الانقسامات المرستمية، والتي بدورها تعطي مزيداً من الأنسجة و الأعضاء النباتية وتتقق الدراسة الحالية مع ما وجدة كل من Marschner ، (1986)؛ Radiya (2002) ؛ PLobory (2002).

- تأثير حامض الهيومك: أوضحت النتائج المتحصل عليها خلال عامي الدراسة والمبينة في الجدول (2) بأن هناك استجابة معنوية للصفات الخضرية المسجلة في الدراسة، حيث بينت الدراسة أن الزيادة المتدرجة في المعدلات المضافة من حامض الهيومك قد قابلها زيادة معنوية في كلاً من الوزن الطازج والجاف والمساحة الورقية و عدد الأوراق خلال موسمي الدراسة، وكانت أعلى قيم تم الحصول عليها عند التسميد بمعدل 80 كجم/ه مقارنة بباقي المعاملات تحت الدراسة، وقد تعود هذه التأثيرات الإيجابية لحامض الهيومك إلى الدور الفعال لحامض الهيوميك الذي يعمل على زيادة جاهزية العناصر وانتقالها خصوصا المغذيات الصغرى ويمكن لمجموعة الأمين في أحماض الهيوميك إدمصاص أنيونات الفوسفات وتحسين إتاحتها للنبات Witzow وآخرون (2006) ويشكل معقدات ذائبة مع ماوجده أيشو و العناصر الصغرى ويزيد من امتصاص العناصر وخصوبة الإنتاج في النبات و تتفق نتائج الدراسة الحالية مع ماوجده أيشو و سعيد (2017).

جدول:(2). التأثيرات الرئيسة للسماد المركب NPK ومستويات حامض الهيومك على صفات النمو الخضري لنباتات الكوسا للموسمين

عددالاوراق/ نبات	المساحةالورقية/نبات	الوزن الجاف/نبات	الوزن الطازج/نبات		11	
	(سىم ²)	(جم)	(جم)	محبره	المستويات الـ (كجم/هـ	
	الموسم الأول					
22e	e4689.8	44.48e	303.4e	0		
d23	5659.26d	102.73d	615.4d	45		
24.26c	6610.66c	c149.41	984.86c	90	NPK	
25.2b	7746.2b	b244.2	1668.06b	135	^	
26.26a	9987.13a	379.98a	2638.06a	180		
13.8e	6395.53e	151.63e	1056.86e	0		
20.2d	6636.73d	168.74d	1103.8d	20		
24.53c	7017.53c	186.34c	1156.6c	40	الهيومك	
29.4b	7196.66b	200.94b	1366.86b	60	4	
32.8a	7446.6a	213.16a	1525.66a	80		
	م الثاني	الموسد				
17.2e	5343.26e	31.46e	283.13e	0		
23.06d	6683.53d	75.66d	596.05d	45		
26.73c	7640.2c	122.05c	978.53c	90	NP K	
30.33b	8989.86b	191.98b	1591.96b	135		
33.73a	11145.2a	253.57a	2568.93a	180		
24.53d	7378.66e	113.24e	1008.03e	0		
26.13c	8004.73c	132.65c	1132.23c	40		
27.06b	8287.66b	145.54b	1355.38b	60		
27.93a	8488.86a	158.79a	1446.66a	80		
.0.	فيما بينها عند مستوى معنوية 05	عة متوسطات لا تختلف معنوياً	بنفس الحروف داخل كل مجمو	القيم المتبوعة		

تأثير التفاعل بين السماد المركب وحامض الهيومك على صفات النمو الخضري:البيانات المدونة بالجدول (3 و 4) تشيرالنتائج إلى وجود فروق معنوية واضحة وأن أفضل معاملة توافقية والتي أعطت أعلى زيادة معنوية في كل من الوزن الطازج والجاف النبات وكذلك المساحة الورقية وعدد الأوراق هي تلك المعاملة التي سمدت نباتاتها بأعلى معدل من السماد المركب وحامض الهيومك (180كجم/ه سماد مركب و 80كجم/ه حامض الهيومك) خلال موسمي الدراسة وقد تعود هذه التأثيرات الإيجابية إلى الدور الذي يلعبه كل عامل على حدة وكذلك إلى تأثير التفاعل بين هذين العاملين,وقد تحصل 40 واخرون، (2013) و العزاوي وعصام (2017) على نتائج مشابهة في دراسات حول نبات الباميا والخيار، حيث أوضحت النتائج إستجابة واضحة للتداخل بين إستخدام السماد الكيميائي والهيوميك في زيادة محتوى الأوراق من العناصر المغذية.

جدول:(3). تأثير التفاعل بين السماد المركب NPK ومستويات حمض الهيومك على النمو الخضري لنباتات الكوسة (الموسم الاول)

_	,	3 (3) 3	<u> </u>	3,, 0		3. () ·
	عدد الأوراق/نبات	المساحةالورقية (سم2)	الوزن الجاف/(جم)	الوزن الطازج للنبات (جم)	مستويات الهيومك (كجم/هـ)	NPKکجم/ھ
_	12 s	4436y	20.04 y	190 x	0	
	13 r	4543.33x	38.31 x	248.6w	20	0
	14 q	4690w	44.73 w	281v	40	
	14.66pq	4826.66v	55.1 v	334u	60	
	15.33p	4953u	64.23 u	463.33t	80	
	18 o	5346.66t	81.43 t	501.6s	0	
	18.660	5406 s	91.33 s	552r	20	
	20.33n	5733.33 r	102 r	600q	40	45
	21.33m	5845q	115.26 q	676.6p	60	
	22.26ki	5965.33p	123.63 p	746.60	80	
	22.33i	61810	131.42 o	784.3n	0	
	23.33k	6478.33n	136.39 n	806.6m	20	
	24.66j	6629.33m	148.23 m	848.31	40	90
	25.66i	68151	160.1	1153.3k	60	
_	26.66h	6940.66k	170.93 k	1331.6j	80	
	27.66g	7246.66j	179.26 j	1365i	0	
	28 g	7476i	205.33 i	1381.6h	20	
	29.33f	7668.33h	246.16 h	1393.6h	40	135
	30.33e	7815g	28.9 g	1966.6g	60	
_	31.66d	8525f	309.33 f	2233.3f	80	
	30e	876733e	346 e	2443.3e	0	
	32 d	9280d	327.33 d	2530 d	20	
	33 c	10366.66c	390.58 c	2660c	40	180
	34 b	10681.66b	393.33 b	2703.6b	60	
_	35a	10840a	397.66 a	2853.3a	80	
	· · · · · · · · · · · · · · · · · · ·				to the state of	

القيم المتبوعة بنفس الحروف داخل كل مجموعة متوسطات لا تختلف معنويا فيما بينها عند مستوى معنوية 0.05.

الصفات الزهرية: النتائج التي تبين التأثيرات الرئيسية للمستويات المختلفة للعوامل المدروسة (السماد المركب وحامض الهيومك) والتداخل بين هذه العوامل على صفات النمو الزهري موضحة بجدول (5)

تأثير السماد المركب NPK على الصفات الزهرية:أوضحت النتائج المتحصل عليها خلال عامي الدراسة والمبينة في الجدول (5) بأن هناك استجابة معنوية لكل قياسات الصفات الزهرية المسجلة في هذه الدراسة، حيث بينت الدراسة أن زيادة المتدرجة في المعدلات المضافة من السماد المركب من صفر كجم/ه (معاملة الشاهد) إلى 180كجم/ه من السماد المركب قد قابلها زيادة معنوية في كلاً من الأزهار المذكرة و الأزهار المؤنثة والنسبة الجنسية في موسمي الدراسة، و كانت أعلى قيم تم الحصول عليها عند تسميد النباتات بمعدل 180كجم/ه، وقد تعزى هذه التأثيرات الإيجابية الى أن للتسميد الكيمائي (NPK) المتوازن تأثير مباشراً في زيادة الأزهار الأنثوية والتبكير في ظهورها (2016) إذ أن زيادة النمو الخضر يتؤدي لزيادة كفاءة التمثيل الضوئي والتي يتناسب معها طردياً زيادة محتوى الكربوهيدارت ومن ثم زيادة تكوين الأزهار المؤنثة وحصول عقدالأزهار المؤنثة والمجموع الخضري وبذلك تنخفض نسبة سقوط الأزهارومن ثم عقدها و زيادة الحاصل الكلي، وتتفق نتائج هذه الدراسة مع ماوجده Grazia وآخرون، (2005).

