Al-Mukhtar Journal of Agricultural, Veterinary, and Environmental Sciences

Voulme 2 Issue 2 DEC 2024

EISSN:3006 - 8649

PUBLISHED BY OMU

Al-Mukhtar Journal of Agricultural, Veterinary and Environmental Sciences

Peer-reviewed scientific journal, Volume Tow, Issue Tow, 2024

Published by Omar Al-Mukhtar University, Al-Bayda, Libya

Al-Mukhtar Journal of Agricultural, Veterinary and Environmental Sciences

The Author(s) 2024. This article is distributed under the terms of the *Creative Commons Attribution-NonCommercial 4.0 International License* (http://creativecommons.org/licenses/by-nc/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, *for non-commercial purposes only*, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

A peer-reviewed journal published by Omar Al-Mukhtar University, Al Bayda, Libya Peer-reviewed scientific journal, Volume Tow, Issue Tow, 2024

Email: omu.j.ave@omu.edu.ly

EDITORS & STAFF

Editor-in-Chief

Prof. Dr. Nawara Ali Mohammed Al-Obaidi

Prof. Nawara Muhammad Balqasim

Prof. Zahra Ibrahim Al-Jali

Prof. Dr. Nasser Al-Maslati

Prof. Dr. Magda Rizq Emraj

Dr. Ahmed Atiya Al-Mansouri

Dr. Osama Abdel-Hamid Abdel-Aty

Dr. Hamida Abdel Nabi Youssef

Dr. Abdel-Ghani Abdel-Fattah Hamad Al-Kaloush,

Dr. Khadija Muhammad Othman Al-Haddad

Dr. Fatima Faraj Muhammad

Dr. Muhammad Abdel Karim Moamen

Advisory Committee

Prof. Ibrahim Saleh Milad, Omar Al-Mukhtar University

Prof. Ariel Guti Veterinary Educational and Research Institute-India

Prof. Muhammad Ali Saeed, Omar Al-Mukhtar University

Prof. Ibrahim Ali Azaqa, Sebha University

Prof. Malik Raisul Islam Agricultural Sciences University of Agricultural Sciences and Technology

- India

Prof. Abdul Hamid Salem Issa Al-Haddad, Misrata University

Prof. Omar Musa Al-Senussi, Omar Al-Mukhtar University

Prof. Muhammad Ali Musa Boubakra, Omar Al-Mukhtar University

Prof. Abdel Hafeez Abdel Rahman Bouaida, Omar Al-Mukhtar University

Prof. Nasser Abdel Razek Abdel Mawla, Omar Al Mukhtar University

Prof. Abdul Hamid Hamad Charity, Omar Al-Mukhtar University

Support Team

Mr. Salah Muftah Abdullah

Ms. Suad Saeed Ahmeida

Al-Mukhtar Journal of Agricultural, Veterinary and Environmental Sciences 02: (2), 2024

Papers	Pages
Assessment of soil fertility using geographic information systems and fertility indicators: a case study for the Bani Walid area	01-20
Abdulbaset E. Salama	
Identification of Insect Pests in Stored Pulses within Tripoli, Libya	
	21-30
Nagat A. Abuelnnor	
Investigation of fungi contaminating broiler feed in some poultry farms in Syria	
Ammar M. Mostafa Tawfek K. Dalla Fahem A. Abdalaziz	31-37
Munzer S. Tamouz	
A Descriptive Study of The Barbary Partridge in the Green Mountain	
Region of Cyrenaica - Libya	38-47
Tarek A. S. Altief Rayiqh A. Saeid Salem A. Amaizik	
Impact of Soaking Wheat Grains in Gibberellic Acid Under Varying	
Sodium Chloride (NaCl) Concentrations	
	48-55
Imbarkah F Aboubakr Ahmed S Issa Ayiman F Ahmed Gamila S Muhammed	
Prevalence of Babesia Infection in the Northeastern Part of Libya	
(Camelus Dromedaries)	
(Cameras Diomedaries)	56-62
Salwa M.S Al-Fazzani Radya A.A. Mustufa Mohamed S.M. Elgther Nawara M. B. Eissa ⁴	
Impact of Amoxicillin on the Germination and Early Growth Phase of Seedlings of	
Lentil and Chickpea Varieties	63-73
Esraa Samir Al-Boush	
Estimating some Genetic parameters of growth indicators & yield for Pure Lines of	
Chili pepper	74-86
	74-60
Lama Alloun Azieza Mardeekhy Shaemae Samou Lava Mostafa	
The Determination of The Initiative Amount of Ammonium Sulfate Fertilizer Rates	
for Biological Nitrogen Fixation by Rhizobium Bacteria on Vicia Faba Plant Under	07.04
Local Condition	87-94
Fatema. I. Benamer Hoda. A. Elhadede	
Evaluation of Quality characteristics of three local soft wheats (bread wheat) varieties	
and an introduced variety grown under a supplementary irrigation system	95-104
Jamal O. Nasr Salaheldin M. Abo-Gharsa	23 104
Mohamed A. Elkekli Nasir M. Khatab	
Biochemical study of three legume types by vitamin B12 and aqueous extracts of	
Cucurbita pepo L. leaves influence	105-113
Wasan Salih Hussain Ban Abdul-Aziz Edan Noor Al-huda A. Mohammed Taher	