جدول:(4). تأثير التفاعل بين السماد المركب NPK ومستويات حمض الهيومك على صفات النمو الخضري لنباتات الكوسا (الموسم الثاني)

275	المساحةالورقية	الوزن الجاف/(جم)	الوزن الطازج	مستويات	NPK
الأوراق/نبات	(سىم2)		للنبات(جم)	الهيومك(كجم/هـ)	کجم/ هـ
15.33 r	4836.66y	18.81 u	171.66 t	0	
16.66 q	4943.33x	26.55 t	250 s	20	
17 q	5490w	32.08 st	266.66 rs	40	0
18 p	5693.33v	35.41 s	309 r	60	
19 o	5753u	44.44 r	418.33 q	80	_
21.33 n	6333.33t	57.26 q	468.66 q	0	
22 n	6531s	69.43 p	533.33 p	20	
23 m	6740r	75.71 p	594.33 o	40	45
24 1	6847.33q	85.16 o	671.75 n	60	
25 k	6966p	90.74 no	712.16 mn	80	_
25 k	7245o	94.19 n	747.83 lm	0	
26 j	7526n	103.97 m	797.83 1	20	
27 i	7630m	1161	913.66 k	40	90
27.66 hi	7840.661	135.65 k	1178.33 j	60	
28 h	7959.33k	160.51 j	1255 i	80	
29 g	8343.66j	168.86 i	1305.33 hi	0	_
29.66 fg	8634.66i	183.75 h	1335 h	20	
30 f	8777.66h	190.4 h	1353.33 h	40	135
31 e	9313.33g	200.15 g	1941 g	60	
32 d	9880f	216.77 f	2025.16 f	80	
32 d	10134.66e	227.11 e	2346.66 e	0	
32.66 d	10575.66d	238.79 d	2465.33 d	20	
33.66 c	11386c	249.08 c	2533.16 с	40	180
34.66 b	11743.66b	271.38 b	2676.83 b	60	
35.66 a	11886a	281.51a	2822.66 a	80	

القيم المتبوعة بنفس الحروف داخل كل مجموعة متوسطات لا تختلف معنويا فيما بينها عند مستوى معنوية 0.05

تأثير حامض الهيومك على الصفات الزهرية:أوضحت النتائج المتحصل عليها خلال عامي الدراسة والمبينة في الجداول (5) بأن هناك استجابة معنوية لكل قياسات الصفات الزهرية المسجلة في هذه الدراسة، حيث بينت الدراسة أن الزيادة المتدرجة في المعدلات المضافة من حامض الهيومك قد قابلها زيادة معنوية في كلاً من عدد الأزهار المذكرة و الأزهار المؤنثة والنسبة الجنسية خلال موسمي الدراسة، وقد تعود هذه التأثيرات الإيجابية للسماد العضوي إلى الدور الفعال للسماد العضوي بتحسين الصفات الطبيعية و الكيمائية للتربة مما يهيىء ظروفاً مناسبة لنمو و انتشار المجموع الجذري والذي بدوره يزيد من كفاءة الامتصاص للعناصر المغذية من التربة مما ينعكس إيجابياً على زيادة كفاءة التمثيل الضوئي ويتفق هذا مع ماوجده (1994) , Ahmed و الكروي والراوي , (2019) و أيشو وسعيد، (2017) و العشيبي, (2019).

جدول: (5). التأثيرات الرئيسة للسماد المركب NPK ومستويات حامض الهيومك على الصفات الزهرية لنباتات قرع الكوسا في موسمي الدراسة

النسبة الجنسية	عدد الأز هار	عدد الأز هار	مستويات كجم/هـ	السماد
	المؤنثة	المذكرة		
		الموسم الأول		
1.46 a	9.14 e	13.4 c	0	
1.29a	13.83 d	17.86 b	45	7
1.07b	17.08 c	18.33b	90	NPK
1.16c	19.24 b	22.46a	135	
1.00c	22.77 a	22.8a	180	
1.26 a	15.32 e	15.73e	0	
1.21 ab	16.09 d	17.73d	20	<u>(</u>
1.16 c	16.47 c	19.13c	40	الهيومك
1.1 c	16.75 b	20.26b	60	<u>L</u>
1.02 c	17.41 a	22a	80	
		الموسم الثاني		
1.96 a	7.14e	14e	0	
1.52b	10.22d	15.6d	45	7
1.16 c	14.90c	17.4c	90	NPK
1.11 c	17.16b	19.2b	135	
1.03c	20.95a	21.73a	180	
1.31 a	12.97c	15.8d	0	
138 ab	13.23c	16.33cd	20	<u>(S</u>
1.31 ab	14.27 b	16.86c	40	الهيومك
1.23 ab	14.58ab	18.8b	60	빌
1.12 b	15.33a	20.13a	80	

القيم المتبوعة بنفس الحروف داخل كل مجموعة متوسطات لا تختلف معنويا فيما بينها عند مستوى معنوية 0.05.

تأثير التفاعل بين السماد المعدني المركب NPK وحامض الهيومك على الصفات الزهرية: البيانات المدونة بالجدول (6) توضح تأثير التفاعل بين مستويات السماد المركب و سماد حمض الهيومك على الصفات الزهرية لنباتات الكوسا في موسمي الدراسة، حيث أوضحت نتائج المقارنات بين المعاملات التوافقية ، إلى وجود فروق معنوية واضحة، وأن أفضل معاملة توافقية والتي أعطت أعلى زيادة معنوية في كل عدد الأزهار المذكرة و عدد الأزهار المؤنثة و النسبة الجنسية هي تلك المعاملة التي شمدت نباتاتها بأعلى معدل من السماد المركب وحامض الهيومك (180 كجم NPK و 80 كجم حامض الهيومك/ه) وذلك خلال موسمي الدراسة، قد يعزى هذا التفوق إلى التجهيز المتوازن للمغذيات سواء كانت في السماد الكيميائي أو السماد العضوي، Pessarakli (2016) كما قد يعود هذا التفوق إلى دور السماد العضوي في خفض PH التربة مما أدى إلى كفاءة امتصاص الأسمدة المضافة من قبل النبات بشكل متوازن ودورها في زيادة النمو الخضري ومن ثم زيادة عدد البراعم الزهرية على النبات إذ أن زيادة

Al-Mukhtar Journal of Agricultural, Veterinary and Environmental Sciences 3 (1): 82-94, 2025 Doi:

النسبة الجنسية	عددالأز هار المؤنثة	عددالأزها ر المذكرة	الموس	النسبة الجنسية	عدد الأز هار المؤنثة	عد دالأز هار المذكرة	الموس	مستويات الهيومك	مستويات NBK
2.5 a	4.65 1	11.661	177	1.70 a	6.86q	11.66n	الح الآ	0	
1.76 bc	7.16 k	12.66 kl	ا بگ	1.44 b	8.96 p	13 mn	ڈول	20	
1.83 b	7.26 k	13.33 k		1.46 b	9.17p	13.33m		40	
1.80 b	8.07 k	15 j		1.36 bc	9.82 o	13.66m		60	0

كفاءة التمثيل الضوئي يصاحبها زيادة تكوين الأزهار الأنثوية وحصول عقد للأزهار بسبب المحتوى الجيد من الكاربوهيدارت والتي Chailakhyan و Chailakhyan (1987) كماأن السماد العضوي هيأ ظروفاً ملائمة في محلول التربةخفض pH وزيادة والتي تزيد من جاهزية وامتصاص العناصر المغذية ويتفق هذا مع ما توصل إليه Jahan و Jahan ، (2007).

جدول: (6). تأثير التفاعل بين السماد المركب NPK ومستويات حامض الهيومك على صفات التزهير لقرع الكوسا للموسمين

1.31def	8.56 jk	17.33	1.40 b	10.87 n	15.33ki	80	
1.58bcd	10.2 ij	15 j	1.05 ghi	13.21 m	14im	0	
1.4cde	7.37 k	15 ј	1.29 cd	13.62 lm	17.66hij	20	
1.40cde	10.85 i	15.33 j	1.37bc	13.82 ki	19 fgh	40	45
1.88 b	11.11 i	21 cd	1.40 b	14.13 jk	20 efg	60	43
1.78 bc	11.56 i	20.66 cde	1.45b	14.37 ј	21 de	80	
1.09 ef	13.68 h	15 j	0.99 ij	16.37 i	16.33 jk	0	
1.08 ef	14.38 gh	15.66 ij	1.01hi	16.66 i	17 ij	20	
1.03 ef	15.12 fgh	15.66 ij	0.98 ij	17.19 h	17 ij	40	
0.96f	15.49 efgh	15 ј	1.06 fghi	17.45 gh	18.66 gh	60	90
1.05 ef	15.83 efg	16.66 hi	1.14 fg	17.73g	20.33 ef	80	
1.05 ef	16.45 ef	17.66 gh	Ij 0.99	18.33f	18.33hi	0	
1.06 ef	16.71 def	17.66 gh	1.12fgh	18.7f	20.66de	20	
1.07 ef	17.21 de	18.66 fg	1.28 cd	19.24 e	24.33 bc	40	
1.19def	17 def	20.33 de	1.25 de	19.48 e	25 bc	60	135
1.17 ef	18.42 cd	21.66 bc	0.83 k	20.44 d	25.66 b	80	
0.98 f	19.86 bc	19.66 ef	0.83 k	21.86 c	18.33 hi	0	
1 f	20.54 ab	20.66 cde	0.89 jk	22.54b	20.33 ef	20	100
0.99 f	20.93 ab	21.33 cd	0.95ij	22.93b	22d	40	180
1.06 ef	21.21 ab	22.66 b	1.04ghi	22.90b	24c	60	
1.09 ef	22.24 a	24.33 a	1.17fe	23.64a	27.66 a	80	

القيم المتبوعة بنفس الحروف داخل كل مجموعة متوسطات لا تختلف معنويا فيما بينها عند مستوى معنوية 0.05.

الاستنتاج: استخدام السماد المركب NPK أدى إلى زيادة في الصفات الخضرية والصفات الزهرية و أعطى المعدل 180 كجم /ه أعلى القيم مقارنة بمعاملة الشاهد ،كما أن الزيادة في معدلات سماد الهيومك قد قابلتها زيادة معنوية لصفات النمو الخضري و الصفات الزهرية وأعطى المعدل 80 كجم هيومك/ ه أعلى القيم المعنوية مقارنة بمعاملة الشاهد، وقد كانت أفضل معاملة توافقية هي استخدام السماد المركب بمعدل 180 من NPK مع 80 كجم/ ه من سماد الهيومك حيث أعطت أعلى زيادة معنوية، في كل الصفات الخضرية والزهرية لنباتات قرع الكوسا.

المراجع:

استينو، كمال رمزي، عزالدين فراج، محمد عبدالمقصود محمد، وريد عبدالبر وريد، أحمد عبد المجيد رضوان، عبدالرحمن قطب جعفر .(1963). إنتاج الخضر، مكتبة الأنجلو المصربة - القاهرة 10- 13 صفحة.

أيشو، كمال بنيامين، وسعيد صفوان حازم. (2017). تأثير مواعيد الرش Humic acid في النمو الزهري ومحتوى العناصر المعدنية لثلاثة أصناف من قرع الكوسا (Cucurbita pepo L.) مجلة الفرات للعلوم الزراعية – 95-76:(2)9.

البابا، حسن أمراجع أحمد بن أدريس .(2006) تأثير إضافة السماد الحيوي تحت مستويات مختلفة من النيتروجين على إنتاجية قرع الكوسة (Cucurbita pepo L .). رسالة ماجستير, جامعة عمر المختار, كلية الزراعة, قسم البستة، ليبيا.

Al-Mukhtar Journal of Agricultural, Veterinary and Environmental Sciences 3 (1): 82-94, 2025 Doi:

الجميلي، عبد الوهاب عبد الرزاق، محمد عبيد سلوم الجميلي .(2012). تأثير الرش بحامض الهيومك والسماد البوتاسي في نمو وحاصل البطاطا . (1) 4. (1) 305: (1) 4. تحت نظام الري بالتنقيط . مجلة ديالي للعلوم الزراعية . 4 (1) 205: (1) .

حسن، أحمد عبدالمنعم .(2000). القرعيات (بطيخ ، قاوون، شمام، خيار، كوسة) دار العربية للنشر والتوزيع، جمهورية مصر العربية، عدد الصفحات 498.

العشيبي، سامي ابراهيم .(2019). تأثير حامض الهيوميك على نمو و تطور نبات الكوسة تحت ظروف الإجهاد الملحي في منطقة سهل بنغازي. رسالة ماجستير، جامعة عمر المختار، كلية الزراعة، قسم البستنة، ليبيا.

الكروي، حسين نوري رشيد، الراوي، ولي عبدالغني أحمد. (2016) تأثير الرش بالمستخلص العضوي وإضافة حامض الهيومك في حاصل نبات الشليك. مجلة العلوم العراقية 47 (3):749-756.

هابيل، أحمد يوسف، مراد ميلاد بوراس، سرى فرج محمد. (2019). تأثير عاملي الحرارة والأمطار على بعض خصائص التربة الكيميائية والفيزيائية بالجبل الأخضر ليبيا مجلة المختار للعلوم . 34 (3) 181 – 194.

References

Ahmed, Y.M.A. (1994). Effect of nitrogen fertilization level and postharvest treatments on storability of squash fruits. M. Sc. Thesis, Fac. Agric. Moshtohor, Zagazig Univ., Egypt.

AL-Jeboury, K. D. H.(2010). Studying of the combining ability of developed summer squash genotype to potassium. Ph. Thesis, Baghdad University, Iraq. Akanbi.,

AL-Mukhtar ,F. A. , F. M Hummdi and F. H. AL-Sahaf.(1988). Effect of different levels of NPK fertilizer on growth and yield of two summer squash cultivars .Acta Hort. 220: 253- 256.

Bahuguna, R. N., Chaturvedi, A. K., Pal, M., Viswanathan, C., Jagadish, S. K., & Pareek, A. (2022). Carbon dioxide responsiveness mitigates rice yield loss under high night temperature. Plant Physiology, 188(1), 285-300.

Bayu, W., N.F.G. Rethman, P.S. Hammes and G. Alemu. (2006). Effects of farmyard manure and inorganic fertilizers on Sorghum growth, yield and nitrogen use in a semi-arid area of Ethiopia. J. Plant Nutrition., 29(2): 391-407.

Black, C.A. 1965. Methods of soil analysis. Amer Soc. Agron. Madison, Wi., U. S. A.

Chailakhyan, M.KH. and V.N. Khrianin . (1987). Sexuality in Plants and Its Hormonal Regulation. Moscow, Translated, SpringerVerlag, USA.pp:155.

Chen, Y., & Aviad, T. (1990). Effects of humic substances on plant growth. Humic substances in soil and crop sciences: Selected readings, 161-186.

FAO. (2020). https://www.fao.org/faostat/en/#data /OCL (CITIED ON 13-7-2022

Gomez, K. A., & Gomez, A. A. (1984). Statistical procedures for agricultural research: John wiley & sons. J. Agril. Res. 50(3): 357-364.

Grazia ,J. D. , P. A. Tihonell , O. S. Pernida , A. Caruso and A. Chiesa . (2005) . Evaluation of crops setting systems for four summer squash varieties (*Cucurbita maxima* L.) Millan Var. Zapallito. Agriculture Technical (Chile) , 65(2): 127-134.

Harwigson, I.A. and Evans, M.R. (2000). Humic acid seed and substrate treatments promote seedlings root development. Hortscience. 35(7):1231-1233.

Hewedy, A. M. (1978). Effect of some agricultural treatments on growth, seed yield and quality of cucumber. M. Sc. Thesis, Fac. Agric., Zagazig Univ. Egypt.

Jahan, M. and M Jahani . (2007). The effect of chemical and organic fertilization on Saffron flowering . Acta Hort. (ISHS) 793 : 81-86.

Lorenz ,O.A and D.N.Maynard .(1980). Knott's handbook for vegetable growers . (2nd ed.). Wiley Interscience N.Y.390pp.

Lützow, M.V., Kögel-Knabner, I., Ekschmitt, K., Matzner, E., Guggenberger, G., Manjunath, C. T., A. S. Sijjan, B. S. Vyakaranahal, H. L. Nadaf and R. M. Hosamani. (2008). Influence of nutrition and growth regulators on fruit, seed yield and quality of pumpkin cv. Arka. Karnataka J. Agric. Sci. 21(1(:115-117).

Marschner, H. (1986). Mineral in higher plants. Academic press, Harcout. Brace Jovanovish Publisher, London.(1st ed).

Mbhele Z., Zobolo A. M., Ntuli, N.R. (2017). The effect of fertilizer on growth and yield of *Cucurbita argyrosperma*. South African Association of Botanists, University of the Western Cape, Cape Town, 08 - 12 January 2017.

Mengel, K and E. A. Kirkby. 1987. Principle of Plant Nutrition 4th Ed. International potash institute. Pern, Switzerland pp 687.

Oloyede, F. M., Agbaje, G. O., & Obisesan, I. O. (2013). Analysis of pumpkin (*Cucurbita pepo* Linn L.) biomass yield and its components as affected by nitrogen,

Palm, C.A., R.J.K. Myers, S.M. Nandwa, (1997). Combined use of organic and inorganic nutrient sources for soil fertility maintenance and replenishment In Buresh R.J., Sanchez, D.A., Calhoun F (eds.) Replenishing Soil Fertility in Africa. Soil Science Society of America Madison, Wis., pp: 193-217.

Pessarakli, M. (2016). Handbook of Cucurbits: Growth, Cultural Practices, and Physiology. CRC Press. USA. pp:561.

Pettit, R. E. (2004). Organic matter, humus, humate, humic acid, fulvic acid and humin: their importance in soil fertility and plant health. CTI Research, 10, 1-7

Al-Mukhtar Journal of Agricultural, Veterinary and Environmental Sciences 3 (1): 82-94, 2025 Doi:

Radiya, K.S.(2002).Effect of plant population, biofertilizesr and nitrogen on growth , fruit yield, seed production and seed quality of squash (*Cucurbita pepo* L .). Ph.D.Thesis , Fac. of Agric . Alex .Univ. Egypt.

Senn, T.L. and Kingman, A.R. (1973). A review of humic acid research series, No. 145, C. Agricultural Experiment Station, Clemson, South Carolina. Physiology. CRC Press. USA. pp:561

Taiz, L. and Zeiger, E.(2003). Plant Physiology. 3rded. Sinauer Associates, Inc. publisher Sunderland, Massachuts U.S.A.

Thompson, H. C and W. C. Kelly. (1983). Vegetable Crops. Mc-Graw Hill Book Company, Inc., New York, U.S.A.

Togunm, W.B.,A.O., Adedirn. J.A and Ilupeju .Growth, Dry Matter and Fruit Yields Components of Okra under Organic and Inorganic Sources of Nutrients. American-Eurasian Journal of Sustainable Agriculture, 4(1), 2010, 1-13.

Uka, U. N., Chukwuka, K. S., & Iwuagwu, M. (2013). Relative effect of organic and inorganic fertilizers on the growth of okra [*Abelmoschus esculentus* (L.) Moench]. Journal of Agricultural Sciences, Belgrade, 58(3), 159-166.

Whitaker, T. W. and G. N. Daves. (1962). Cucurbits .InterScience Pup., Inc. N.Y.P:249.