Doi: https://doi.org/10.54172/rp00hm94

Research Article ⁶Open Access

Assessment of soil fertility using geographic information systems and fertility indicators: a case study for the Bani Walid area

Abdulbaset E. Salama

*Corresponding author: bdalbastslamt361@gmail.com, Department of Soil and Water, Faculty of Agriculture, Bani Waleed University, Libya.

Received: 25 February 2024

Accepted: 19 August 2024

Publish online: 04 October 2024

Abstract: This research presents an assessment of soil fertility by (GIS) and three main quality indices: The Nutrients index (NI), Soil Fertility Index (%), and soil quality (SO) Soil samples were collected from the study area, GIS application and fertility indicators were found to contain the following: pH ranges from (7.00 to 7.50) is mildly/strongly alkaline the EC was characterized as non-saline- strong (range from 0.15 - 22.00) and moderately calcareous, calcareous soil (the CaCO3 range from 16.30% to 41.00%.) The soil had a low soil OM content which did not exceed, 55.28%.the OM ranges from (0.33 % to 1.61%). CEC ranged from (4.35-12.70). ESP (%) ranged from (2.43 to 25.30). Soil most are non-sodic (96.96 %.), and the soil bulk density (BD) ranged from 1.13 to 1.56. Texture sandy loam >loams sandy>clay loam, respectively. Nutrients cover about 50% very low .low 23%, low levels are 25%, acceptable levels are 23%, high values are 0.99% and medium 0.0061%, and very poor and poor levels are 1%.by quality indices for three zones: NI gives high for K, P and low for N, Cu, Zn, Fe, and Mn respectively. SF (%) is Excellent for K(C1) and Nonagricultural for P, N, Cu, Zn, Fe and Mn (C6) respectively. (SQ): (S3), > (S2), > (S1). Respectively.

Keywords: GIS; Nutrients; Soil; Index And Fertility.

تقييم خصوبة التربة باستخدام نظم المعلومات الجغرافية ومؤشرات الخصوبة: دراسة حالة لمنطقة بنى وليد

المستخلص: يهدف هذا البحث تقييم خصوبة التربة في منطقة الدراسة والتي تعتمد على دراسة استخدام نظم المعلومات الجغرافية ومؤشرات الخصوبة وهي: مؤشر المغذيات (NI)، ومؤشر خصوبة التربة (٪)، ومؤشر جودة التربة (SQ). تم جمع عينات التربة من منطقة الدراسة، وتطبيق GIS، ومؤشرات الخصوبة التي تبين أنها تحتوي على: الرقم الهيدروجيني للتربة يتراوح من (7 إلى 7.50) وهي قلوبة بشكل معتدل أو قوية. و EC بأنها غير مالحة -قوية (تتراوح من 0.15 إلى 22.00) و كانت كربونات الكالسيوم في التربة كلسية متوسطة الي جيربة حيث تتراوح من (16.30٪ إلى 41.00٪) بينما كان محتوى المادة العضوية منخفض فيها لم يتجاوز 55.28%. حيث تراوحت نسبة المادة العضوية من (0.33% إلى 1.61%). وتراوحت نسبة ESP (من 4.35 الى 12.70). (%) وكذلك من (2.43 إلى 25.30). حيث نلاحظ أن معظم التربة غير صودية بنسبة (96.96%)، وكذلك كانت الكثافة الظاهرية للتربة من 1.13 إلى 1.56. القوام للتربة: الرملي طمي> طمييي رملي > طمي > طمي طيني، على التوالي. وتغطى العناصر الغذائية الكبرى والصغرى بشكل عام حوالي 50% منخفضة جداً، ومنخفضة 23%، ومستوبات متوسطة 25%، مقبولة 23%، مرتفعة 0.99% , فقيرة جدا 0.0061%، ,فقيرة 1%. حسب مؤشرات الجودة لثلاث مناطق: NI يعطى نسبة عالية من P و P ومنخفضة بالنسبة لـ N و Cu و Zn و Fe و Mn على التوالي. يعتبر SF (%) ممتازًا بالنسبة إلى البوتاسيوم (C1) وغير الزراعي بالنسبة إلى P و R و Zn و Zn و Ee و Mn (C6) على التوالي. QS: Q3<Q<2<Q1 على التوالي.