Research Article 6 Open Access

Feeding Effects of three Verities of Date fruits on the Biology of Cadra cautella (Walker) (Lepidoptera: Pyralidae) Ali A. Bataw¹, Nesrin K. Shereef², Shadia M. Elmesmari³ and Marwa Younis Almabruk⁴

2Dept. of Biology, Faculty of Education, Omar Almukhtar

3Dept of Plant Protection, Ministry of Agriculture, Albayda

4Dept. of Biology, Faculty of Arts and Sciences, Benghazi University- Branch Al-Abiar

*Corresponding author: ali.bataw@omu.edu.ly Dept. of Zoology, Faculty of Sciences, Omar Almukhtar University

Received: 18.02.2025

University

Accepted: 30.04.2025

Publish online:

Abstract: The study investigates the impact of feeding the fig moth, *Cadra* cautella (Walker), on three varieties of Libyan dates (Saeidi Awjila, Saeidi Gallo, and Bekrary from the West Coast) under laboratory and incubator conditions. The main findings reveled that the life cycle duration of C. cautella was significantly affected by the rearing environment. The life cycle lasted 60.1 ± 6.1 days outside the incubator and 79.2 ± 6.6 days inside the incubator when larvae were fed mixed date varieties. Inside the incubator, the larval stage duration was not significantly influenced by the date varieties. Outside the incubator, a significant difference in the larval stage duration was observed between the Bekrary variety and the Saeidi Awjila and Saeidi Gallo varieties. The longest life cycle was recorded on cut Bekrary dates outside the incubator, averaging 85.8 ± 9.9 days. The shortest life cycle was observed on perforated Saeidi Awjila dates inside the incubator, averaging 53.8 ± 2.6 days. The physical form of the dates (cut or perforated) influenced the development period, highlighting its role in the insect's life cycle. The variety of dates significantly affected the completion time of the life cycle, suggesting that fruit characteristics, such as texture or nutrient composition, play a critical role in fig moth development. This study underscores the importance of both environmental conditions and the type of date variety in determining the life cycle longevity. Such findings can help optimize pest management strategies by identifying date varieties and storage conditions that may hinder the rapid development of C. cautella.

Keywords: Date palm pests, *Cadra cautella*, life cycle, fig moth, Libyan date fruits, insect rearing, insect feeding.

علي بطاو **: اسم الحيوان، كلية العلوم، جامعة عمر المختار نسرين الشريف: كلية العلوم، جامعة عمر المختار شادية المسادية المسادية المسادية المسادية المبروك: قسم الاحياء، كلية الاداب والعلوم، جامعة بنغازي، فرع الابيار

تأثير تغذية ثلاثة أصناف من التمور علي بيولوجية (Cadra cautella (Walker) (Lepidoptera: Pyralidae)

المستخلص: تبحث الدراسة في تأثير تغذية فراشة التين (Walker) على ثلاثة أنواع من التمور الليبية (صعيدي أوجلة و صعيدي جالو و بكراري من الساحل الغربي) في ظل ظروف المعمل والحضان. وبينت النتائج تأثر مدة دورة حياة C. cautella بشكل كبير ببيئة التربية. استمرت دورة الحياة $1.00 \pm 0.1 \pm 0.00 \pm 0.00$ بشكل كبير ببيئة التربية. استمرت البرقات بأصناف التمور المختلط. داخل الحاضنة، لم تتأثر مدة مرحلة البرقات بشكل كبير بأصناف التمور . خارج الحاضنة، لوحظ اختلاف كبير في مدة طور البرقات بين صنف بيكراري وأصناف الصعيدي أوجله وصعيدي جالو. تم تسجيل أطول دورة حياة في التمور بيكراري المقطوعة خارج الحاضنة، بمتوسط $1.00 \pm 0.00 \pm 0.00$ بين الفيزيائي للتمور (المقطوعة أو المثقبة) على داخل الحاضنة، بمتوسط $1.00 \pm 0.00 \pm 0.00$ بين وتوكد هذه الدراسة على أهمية كل من الظروف البيئية ونوع تنوع التمور في تحديد طول دورة الحياة ويمكن أن تساعد هذه النتائج في تحسين استراتيجيات إدارة الآفات من خلال تحديد أصناف التمور وظروف التخزين.

الكلمات المفتاحية: آفات التمور ،Cadra cautella دورة الحياة، فراشة التين، تربية الحشرات، تغذية الحشرات.

INTRODUCTION

Cadra cautella is recognized globally as a major indoor pest of stored dates, almonds, and other dried fruits. Infestation significantly affects the quality and marketability of dates and other fruits (Oyewo and Amo 2018, 2020, Sukirno *et al.*, 2021, Singh *et al.*, 2021). In Libya, high infestations have been recorded in regions like Tamanhint, Sabha, Wadan, and Houn, with Apel date varieties in Wadan being the most affected (Bataw and Ben Saad, 1990, 1995).

The life cycle and development of *C. cautella* vary depending on diet and environmental factors, Cox (1974, 1987) showed development times ranging from 35.35 days on almonds to 84.0 days on raisins. Temperature significantly affects development, with shorter life cycles at higher temperatures and affect a total lifespan, fecundity, egg hatchability, and overall survival of all life stages of *C. cautella* (Aldawood *et al.*, 2013). Studies in Egypt identified differences in development across date varieties (Ajwa, Khaki, Sultani, Freehi), with food type influencing larval stages and longevity (Abdel-Salam & El-Saeady 1983).

While *C. cautella* is a known pest of Libyan dates, studies have largely focused on geographical distribution and infestation levels. The biological development of this pest under controlled laboratory conditions using different date varieties has not been thoroughly examined. Understanding the biology of *C. cautella* on local date varieties will highlight the specific vulnerabilities of different date types, offer actionable knowledge to minimize postharvest losses through targeted interventions and contribute to sustainable pest management practices for the Libyan date industry.

Previous studies have primarily explored the pest's distribution, while its biology on different Libyan date varieties (Saeidi Awjila, Saeidi Gallo, and Bekrary) under laboratory conditions

remains insufficiently studied. The study aims to fill this gap by examining the biological development of *C. cautella* when fed three Libyan date varieties under varying conditions.

Materials and Methods

Date Samples: Samples of date fruit varieties were collected from three distinct regions in Libya: Saeidi Ujla, Bakrari from north Coast, and Saeidi Jalu. Each sample, weighing 1 kg, was collected directly from the fields, placed in sealed plastic bags, and brought to the laboratory. Infected fruits were carefully examined and excluded. Healthy fruits were sterilized by refrigeration at temperatures ranging from -1°C to 4.5°C for 30 days (Damual *et al.*, 1974).

Insect Culture: Adults of Cadra cautella were reared on a date-based diet in an incubator maintained at 25±2°C and 65±5% relative humidity (RH). Transparent containers with opaque lids and small openings for ventilation were used. Larvae were separated and isolated in pairs (male: female ratio of 1:1) to obtain eggs. Newly hatched larvae were distributed at a density of 4 larvae per container for experimental purposes. Four experiments were conducted:

Experiment 1:Investigated the effect of rearing methods on the duration of different life stages. **Experiment 2**:Studied the impact of date fruit shapes (complete, cut, and perforated) on the length of various life stages.

Experiment 3: Examined the influence of date fruit varieties and rearing methods on the longevity of insect stages.

Experiment 4: Explored the combined effects of date fruit varieties, shapes, and rearing methods on the development stages of *Cadra cautella*.

All experiments were repeated five times. Containers were kept in an incubator equipped with temperature and humidity control switches, regulated with sodium acetate (Shazali *et al.*, 1985, 1990). Parallel experiments were conducted outside the incubator where the temperature and humidity unstable and fluctuated. Replicates were monitored daily until the experiments concluded, recording: Duration of larval, pupal, and adult stages. And Feeding behavior during development.

Duration (in days) of each stage:

Larval stage: From egg hatching to pupal entry.

Pupal stage: From the end of the larval stage to adult emergence.

Adult stage: Lifespan of newly emerged adults.

Statistical Analysis: Data were analyzed using a Completely Randomized Design (CRD) in Minitab Ver. 10. Significance was determined at a 5% probability level, and the Least Significant Difference (LSD) test was used to separate means.

Results and Discussion

The place of insect rearing (inside or outside the incubator) significantly influenced (P=0.05) the longevity of various life stages of *Cadra cautella* when reared on mixed date varieties. The larval stage showed the longest longevity (In days) when reared outside the incubator (67.31 ± 6.8) , as shown in Table 1. The external environment outsid the incubator likely provided less optimal conditions for larval stage compared to the controlled conditions of the incubator (49.06 ± 6.2) . While no significant differences were observed in the pupal stage duration between the two rearing environments, indicating that this stage might be less sensitive to external environmental variations

The adult stage reared inside the incubator had a shorter longevity (3.6 ± 0.6) , reflecting faster development under stable and suitable conditions (4.3 ± 1.2) (P=0.05). The life cycle inside incubator shows short longevity (60.1 ± 6.1) compare with insect reared outside the incubator (79.2 ± 6.6) The controlled temperature and humidity inside the incubator likely optimized the physiological processes of the insect.

This finding aligns with previous studies by Abdel-Salam, & El-Saeady, (1983). who observed significant differences in development rates based on rearing methods, and noted that rearing *C. cautella* on stored dates under laboratory conditions resulted in a longer life cycle compared to rearing at elevated temperatures.

The analysis revealed no significant differences (P= 0.01) in the longevity (day) of the larval, pupal, adult stages, or the complete life cycle when larvae were fed on mixed dates fruits in different forms (complete, perforated, or cut).

Table (1). The effect of place of rearing with mixed verities on the longevity (in days) of the different life stages development of C. cautella (Mean $\pm SE$)

Туре	Larval stage	Pupal stage	Adult stages	Life cycle
Inside incubator	49.06±6.2 ^a	$7.4{\pm}0.8^{a}$	3.6 ± 0.6^{b}	60.1±6.1 ^b
Outside incubator	67.31±6.8 ^b	7.5 ± 0.6^{a}	4.3 ± 1.2^{a}	79.2±6.6 ^a
Mean±SE	58.1±6.5	7.5±0.7	3.9±0.9	69.6±6.3

Similar letters (in a same column) means no significant differences at a probability of 0.05 or less.

This experiment investigated how the shape of date fruits (complete, perforated, or cut) influences the longevity of the life stages of *Cadra cautella*. The results are presented in Table 2.

The lack of differences may be attributed to the mixed nature of the date fruit samples used in the study, combining various shapes and varieties. This mixture likely minimized any detectable effect of fruit shape on the developmental biology of the fig moth. (El-Maged et al., 2022). The findings suggest that when C. cautella infests a mix of dates with varied shapes and types, the insect's life cycle remains consistent across the different forms. This observation aligns with the general adaptability of C. cautella, a cosmopolitan pest capable of thriving on a variety of stored food products under diverse conditions. Darwish et al (2013) shown that the date fruit variety on which C. cautella were raised affected both the developmental period of the immature stages and adult fecundity, and that the Sakkoti variety (dry-date) is more suited for C. cautella feeding than the Saidy variety (semi-dry).

However, it is essential to note that the results may not fully reflect the effect of individual fruit shapes on the moth's development. A more controlled study focusing on single-shape date samples (rather than a mixture) could provide deeper insights into whether fruit shape alone influences the longevity of life stages.

Table. (2): Effects of feeding of Fig moth (C. cautella) with different shapes and mixed of varieties of date on insect life stages (Mean days $\pm SE$)

Date fruit	Larval stage	Pupal stage	Adult stage	Life cycle
shape				
Complete	57.1 ± 11.1^{a}	7.5 ± 0.6^{a}	4.0 ± 1.1^{a}	64.0 ± 11.3^{a}
Perforated	57.9 ± 11.5^{a}	7.5 ± 0.8^{a}	4.1 ± 0.8^{a}	61.81 ± 2.0^{a}
Cutted	60.5 ± 10.9^{a}	7.3 ± 0.5^{a}	3.7 ± 0.9^{a}	71.6 ± 11.1^{a}
Mean	58.5±111.1	7.5±0.7	3.9±0.9	65.6±11.5

Similar letters (in a same column) mean no significant differences at a probability of 0.05 or less.

The study evaluated the development rates of C. cautella when reared on three different shapes of date fruit (complete, perforated and cutted) for each Libyan date variety (Saeidi Ujla, Bakrari, and Saeidi Jalu) under two rearing conditions (inside and outside an incubator). Significant differences (P=0.05) occurred on larval stage when C. cautella was reared outside incubator on different fruit shapes, bekrary dates outside the incubator record longest period (73.0±6.6), while insects reared inside incubator on Bekrary recorded a shortest period (48.3±6.4), likely due to the influence of temperature during breeding. This finding aligns with earlier studies (Cox, 1974), which demonstrated that larva development rates are affected by rearing methods and date varieties. The study revealed a significant effect of breeding methods and date varieties on the duration of the full life cycle:

Maximum Duration: The longest life cycle (84.3 ± 6.3 days) was recorded when insects were reared on Bakrari dates outside the incubator. (Table 3). Minimum Duration: The shortest life cycle (58.2 ± 4.7 days) occurred when insects were reared on Saedi Gallo dates inside the incubator. These findings demonstrate that environmental factors (e.g., temperature, humidity) and biotic factors (e.g., food type, moisture content, and chemical composition) significantly influence the full life cycle. Previous studies (Abdel-Salam & El-Saeady 1983; Cox, 1975) corroborate these results, showing that temperature and food quality impact developmental stages and longevity.

The differences in life cycle durations emphasize the role of temperature. The incubator environment, with controlled and favorable conditions, facilitates faster development compared to non-incubator settings and the nutritional value and chemical composition of date varieties directly affect growth and reproduction. Dates with higher nutrient content likely meet the insect's dietary needs more effectively, promoting faster life cycle completion, the significant differences across varieties highlight potential genetic and chemical traits in date fruits that influence *C. cautella* development.

Table (3). The effect of feeding of mixed shapes of each t variety of date rearing inside and outside incubator on the longevity of the development of different life cycle stages of C. cautella (Mean (days) \pm SE)

Factors		Larval stages	Pupal stages	Adult stages	Life cycle
	Saeidi Ujla	51.1±7.3°	7.7±0.6 ^a	3.6 ± 0.6^{d}	62.4±6.5 ^d
Inside incu-	Bekrary	48.3 ± 6.4^{c}	7.6 ± 0.7^{a}	3.6 ± 0.3^{b}	$59.6 \pm 6.4 d^{e}$
bator	Saeidi Jalu	$47.7 \pm 4.4^{\circ}$	6.9 ± 0.8^{b}	3.6 ± 0.7^{a}	58.2 ± 4.7^{e}
	Saeidi Ujla	65.8 ± 5.3^{b}	7.7 ± 0.3^{a}	5.3 ± 1.4^{a}	78.9 ± 5.4^{b}
Outside	Bekrary.	73.0 ± 6.6^{a}	5.5 ± 0.5^{a}	7.3 ± 0.5^{b}	84.3 ± 6.3^{a}
incubator	Saeidi Jalu	62.9±5.3 ^b	7.3 ± 0.8^{a}	4.0 ± 0.8^{b}	74.4±4.1°
Mean (±SE)		58.1±5.8	7.5±0.7	3.9±0.7	69.6±5.5

Similar letters (same column) means no significant differences at a probability of 0.05 or less.

These findings underscore the importance of considering both breeding methods and date variety characteristics in pest management strategies. The significant variations in life cycle duration across conditions and varieties highlight the adaptability of *C. cautella* to different environmental and nutritional contexts. Future studies could delve deeper into the specific chemical and physical traits of date varieties that influence pest development. The result reveled the effect of date varieties, shapes, and rearing methods on the longevity of developmental stages of *Cadra cautella* (Table 4).

The results showed that date varieties, shapes, and rearing methods significantly influenced the larval stage longevity: The longest larval stage (74.6 ± 10.1 days) was observed when larvae were reared on Bakrari cut dates outside the incubator. The shortest larval stage (43.4 ± 2.2 days) occurred when larvae were reared on healthy Saedi Gallo dates inside the incubator. These findings indicate that the larval stage is highly sensitive to both food type and environmental conditions. The nutritional content, physical shape, and moisture levels of the dates, coupled with temperature and humidity, play critical roles. These results align with earlier studies (Abdel-Salam, & El-Saeady 1983), which found that larval development was prolonged on less favorable food types and under lower temperature conditions. It is well known that an insect's ability to survive and reproduce can be directly impacted by the type and amount of food it consumes (Razmjou *et al.*, 2006). Variations in developmental growth may be caused by physical or chemical characteristics of the dates

The study revealed significant differences(P=0.05) in the pupal stage based on date variety, shape, and rearing methods:The longest pupal stage (8.1 ± 0.5 days) occurred when larvae were reared on perforated Awjila dates inside the incubator. The shortest pupal stage (6.6 ± 0.2 days) was recorded on healthy Saedi Gallo dates inside the incubator. The findings suggest that perforated dates may delay pupation due to the larval feeding environment, while intact dates may provide a more stable nutritional source. These observations are consistent with Cox (1974), who reported that temperature significantly impacts the pupal stage, with cooler environments extending developmental time.

The longevity of adult C. cautella varied depending on adult's status: The longest pupal stage $(6.0\pm1.5 \text{ days})$ occurred when adult was reared on perforated Awjila dates inside the incubator. The shortest pupal stage $(2.9\pm0.2 \text{ days})$ was recorded on healthy Saedi Gallo dates inside the incubator. These results highlight the influence of mating status on adult longevity, with unmated individuals generally living longer, likely due to the absence of energy expenditure on reproductive activities. The total life cycle of C. cautella was significantly affected by the combination of date variety, shape, and rearing method: The longest life cycle was recorded when the insect was reared outside the incubator in all form of Bekrary date fruit shape (cutted = 85.8 ± 9.9 , perforated = 84.6 ± 4.0 and complete = 82.4 ± 3.9 days). The shortest life cycle (53.8 ± 2.6 days) was recorded on Saeidi Ujla Perforated dates inside the incubator.

Al-Mukhtar Journal of Agricultural, Veterinary and Environmental Sciences 3 (1): 95-103, 2025 Doi:

Table: (4). The effect of varieties shapes of date fruits and rearing place on the longevity of life cycle stages of *Ephestia cautella* (Mean (days)±SE).