الكلمات المفتاحية: نظم معلومات الجغرافية، المغذيات، التربة، مؤشر الخصوبة.

INTRODUCTION

The fundamentals of soil fertility are predicated on an understanding of a soil's chemical and physical characteristics and how this affects plant development. Once these characteristics are identified, soil can be altered by physical methods and the addition of materials that will change the soil's natural composition, Major element and micronutrient deficiencies have been linked to specific soil properties. (N, P, K Fe, Mn, Cu, Zn). The nutrients that plants need can be arranged from the most mobile to the least mobile within the plant based on how mobile they are: • Very mobile: Mg, N, P, and K • Slightly mobile: S • Immobile: Cu, Fe, Mo, and Zn • Very immobile: B and Ca. The pH of soil water varies from 5.5 to 6.5; strongly weathered soils are closer to pH 5.5 while less weathered soils are closer to pH 6.5. (Jones Jr, 2012) quality (SQ) refers to the ecosystem's and soil's capacity to provide plants with the nutrients they require at every stage of growth to maintain crop yield. (Mukherjee & Lal, 2015). Index of Fertility (FI) Numerous applications in the fields of study that support the long-term viability of soil management depend on the understanding of soil fertility (Mohamed et al., 2020).

Libyan soils are typically shallow, and sandy, with low organic matter content and water-holding capacity. (Laytimi & Area, 2002). Physical indicators that affect soil quality include bulk density, root depth, and soil texture. Chemical indicators that affect soil quality include cation exchange capacity (CEC), electric conductivity (EC), and pH these indicators and soil quality have highly significant correlations. (Istijono & Harianti, 2019; Moore et al., 2016). By allocating data to soil maps and using the maps' multicriteria for decision analysis, one may create a themed map that prioritizes soil conservation and management using GIS-based multicriteria decision analysis techniques. (Varade et al., 2017). Aimed at evaluating the fertility status of soils in the study area using fertility ratings and nutrient index to determine the variability existing among soil physicochemical properties.

The main objective of this research was to assess the soil of the study areas by this paper applies GIS and fertility index, for agricultural investment to help decision-makers and regional governments find the best solutions for improving soil quality and address the issue of food security, which is one of the most significances concerns for sustainable development.

MATERIALS AND METHODS

Study area

Geographically, the study area is located between 448200 to 451800 E and latitudes 3492700 to 3439600 N East Longitude and the geographical extent of the Bani Waleed region in the northwest of Libya. The studied area is known as Wadi Al-Qalala'a Fig (1). It has an area of 740.55ha, with a medium to low available water content Due to the dry climate.

Methodology

The study was elaborated through four stages. The first stage was consecrated to build up the spatial database by processing topographic maps; (a) collection, digitizing, and mosaicking of the topographic maps (b) mosaicking clipping the topographic maps excerpt the studied area), by using the software of geographic information system (ArcGIS 10.3). The second stage was consecrated to the fieldwork to collect the sample's soil at depth (0-60 cm). Laboratory work represented the third included the chemical characterization of soil samples. Fig (2).

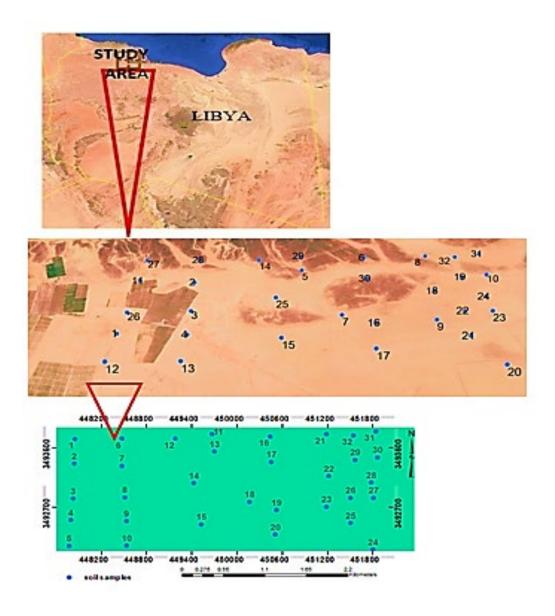


Figure: (1). Location studied of area. By using Google Earth and software (ArcGIS 10.3).