Factors		(Wedn (days)=52)	Larval stage	Pupal stage	Adult stage	life cycle
		Complete	43.4±2.2 ^f	7.8 ± 0.4^{ab}	3.6±0.9 ^{caf}	55.3±2.4 ^{gh}
<u>.</u>	Saeidi Ujla	Perforated	50.6 ± 4.3^{e}	8.1 ± 0.5^{a}	3.9 ± 1.0^{caf}	62.7 ± 3.7^{de}
Inside incubator	Sa	Cutted	59.2±2.8 ^{cd}	$7.1{\pm}0.8^{\rm bcd}$	2.9 ± 0.2^{g}	69.3±2.8°
qn;	ury	Complete	56.18±5.2 ^d	7.8 ± 0.8^{ab}	$3.3\pm0.2^{\rm efg}$	67.3±5.3 ^{dc}
ii.	kra	Perforated	$43.6 \pm 1.5^{\mathrm{f}}$	7.9 ± 0.6^{ab}	3.9 ± 0.4^{cdef}	55.5 ± 2.40^{gh}
ide	Bekrary	Cutted	45.21.2 ^{fe}	7.1 ± 0.6^{ab}	$3.9 \pm 0.4^{\text{edef}}$	56.1 ± 1.4^{fgh}
nsi		Complete	49.8±3.7 ^e	6.6 ± 0.2^{d}	$3.2\pm0.5^{\text{cdefg}}$	59.8±3.9 ^{efg}
Ι	Saeidi Jalu	Perforated	43.9 ± 2.3^{ef}	6.9 ± 1.0^{cd}	3.0 ± 0.4^{fg}	$53.8 \pm 2.6^{\text{h}}$
	$S_{\tilde{S}}$	Cutted	49.3 ± 4.6^{e}	7.4 ± 0.9^{abcd}	$4.4\pm0.5^{\text{bed}}$	61.2 ± 4.3^{ef}
	di a	Complete	71.0 ± 5.6^{a}	7.6 ± 0.2^{abc}	5.2 ± 1.3^{bc}	$84.0\pm5.5^{\mathrm{b}}$
or	Saeidi Ujla	Perforated	63.8 ± 3.6^{bc}	7.7 ± 0.4^{abc}	4.6 ± 1.4^{bc}	$76.2 \pm 4.7^{\mathrm{b}}$
oat		Cutted	62.6 ± 1.4^{bc}	7.8 ± 0.3^{ab}	6.0 ± 1.5^{ae}	76.5 ± 2.1^{b}
cul	ury	Complete	70.7 ± 4.0^{a}	7.5 ± 0.6^{abc}	$4.1\pm0.2^{\rm defg}$	82.4±3.9 ^a
.u	kra	Perforated	73.8 ± 4.8^{a}	7.2 ± 0.4^{abcd}	3.5 ± 0.5^{defg}	84.6 ± 4.0^{a}
ide	Bekrary	Cutted	74.6 ± 10.1^{a}	7.7 ± 0.5^{ab}	$3.4 \pm 0.5 d^{efg}$	85.8 ± 9.9^{a}
Outside incubator		Complete	59.91.2 ^{bcd}	7.3 ± 0.9^{acd}	$4.5\pm0.9^{\rm efg}$	71.8±1.4 ^b
Õ	Saeidi Jalu	Perforated	63.6 ± 5.5^{be}	$7.6\pm0.4^{ m abc}$	3.6 ± 0.9^{bcd}	74.9 ± 5.9^{b}
	$S_{f a}$	Cutted	65.3 ± 2.0^{bc}	7.1 ± 1.0^{bcd}	$3.9\pm0.4^{\rm f}$	76.3 ± 2.9^{b}
Mean (±	SE)		58.13±11.2	7.5±0.7	3.9±0.6	69.6±3.8

Similar letters (same column) means no significant differences at a probability of 0.05 or less

The incubation environment provided a more favorable setting, likely due to controlled temperature and humidity, which accelerated development. The perforated dates seemed to offer better conditions than cut dates, possibly due to reduced moisture loss and protection against desiccation. These results corroborate findings by Allotey et al. (1990), who reported shorter life cycles of *C. cautella* when reared on nutrient-rich substrates like walnuts, also with (Oyewo and Amo 2020) who investigated the important of food types as a main factor that determine the longivety of life cycle. The controlled conditions of the incubator reduced developmental time, highlighting the importance of temperature and humidity in the life cycle of *C. cautella*, and the shape of the date fruit (e.g., cut, perforated, or whole) and its variety significantly influenced larval and pupal stages. Nutritional content and physical structure likely impacted feeding efficiency and development.

Conclusion:

These findings underscore the critical roles of environmental conditions, food type, and physical characteristics of date fruits in shaping the life cycle of *C. cautella*. Understanding these interactions can inform pest management strategies, including storage methods and environmental control, to mitigate infestations in date storage facilities. These findings can guide storage practices by emphasizing the importance of controlling environmental conditions and selecting date forms that minimize pest infestation. For example, storing whole dates in controlled environments may limit pest development and reduce losses. We recommend further studies involve on Investigate the chemical composition of date varieties to identify compounds influencing pest development and Explore integrated pest management (IPM) strategies combining environmental controls and resistant date varieties.

References

Abdel-Salam, A. L., & El-Saeady, A. A. (1983). Ecological studies on *Ephestia calidella* (Guen) and E. cautella (Walker) as date insect pests at Baharia Oases. In *Proceedings of the first Symposium on Date Palm in Saudi Arabia, March* (23-25).

Aldawood, Abdulrahman S. A, K. G. Rasool, A. H. Alrukban, A. Soffan, M. Husain, K. D. Sutanto and M. Tufail (2013). Effects of Temperature on the Development of *Ephestia cautella* (Walker) (Pyralidae: Lepidoptera): A Case Study for its Possible Control Under Storage Conditions. Pakistan J. Zool., 45(6), 1573-1578.

Allotey, J., & Goswami, L. (1990). Comparative biology of two phycitid moths, Plodia interpunctella (Hubn.) and *Ephestia cautella* (Wlk.) on some selected food media. *International Journal of Tropical Insect Science*, 11, 209-215.

Bataw, A. A. & A. A. Ben-Saad (1990). Survey of date palm trees insect pests in Libya. Arab J. Plant Prot., 8 (2): 72-76.

Bataw, A. A. & A. A. Ben Saad (1995). Survey of Arthropod that attacks date palm fruits in Libya. Al Mukhtar Journal of Sciences 2 (1) :87-96, DOI: https://doi.org/10.54172/mjsc.v2i1.452

Cox, P. D. (1974). The influence of temperature and humidity on the life-cycles of *Ephestia figulilella* Gregson and *Ephestia calidella* (Guenee)(Lepidoptera: Phycitidae). *Journal of stored products research*, 10(1), 43-55.

Cox, P. D. (1975). The suitability of dried fruits, almonds and carobs for the development of *Ephestia figulilella* Gregson, *E. calidella* (Guenee) and *E. cautella* (Walker)(Lepidoptera: Phycitidae). *Journal of Stored Products Research*, 11(3-4), 229-233.

Cox, P. D. (1987). Cold tolerance and factors affecting the duration of diapause in *Ephestia kuehniella* Zeller (Lepidoptera: Pyralidae). *Journal of Stored Products Research*, 23(3), 163-168.

Darwish, Y. A., Ali, A. W. M., Bagy, N. M., & Mohamed, R. A. (2013). Suitability of dry and semi-dry date fruit varieties to the almond moth, Ephestia Cautella Walker (Lepidoptera: Pyralidae). *Assiut Journal of Agricultural Sciences*, 44(4), 39-48

Damual, J., Jourdheutie P. & Tomassone R. (1974). Variability of lethal effects on low temperature according to stages of embryonic development of mediterranean flour moth *Anagasta Kuehniella* Zeller (Lepidoptera: Pyralidae) Ann. Zool. Ecol. Anim., 6(2): 229 – 243.

El-Maged, A. A., Elarnaouty, S. A., El Shazly, E., El Sharabasy, S., & Sayed, S. (2022). Population fluctuations of the major lepidopteran insect pests of date palm at Al-Wahat Al-Baharia region, Egypt. 322-327

Oyewo, E. A. & Amo, B. O. (2018) Assessment of the damage caused by Ephestia cautella (Walker) to stored cocoa beans. Ghana Journal of Agricultural Science 52, 25 – 31.

Al-Mukhtar Journal of Agricultural, Veterinary and Environmental Sciences 3 (1): 95-103, 2025 Doi:

Oyewo, E. A. and Amo, B. O. (2020. Aspects of the biology of *Ephestia cautella* and Tribolium castaneum on fermented stored cocoa beans. Ghana Jnl. Agric. Sci. 55 (1), 14 - 21

Razmjou, J., Moharramipour, S., Fathipour, Y., & Mirhoseini, S. Z. (2006). Effect of cotton cultivar on performance of Aphis gossypii (Homoptera: Aphididae) in Iran. *Journal of economic entomology*, 99(5), 1820-1825.

Shazali, M. E. (1990). The growth of single and mixed laboratory populations of three insect pest on stored sorghum, Bulletin of Grain Technology, 28(2): 107 – 115

Shazali, M. E. & Smith, R. H. (1985). Life history studies of internally feeding pests of stored sorghum *Sitotroga cerealella* Ol. and *Sitophilus oryzae* 1. Jour. of Stor. Prod. Res., 21(4) 171 – 178.

Sukirno Sukirno, Mureed Husain, Muhammad Siswantoro, Khawaja Ghulam Rasool, Farid Asif Shaheen, Shehzad Salman, and Abdulrahman Saad Aldawood (2021). "Study on the Loss of Value of Khodari Date Fruit Infested by Almond Moth (Lepidoptera: Pyralidae)," Florida Entomologist 103(4), 425-430, https://doi.org/10.1653/024.103.00402

Singh, S., ShaShank P. R., and Rajwinder k. S. (2021). First Report of Fruit Borer *Cadra caute-la* (Walker) on Ber in Punja. Indian Journal of Entomology. Doi:10.5958/0974-8172.2021.00029.8

Research Article 6Open Access

Experimental grow-out of European Sea bream (*Sparus aurata*) and Gilthead Sea bass (*Dicentrarchus labrax*) in Eastern Libya Abdalbast H. I. Fadel¹, * Babatunde Taofik Ademola ²

¹Department Marine Resources, University of Omar Al-Mukhtar, Al-Baida, Libya

²Department of Biology, Umaru Musa Ya'radua University, P.M.B. 2218, Katsina State, Nigeria.

*Corresponding author: E-mail addresses: basit-fadel@yahoo.com Department Marine Resources, University of Omar Al-Mukhtar, Al-Baida, Libya Received:

.

Accepted: 30.04.2025

Publish online:

.

الباحث الاول^{1*}: عبدالباسط حسين إبراهيم فضيل، قسم الموارد البحرية، جامعة عمر المختار، ليبيا.

الباحث الثاني: باباتوندي توفيق أديمولا ، قسم الأحياء، جامعة عمر موسى يارادوا، نيجيريا.

Abstract: Sea bream and sea bass are highly adaptable to different culture systems, making them well suited for aquaculture. Their delicious flesh has contributed to the growing popularity of the aquaculture industry. This research was conducted to evaluate the grow-out of European Sea bream and Gilthead Sea bass in the eastern Libyan coast of the Mediterranean Sea. Fingerlings of the fish obtained from the natural brackish water of the Eastern Libyan coast and stocked in earthen ponds supplied with brackish water. A 120-day rearing trial was conducted which showed that the growth performance of Seabream and Seabass in this experiment varied significantly, even though both were fed similar levels of dietary proteins. The weight gained, specific growth rates, and protein efficiency ratio were significantly higher (P<0.05) in Seabream compared to Seabass. The survival was not significantly different between the two species at the end of the experimental period. The feed conversion ratio was lower in Seabream (1.77) compared with Seabass (1.98). The moisture (68.10 \pm 0.72%) and ash contents (3.90 \pm 0.04%) were significantly higher in Seabass, while the crude protein $(17.39 \pm 0.17\%)$ and lipids $(11.36 \pm 0.24\%)$ were significantly higher in Seabream in this experiment. The Libyan Mediterranean coast is suitable for the grow-out of the two species, and the Seabream showed better growth and higher nutrition quality compared with Seabass.

Keywords: Grow-out, Seabream, Seabass, Brackish water

تربية تجريبية للدنيس الأوروبي (Sparus aurata) والقاروص الذهبي (Jicentrarchus) في شرق ليبيا

المستخلص: يتكيف الدنيس والقاروص بدرجة كبيرة مع أنظمة الاستزراع المختلفة، مما يجعلها مناسبه تمامًا لتربية الاحياء المائية. وقد ساهمت جودة لحومها في تزايد شعبيتهما في قطاع الاستزراع السمكي. أجري هذا البحث لتجربة تربية الدنيس الأوروبي والقاروص الذهبي في البحر الأبيض المتوسط بشرق ليبيا، وتم الحصول على الإصبعيات من مياه متوسطة الملوحة الطبيعية شرق ليبيا وتخزينها في أحواض ترابية مزودة بمياه متوسطة الملوحة، وقد أظهرت التربية في مدة 120 يومًا أن أداء نمو الدنيس والقاروص كان مختلفا بشكل كبير، على الرغم من أن كلاهما تم تغذيتهما بمستويات مماثلة من البروتين، وكان الوزن المكتسب ومعدل النمو النوعي ونسبة كفاءة البروتين أعلى بشكل ملحوظ التجريبية. كان معدل التحويل الغذائي اقل في الدنيس (1.77) مقارنة بالقاروص (1.98). وكانت نسبة الرطوبة (1.98) ولدهون (1.98) ومحتوى الرماد (1.98 \pm 0.0%) أعلى معنويا وبشكل ملحوظ في المماك الدنيس، ويُعدّ ساحل ليبيا على البحر الأبيض المتوسط مناسبًا لتربية أعلى بشكل ملحوظ في أسماك الدنيس نموًا أفضل وجودة أعلى مقارنة بالقاروص.

الكلمات المفتاحية: تربية، الدنيس، القاروص، مياه متوسطة الملوحة

INTRODUCTION

Seabream and Seabass are fish known for their adaptability to various culture systems and they are accepted in aquaculture for their ability to thrive (Arechavala- Lopez et al., 2013). They have delicious flesh which makes them becoming increasingly popular in the world of aquaculture (Regnier and Bayramoglu, 2017). The Seabream, is particularly well-established in aquaculture, especially in the Mediterranean region (Ortega et al., 2021). Challenges such as disease outbreaks and fish health concerns remain areas of active improvement (Polovina et al., 2020). Sea bream was typically cultured in the marine environment for optimal health and growth. While techniques for lowsalinity culture of sea bream appear promising, large-scale freshwater sea bream aquaculture is not yet commercially viable (Boyd et al., 2020). Sea bass is a well-prized fish known for its delicate flavor and firm flesh. The rise in popularity is largely driven by the success of sea bass aquaculture, a rapidly growing sector of the global seafood industry (Asche et al., 2022). Apart from wild-caught sea bass, farmed sea bass are now popular in aquaculture markets. Grow-out facilities, typically located in coastal areas to raise the fingerlings to market size. Two main methods, namely net pen culture and pond culture are mostly employed (Mohd Aripin, 2020). Both systems rely on formulated feeds purposely intended to meet the nutritional requirements of sea bass for optimal growth. Seabream and Seabass aquaculture boasts several advantages not limited to alleviation of pressure on wild populations, promoting sustainable fishing practices, controlled environments for better monitoring of fish health, and reducing the risk of disease outbreaks. Consistent production throughout the year, meeting consumer demand, and stabilizing market prices will also be achieved. This research will contribute to existing knowledge of Seabream and Seabass aquaculture. Libya is one of the Mediterranean countries where Sea bream and Sea culture are still at their infancy (Cross, 2022). We conducted an experimental grow-out of European Sea bream and Gilthead Sea bass in the Eastern Libyan Mediterranean coast.

MATERIALS AND METHODS

Experimental setup: The experiment was carried out in a private earthen pond farm located at Tamimi village, Eastern Libya. A 120-day rearing trial from April 2023 through July 2023 was conducted for wild fingerlings of Seabream and Seabass obtained from the natural brackish lake of Eastern Libya. The initial average wet weight of the Seabream and Seabass were 8.64±0.10 g and 9.08±0.12 g respectively. Immediately after collecting the fish from the fishermen, they were placed in nursery ponds, sorted and distributed in acclimatization ponds according to type and weight, then finally to the grow-out pond for this experiment.

For this study, four (4) earthen ponds (40m by 80m by 1.2m) used. Water was pumped up from the brackish area using a moto-pump. Two ponds stocked with 2000 fingerling specimens of Seabream (*Sparus aitrata*) and Seabass (*Dicentrarchus labrax*, L.) separately.

At the beginning of the experiment, the fingerlings were transferred to the rearing ponds and fasted for 72 hours to adapt to the rearing conditions. For the entire study period, European seabass and gilthead seabream were fed a commercial diet containing 45% crude protein (Table 1).

Table:(1). Proximate composition (%) of the commercial fish feed used for the experiment.

Proximate composition (%)	(%)	
Moisture	14	
Crude protein	45	
Crude lipid	15	

Crude ash	12	

Rearing trial: The fish were fed twice daily at 9:30 and 16:30 at a rate of 3% of total pond fish biomass from the beginning to the end of the study. The amount of feed consumed by the fish per day was recorded. To estimate the growth of the fish and to obtain the feed conversion ratio, 50 fish were randomly sampled from each pond once a week, and the average wet weight was recorded by using a 0.01 g sensitive scale. Feed also adjusted accordingly.

Water parameters measured weekly. Temperature (°C), pH, and salinity were measured using Hana multimeter. Dissolved oxygen and total ammonia concentration were determined through the Winkler-Azide method and titrimetric method respectively (<u>Apha, 1995</u>). The proximate composition of the fish carcass was determined by the method described by (<u>AOAC</u>, 1997).

At the end of 120-day rearing trial, the following parameters of the fish estimated:

Weight gain
$$(g)$$
 = final body weight (g) - initial body weight (g)

Weight gain (%) =
$$\frac{\text{final body weight (g) - initial body weight (g)}}{\text{initial body weight (g)}} \times 100$$

SGR (%) =
$$\frac{\ln \text{ final body weight - ln initial body weight}}{\text{number of days}} \times 100$$

Feed conversion ratio(FCR) =
$$\frac{\text{total dry weight of diet fed (g)}}{\text{wet weight gain (g)}}$$

Protein efficiency ratio (PER) =
$$\frac{\text{wet weight gain (g)}}{\text{total protein intake (g)}}$$

Statistical analysis: The independent t-test was used to compare the mean monthly water parameters, proximate and growth parameters between the Seabram and the Seabass ponds. Significant differences were detected at α level of 5% (P < 0.05). Statistical analysis was done using SPSS version 23 for Windows.

RESULTS

Water quality of the ponds: The results of the water quality of experimental ponds over the experimental period (Table 2) indicated that the temperature, pH, DO and salinity of the ponds were not significantly different (p>0.05) between the two rearing groups on Seabream and Seabass. TAN was also significantly lower in the Seabream ponds (Carminato *et al.*, 2020; Mansour *et al.*, 2021).