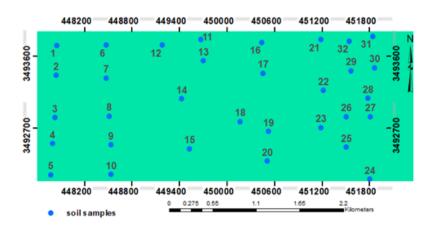


Figure: (2). Studied area and soil sample locations

Analysis of Soil Samples:

Soil Sampling and Analysis

- Sample Collection: Thirty-two soil samples were collected from the root zone (0-60 cm depth) in the studied area.
- Sample Preparation: The samples were air-dried and crushed, passing through a 2 mm sieve for subsequent analyses.
- Sampling Design: A random nested soil sampling design was employed, covering the entire area (see Fig. 2).

Soil Physical Analysis

• Texture: Sieves and the hydrometer method were used to determine soil texture (Kettler et al., 2001).

• Chemical Analysis

- o Salinity: Measured in the soil paste extract.
- o pH: Determined in a 1:2.5 soil suspension using an EC meter and pH measurement (Page et al., 1982).
- Sodium Adsorption Ratio (SAR): Calculated based on soluble concentrations of Ca, Mg, and Na.
- Organic Matter Content (OM%): Assessed using the Walkley & Black method (Page et al., 1982).
- Calcium Carbonate (CaCO3%): Determined via the pressure calcimeter method (Page et al., 1982).

Available Nutrients Assessment

- Nutrients: The content of available nutrients (K, P, B, Fe, Zn, Mn, Cu) was extracted using the method by Soltanpour (Soltanpour, 1991).
- Potassium: Measured using a flame photometer (Page et al., 1982).
- Micronutrients: Assessed by atomic absorption.

Soil fertility evaluation

• Nutrient index (NI) Using these fertility classes **Table**: (2), the Nutrient Index was calculated using the following equation (1).

```
(Nutrient Index (NI) = (NL * 1 + NM * 2 + NH * 3))/NT.
```

- Where, NL, NM, and NH are several samples falling in low, medium, and high classes of nutrient status, respectively and NT is the total number of samples analyzed for a given area.
- Soil Fertility Index (%) based on the samples in each of the six classes according to Table (3).

Table:(1). Rating chart for analyzed soil nutrient values, Physical, and Chemical Characterization

Class	Rating	Class	Rating
EC(dS/m)*		Available Potassium (K) **	(mgkg-1)
Nonsaline	< 2	LOW	<200
Very slightly saline	2 to < 4	Medium	200 - 400
Slightly saline	4 to < 8	High	>400
Moderately saline	8 to < 16	Extraction Method DTPA	
Strongly saline	≥ 16	Iron (Fe) ***	(PPM)
ESP%*		LOW	< 2.5
Non- Sodic	<15	Adequate	2.5 - 5.0
Sodic	>15	High	>5.0
CaCO3 %*	CaCO3 %	Manganese (Mn) ***	(PPM)
Non-Calcareous	<15	LOW	< 0.6
Moderately Calcareous	15-20	Adequate	
Calcareous	>20	High	>2.0
OM% *		Zinc (Zn) ***	(PPM)
<1	very low	LOW	<1.0
1–2.5	low	Adequate	1 - 1.5
2.5-5.0	medium	High	>1.5
5.0-10.0	high	Copper (Cu) ***	(PPM)
>10.0	very high	LOW	< 0.6
PH *		Adequate	0.60 - 2.0
<5.5	strongly acidic	High	>2.0
5.5-6.2	moderately acidic	Extraction Method Hot water	
6.2-7.0	neutral	Boron(B) ***	(PPM)
7.0–7.8	moderately alkaline	LOW	< 0.5
>7.8	strongly alkaline	Adequate	0.5 - 2.0
Available Nitrogen (N)**	(mgkg-1)	High	>2.0
LOW	<40		
Medium	40 - 80		
High	>80		
Available Phosphorus (P)**	(mgkg-1)		
LOW	<10		
Medium	10 - 15		
High	>15		

^{*}USDA (2017), (** Hamissa, M. et al 1993) and (*** Calabi-Floody, M. et al 2017).

Table :(2). Nutrient Index with Range and Remarks

Fertility level	Range of soil nutrient	Nutrient indexes	Fertility level
Low	Below 1.67	I	Low
Medium	1.67 - 2.33	II	Medium
High	Above 2.33	III	High

Table:(3).. Fertility classes according to (Storie, 1933 and 1944).