Table: (2). Average water quality parameters of the experimental ponds

Parameters	Seabream	Seabass	P Value
Temperature (°C)	27 ± 3.21 ^a	27 ± 2.10^{a}	ns
pH	7.8 ± 1.20^{a}	7.9 ± 1. 40 ^a	ns
DO(mg/l)	6.9 ± 1.21^{b}	6.8 ± 0.42^{a}	ns
Salinity (g/l)	$18.1 {\pm}~0.10^a$	18.0 ± 0.10^{a}	ns
$NH_4 (mg/l)$	0.85 ± 0.11^{a}	0.88 ± 0.15^{b}	S

ns: not significant (p>0.05) and s: significant (p<0.05).

Al-Mukhtar Journal of Agricultural, Veterinary and Environmental Science 3 (1): 104-109, 2025

Growth performance: Growth performance of Seabream and Seabass fingerlings reared in brackish water in this experiment varied significantly (Table 3), even though both fed similar levels of dietary proteins (Table 1). The weight gained, specific growth rates, feed conversion ratio, and protein efficiency were significantly higher (P<0.05) in Seabream compared to Seabass (Table 3). The survival rate was not significantly different between the two species at the end of the 120-day rearing period.

Table: (3). Growth performance and feeding efficiency of Seabream and Seabass

Parameters	Seabream	Seabass	P Value
Initial weight(g)	8.98 ±0.30 ^a	9.06±0.42 a	ns
Final weight (g)	70.05 ± 1.57^{b}	58.90 ± 0.26^{a}	S
Weight gain (g)	61.07 ± 1.47^{b}	49.82 ± 0.14^a	S
Weight gain (%)	679.09 ± 9.10^{b}	548 ± 6.13^{a}	S
Survival%	76.50 ± 0.75^{a}	77.05 ± 0.50^{a}	ns
SGR ¹ (% d ⁻¹)	3.19 ± 0.01^{a}	3.03 ± 0.00^{a}	ns
FCR	1.77 ± 0.08^{a}	1.98 ± 0.02^{b}	S
PER	1.25 ± 0.06^{a}	1.11 ± 0.14^{b}	S

ns: not significant (p>0.05) and s: significant (p<0.05).

Proximate composition: In this study on cultured sea bream and sea bass, the proximate composition value of the fish carcass (Table 4) showed that there is a significant difference (p<0.05) in moisture, crude protein, crude lipid and crude ash contents of the two species. The highest moisture (68.10 \pm 0.72%) and ash content (3.90 \pm 0.04%) were found in Seabass while crude protein and lipids were higher in Seabream in this experiment.

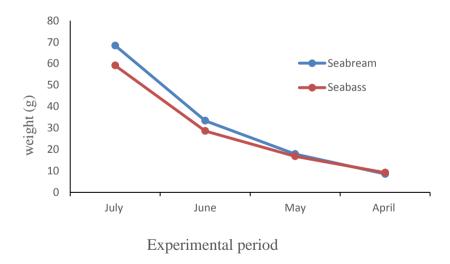


Figure: (1). Average monthly weight of Seabream and Seabass during the experimental period

Table: (4). Body composition (%) of Sea bream and Seabass reared in ponds

Proximate composition (%)	Seabream	Seabass	P Value
Moisture	66.44 ± 0.56^{a}	68.10 ± 0.72^{b}	0.00
Crude protein	17.39 ± 0.17^{b}	16.78 ± 0.09^{a}	0.00
Crude lipid	11.36 ± 0.24^{b}	10.62 ± 0.29^{a}	0.00
Crude ash	3.81 ± 0.03^{a}	3.90 ± 0.04^{b}	0.00

Al-Mukhtar Journal of Agricultural, Veterinary and Environmental Science 3 (1): 104-109, 2025 Doi:

DISCUSSION

This research investigated the grow-out performance of Sea bream and Sea bass in a brackish water pond. There were no significant differences in water temperature among the ponds (p > 0.05), indicate stable environmental conditions during the experiment. Since the atmosphere is temperature is the major determinant of water temperature (Bonacina et al., 2023), this implies that our experimental setup was under similar atmospheric conditions. However, the pH was significantly higher in the sea bass pond, possibly due to soil-related factors (Bhowmick et al., 2022; Ndayisenga and Dusabe, 2022). The significantly higher DO recorded in Seabream Pond could be because of metabolic physiology, which have more efficient oxygen utilization compared with the Seabass. A comparable result was reported by Altan (2020), showed that gilthead sea bream reared in earthen ponds at low salinity brackish water reached a higher wet weight, growth rate, and lower FCR values compared to European sea bass in the cultured at the same time. The current research also finds a lower FCR in the seabream pond compared with the seabass. The can be further supported with the protein efficiency ratio which was higher in Gilthead seabream compared with European seabass as observed in the current study and this was consistent with the finding of (Altan, 2020). This research compared the growth rate and feed utilization of the gilthead seabream and European seabass production reared in low salinity earthen pond in the Easter Mediterranean of Libya, Libya, with its extensive coastline and rich marine resources, possesses significant potential for aquaculture development. Seabass and seabream, two high-value fish species, have gained global prominence in aquaculture. This study provides an assessment of the potential of low-salinity pond aquaculture for sea bass and sea bream. As there is currently no commercial-scale seabass or seabream aquaculture in the area. The present study showed that the country's coastal waters are suitable for the grow-out of these species.

CONCLUSION

This research compared the growth rate of Gilthead Seabream and European Seabass reared in a low salinity pond in the Libyan Mediterranean coast. The 120-days rearing trial showed that the Gilthead Seabream grows faster with better-feed conversion compared with European Seabass. From the present study, it can be concluded that, the Libya Mediterranean coast is suitable for grow-out of the two species.

REFERENCES

- Altan, O. (2020). The first comparative study on the growth performance of European seabass (Dicentrarchus labrax, L. 1758) and gilthead seabream (Sparus aurata, L. 1758) commercially farmed in low salinity brackish water and earthen ponds. *Iranian Journal of Fisheries Sciences* **19**, 1681-1689.
- AOAC (1997). "Official Methods of Analysis, Washington D.C. USA.."
- Apha (1995). "Standard Methods for the Examination of Water and Wastewater. 19th Edition, American Public Health Association Inc., New York.," American Public Health Association.
- Arechavala- Lopez, P., Fernandez- Jover, D., Black, K. D., Ladoukakis, E., Bayle- Sempere, J. T., Sanchez- Jerez, P., and Dempster, T. (2013). Differentiating the wild or farmed origin of M editerranean fish: a review of tools for sea bream and sea bass. *Reviews in aquaculture* 5, 137-157.

- Al-Mukhtar Journal of Agricultural, Veterinary and Environmental Science 3 (1): 104-109, 2025
- Asche, F., Garlock, T., Camp, E., Guillen, J., Kumar, G., Llorente, I., and Shamshak, G. (2022). Market opportunities for US aquaculture producers: the case of Branzino. *Marine Resource Economics* 37, 221-233.
- Bhowmick, A. K., Chattopadhyay, G. N., Sah, K. D., and Sarkar, D. (2022). Assessment of Soil Factors Influencing Productivity of Fish Ponds Under Two Contrast Agro-ecological Regions. *In* "international conference on Mediterranean Geosciences Union", pp. 111-116. Springer.
- Bonacina, L., Fasano, F., Mezzanotte, V., and Fornaroli, R. (2023). Effects of water temperature on freshwater macroinvertebrates: a systematic review. *Biological Reviews* **98**, 191-221.
- Boyd, C. E., D'Abramo, L. R., Glencross, B. D., Huyben, D. C., Juarez, L. M., Lockwood, G. S., McNevin, A. A., Tacon, A. G., Teletchea, F., and Tomasso Jr, J. R. (2020). Achieving sustainable aquaculture: Historical and current perspectives and future needs and challenges. *Journal of the World Aquaculture Society* **51**, 578-633.
- Carminato, A., Pascoli, F., Trocino, A., Locatello, L., Maccatrozzo, L., Palazzi, R., Radaelli, G., Ballarin, C., Bortoletti, M., and Bertotto, D. (2020). Productive results, oxidative stress and contaminant markers in European sea bass: Conventional vs. organic feeding. *Animals* 10, 1226.
- Cross, S. (2022). Regional review on status and trends in aquaculture development in North America–2020.
- Mansour, A. T., Fayed, W. M., Elkhayat, B. K., Omar, E. A., Zaki, M. A., Nour, A.-A. M., and Morshedy, S. A. (2021). Extract dietary supplementation affects growth performance, hematological and physiological status of European seabass. *Annals of Animal Science* **21**, 1043-1060.
- Mohd Aripin, M. A. B. (2020). An economic study of sea bass production in peninsular Malaysia, Queensland University of Technology.
- Ndayisenga, J., and Dusabe, S. (2022). Ponds' water quality analysis and impact of heavy metals on fishes' body. *Journal of Sustainability and Environmental Management* 1, 62-72.
- Ortega, A., Cano-Pérez, J., Nhhala, H., Halla, M. I., Kara, M. H., de la Gándara, F., Cerezo-Valverde, J., Cañavate, J. P., Fernández Pasquier, V., and González-Wangüemert, M. (2021). Aquaculture in the Alboran Sea. *In* "Alboran Sea-Ecosystems and Marine Resources", pp. 659-706. Springer.
- Polovina, E.-S., Kourkouni, E., Tsigenopoulos, C. S., Sanchez-Jerez, P., and Ladoukakis, E. D. (2020). Genetic structuring in farmed and wild Gilthead seabream and European seabass in the Mediterranean Sea: implementations for detection of escapees. *Aquatic Living Resources* 33, 7.
- Regnier, E., and Bayramoglu, B. (2017). Competition between farmed and wild fish: the French sea bass and sea bream markets. *Aquaculture Economics & Management* **21**, 355-375.