Fertility Class	Fertility Index%	Description
C1	> 80	Excellent
C2	< 80 -> 60	Good
C3	< 60 - > 40	Fair
C4	< 40 - > 20	Poor
C5	< 20 - > 10	Very poor
C6	< 10	Nonagricultural

The used Soil quality (SQ) classes into there are shown in Table (4)

Table :(4). Quantitative and qualitative classifications of considered indicators.

Indicators	Range	Class
	< 1.13	High quality S1
Soil quality	1.13–1.46	S2 (Moderate quality)
	> 1.46	S3 (Low quality)

The fertility index was described according to Equation (2): (Kosmas, C. et al 1999)

 $FI = (FN \times FP \times FK \times FCu \times FZn \times FFe \times FMn)^{1/7}$

where FI = fertility index, FN, FP, FK, FCu, FZn, FFe, and FMn = available nitrogen, phosphorus, potassium, copper, zinc, iron, and manganese respectively.

RESULTS

Table :(5). Physical and Chemical Characteristics of soil samples

Sample		EC	Solu	ble Ions(m	eq/) 1	CaCO3	OM	CEC	ECD0/	DD	Т
No	pН	dS/m	Ca+2	Mg+2	Na+2	(%)	(%)	CEC	ESP%	BD	Texture
1	7.40	16.00	55	32.2	77.7	29.50	0.87	4.35	13.56	1.32	SL
2	7.40	0.15	1.8	1.4	4.3	17.50	0.33	10.43	3.45	1.56	SL
3	7.30	1.92	10	4.8	3.1	16.30	0.50	6.09	6.00	1.55	SL
4	7.00	1.60	10	4.3	6.8	41.00	1.61	12.00	7.88	1.13	L
5	7.40	0.15	1.8	1.4	4.3	17.50	0.33	10.43	3.45	1.56	SL
6	7.40	16.00	55	32.2	77.7	29.50	0.87	4.35	13.56	1.32	SL
7	7.00	1.60	10	4.3	6.8	41.00	1.61	12.00	7.88	1.13	L
8	7.00	1.60	10	4.3	6.8	41.00	1.61	12.00	7.88	1.13	L
9	7.00	1.60	10	4.3	6.8	41.00	1.61	12.00	7.88	1.13	L
10	7.40	0.15	1.8	1.4	4.3	17.50	0.33	10.43	3.45	1.56	SL
11	7.40	16.00	55	32.2	77.7	29.50	0.87	4.35	13.56	1.32	SL
12	7.40	0.15	1.8	1.4	4.3	17.50	0.33	10.43	3.45	1.56	SL
13	7.00	1.60	10	4.3	6.8	41.00	1.61	12.00	7.88	1.13	L
14	7.00	22.00	75.8	43.6	119.5	28.00	0.50	4.35	25.30	1.51	LS
15	7.40	0.15	1.8	1.4	4.3	17.50	0.33	10.43	3.45	1.56	SL
16	7.00	1.60	10	4.3	6.8	41.00	1.61	12.00	7.88	1.13	L
17	7.40	16.00	55	32.2	77.7	29.50	0.87	4.35	13.56	1.32	SL
18	7.00	1.60	10	4.3	6.8	41.00	1.61	12.00	7.88	1.13	L
19	7.40	0.15	1.8	1.4	4.3	17.50	0.33	10.43	3.45	1.56	SL
20	7.40	0.15	1.8	1.4	4.3	17.50	0.33	10.43	3.45	1.56	SL
21	7.00	1.60	10	4.3	6.8	41.00	1.61	12.00	7.88	1.13	L
22	7.10	7.00	31	28	24.4	25.30	1.00	12.70	12.00	1.54	CL
23	7.00	1.60	10	4.3	6.8	41.00	1.61	12.00	7.88	1.13	L
24	7.50	2.00	7.2	5.2	6.8	31.50	1.24	11.50	2.43	1.25	L
25	7.50	2.00	7.2	5.2	6.8	31.50	1.24	11.50	2.43	1.25	L
26	7.50	2.00	7.2	5.2	6.8	31.50	1.24	11.50	2.43	1.25	L
27	7.50	2.00	7.2	5.2	6.8	31.50	1.24	11.50	2.43	1.25	L
28	7.50	2.00	7.2	5.2	6.8	31.50	1.24	11.50	2.43	1.25	L
29	7.10	7.00	31	28	24.4	25.30	1.00	12.70	12.00	1.54	CL
30	7.00	1.60	10	4.3	6.3	41.00	1.61	12.00	7.88	1.13	L
31	7.40	16.00	55	32.2	77.7	29.50	0.87	4.35	13.56	1.32	SL
32	7.40	16.00	55	32.2	77.7	29.50	0.87	4.35	13.56	1.32	SL

As displayed in Tables 5 and 6, the Soil pH in the soils studied was (ranging from 7.00 to 7.50, with an average of 7.26), let's consider the hydrogen ion concentration (H+). This adjustment reveals

that the soil settings are mild to strongly alkaline (Brady & Weil, 2002). There is a need to reduce soil alkaline to improve soil fertility for sustainable soil fertility management.

As displayed in Tables 5 and 6, the Soil electrical conductivity (EC) was nonsaline to highly salinity soils in the soils studied and ranged from 0.15 to 22.00 dS/m, with an average of 5.03 dS/m. Figure 3 (EC) shows the spatial distribution of EC. The study area was divided into Four categories of EC: Non-Saline, Very Slightly Saline, Moderately Saline, and Strongly Saline: 149.470ha, 20.18%, 264.19ha, 35.68%, 162.36ha, 21.92%, 164.52ha, and 22.22%, respectively. As show Table (1). (Shokr et al., 2021).

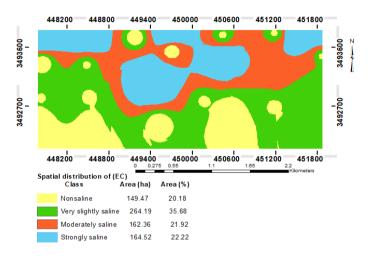


Figure: (3). spatial distribution of the EC(dS/m).

"The results displayed in Tables 5 and 6 reveal that the CaCO3 content ranges from 16.30% to 41.00%, with an average of 30.06%. These findings suggest soils with a moderate to high calcium content. Within the study area, two predominant classes: 'Moderately Calcareous' and 'Calcareous.' The spatial distribution of CaCO3 soil samples, as depicted in Figure 4, further illustrates this pattern:

- Moderately Calcareous: Covers 30.21 hectares (approximately 4.08% of the area).
- Calcareous: Dominates a substantial portion, spanning 710.19 hectares (about 95.92%).

It's worth noting that soils in the Mediterranean region often form in situ, and their characteristics persistently reflect the underlying parent material from which they originate." (Bockheim et al., 2005).

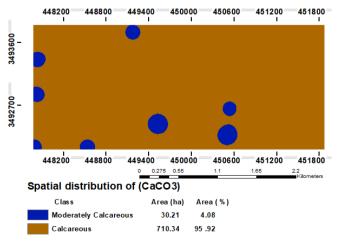


Figure: (4). spatial distribution of the CaCO3 (%).

Displayed in Tables 5 and 6, the organic matter content was low in the soils studied and ranged from 0.33% to 1.61%, with an average of 1.03. that indicated that the organic matter content ranged from less than 2% (very low) to (low) in the soils AS shown (Table 1). Figure 5 (OM) showed the spatial distribution of OM. The study area was divided into two categories of OM: very low and low 331.19 ha, 44.72%, 409.36 ha, and 55.28%, respectively. Hence, it is recommended to use organic fertilizers (Bot & Benites, 2005).

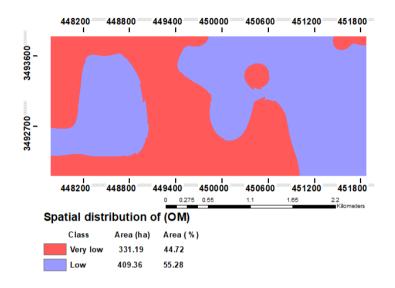


Figure: (5). spatial distribution of the OM (%).

The results of CEC ranged from 4.35-12.70 CEC (meq/100 g) with an average value of CEC (meq/100 g) is 9.76. The CECs of the clay minerals in the soil of study areas Kaolinite1:1. Figure(6) (CEC) shows the spatial distribution of CEC. The study area was divided into two categories (below 5, between 5 and 13) 12.271ha, 1.66%, 728.28ha, and 98.43%, respectively. Low CEC soils are not as resilient and are unable to accumulate nutrient stores The CEC of many sandy soils is less than 4 cmolc/kg. The entire capacity for storing nutrients is determined by the kind, amount, and content of clay. For most crops, values greater than 10 cmolc/kg are deemed adequate (Nachtergaele et al., 2023).

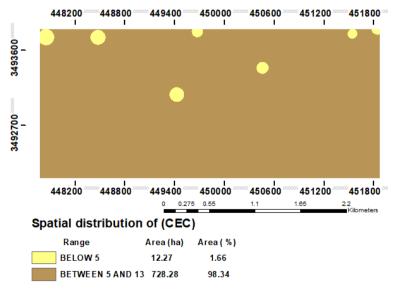
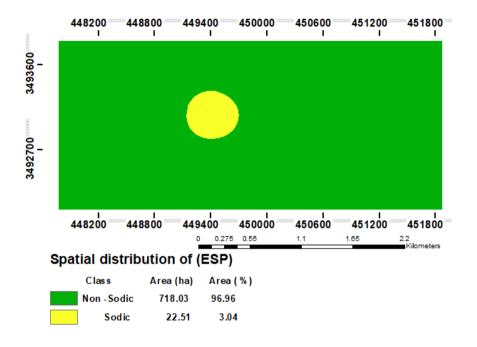



Figure: (6). spatial distribution of the CEC (meq/100 g)

As displayed in Tables 5 and 6, the ESP (%) in soils studied Was ranged from 2.43 to 25.30 ESP (%), with an average of 7.87. Figure 7 ESP (%) shows the spatial distribution of ESP (%). The study area was divided into two categories of ESP (%): Non-Sodic and Sodic 781.03 ha, 96.96%, 22.51 ha, and 3.04% respectively.

Figure: (7). spatial distribution of the SEP (%)

As displayed in Tables 5 and 6, the soil bulk density (BD, Mg·cm⁻³) in soils studied ranged from 1.13 to 1.56 (BD, Mg·cm⁻³) with an average of 1.33. Displayed the soil studied area Textural Class in Table 5b has four categories Sandy loam(sample 1,2,3,5,6,10,11,12,15,17,19,20,31 and 32) loam (samples4,7,8,9,13,16,18,21,23, 24,25,26,27,28, and 30) loam Sandy(sample 14) and Clay Loam (samples 22 and 29) One significant physical factor affecting soil sustainability is soil texture. It has an impact on microbial activity, tillage, irrigation techniques, soil aeration, nutrient absorption, infiltration and retention of water, and more (Gupta, 2007).

Table (6). Statistics of some soil properties

Statistic	soil properties							
	PH	EC	CaCO3	OM	CEC	ESP	BD	
Meta	7.26	5.03	30.06	1.03	9.76	7.87	1.33	
Med	7.40	1.60	29.50	1.00	11.50	7.88	1.32	
Std	0.21	6.62	9.07	0.50	3.13	5.14	0.18	
Ran	0.50	21.85	24.70	1.28	8.35	22.87	0.43	
Min	7.00	0.15	16.30	0.33	4.35	2.43	1.13	
Max	7.50	22.00	41.00	1.61	12.70	25.30	1.56	

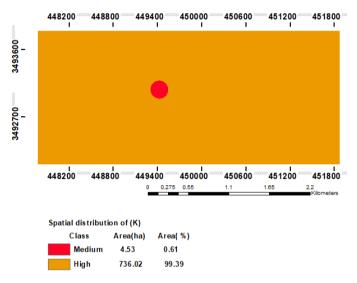
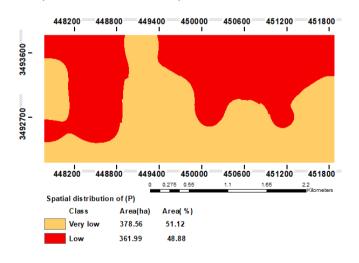

Soil fertility evaluation the current study used a geographic information system (GIS) to carry out a spatial model for the assessment of soil quality. The four main quality indices used in the study were the nutrient index (NI), fertility index (FI), chemical index (CI), and soil quality (SQ).

 Table (7). Distribution of Soil Nutrient
 Macro and Micro Nutrients

SAM.:No	Micronutri	ent contents (ppm	and N %)	Macronutrient contents(ppm)				
	K	P	N	Cu	Zn	Fe	Mn	
1	420.00	9.14	0.03	0.36	1.02	1.02	0.78	
2	460.00	2.46	0.02	0.26	0.54	0.76	1.70	
3	700.00	3.69	0.05	0.46	0.38	1.56	0.86	
4	520.00	6.33	0.06	0.22	0.40	0.54	1.38	
5	460.00	2.46	0.02	0.26	0.54	0.76	1.70	
6	420.00	9.14	0.03	0.36	1.02	1.02	0.78	
7	520.00	6.33	0.06	0.22	0.40	0.54	1.38	
8	520.00	6.33	0.06	0.22	0.40	0.54	1.38	
9	520.00	6.33	0.06	0.22	0.40	0.54	1.38	
10	460.00	2.46	0.02	0.26	0.54	0.76	1.70	
11	420.00	9.14	0.03	0.36	1.02	1.02	0.78	
12	460.00	2.46	0.02	0.26	0.54	0.76	1.70	
13	520.00	6.33	0.06	0.22	0.40	0.54	1.38	
14	380.00	1.06	0.01	0.30	0.92	1.76	0.78	
15	460.00	2.46	0.02	0.26	0.54	0.76	1.70	
16	520.00	6.33	0.06	0.22	0.40	0.54	1.38	
17	420.00	9.14	0.03	0.36	1.02	1.02	0.78	
18	520.00	6.33	0.06	0.22	0.40	0.54	1.38	
19	460.00	2.46	0.02	0.26	0.54	0.76	1.70	
20	460.00	2.46	0.02	0.26	0.54	0.76	1.70	
21	520.00	6.33	0.06	0.22	0.40	0.54	1.38	
22	700.00	8.09	0.03	0.66	0.36	3.40	1.28	
23	520.00	6.33	0.06	0.22	0.40	0.54	1.38	
24	750.00	1.76	0.04	0.34	1.26	1.66	1.38	
25	750.00	1.76	0.04	0.34	1.26	1.66	1.38	
26	750.00	1.76	0.04	0.34	1.26	1.66	1.38	
27	750.00	1.76	0.04	0.34	1.26	1.66	1.38	
28	750.00	1.76	0.04	0.34	1.26	1.66	1.38	
29	700.00	8.09	0.03	0.66	0.36	3.40	1.28	
30	520.00	6.33	0.06	0.22	0.40	0.54	1.38	
31	420.00	9.14	0.03	0.36	1.02	1.02	0.78	
32	420.00	9.14	0.03	0.36	1.02	1.02	0.78	
Summary o	of the Statistics for	macro- and micr	onutrients					
	K	P	N	Cu	Zn	Fe	Mn	
aver	530.94	5.16	0.04	0.31	0.69	1.10	1.30	
MAX	750	9.14	0.06	0.66	1.26	3.4	1.7	
MIN	740	1.6	0.01	0.22	0.36	0.54	0.78	


Spatial Distribution of Soil Macro and Micro Nutrients:

As displayed in Table 7, the soil potassium (K) in the soils studied ranged from 740 to 750 (K) with an average of 530.94. Figure 8 (K) shows the spatial distribution of K. The study area was divided into two categories K medium at 4.53 ha (0.16%) and high at 736.02 ha (99.39%) As shown in Table (1). the types and concentrations of cation, the anion concentration, and the characteristics of the soil action-exchange materials all affect how potassium is distributed across negatively charged sites on the soil and in the soil solution. (Kilmer et al., 1968).

Figure: (8). spatial distribution of the (K ppm).

As displayed in Table 7, the soil phosphorus (P) in the soils studied ranged from 1.6 to 9.14 (P) with an average of 530.94. Figure 9 (P) shows the spatial distribution of P. The study area was divided into two categories of P: very low at 378.56 ha 51.12 % and low at 361.99 ha,48.88% As shown in Table (1). It is critical to implement cutting-edge technologies that improve P utilization efficiency and management concerns around low P. Using microbes for P solubilization (Hu et al., 2023; Liu et al., 2023), partially activated P (Fang et al., 2022), slow/controlled release P fertilizers (Fertahi et al., 2020; Teixeira et al., 2016), using nanotechnology (Basavegowda & Baek, 2021), and creating foliar fertilizers (McBeath et al., 2020) are some of these creative approaches.

Figure: (9). spatial distribution of the (P ppm).

As displayed in Table 7, the soil nitrogen (N) in the soils studied ranged from 0.01 to 0.06 (N) with an average of 0.04. Figure 10 (N) shows the spatial distribution of N. The study area was divided into two categories of N: trace-very poor at 320.04 ha.43.22% and slightly at 420.51 ha. 56.78%. As shown in Table (1). Appropriate irrigation timing and nitrogen fertilizer dosage are efficient ways to lower nitrogen leaching, enhance nitrogen utilization, and raise yields (He et al., 2023).

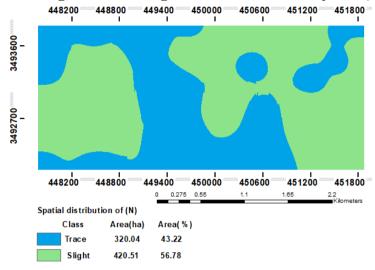
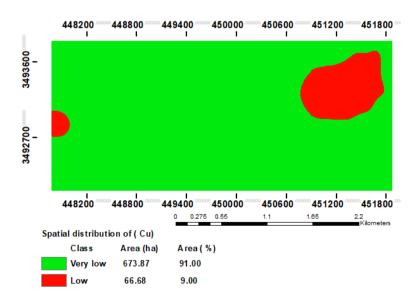



Figure: (10). Spatial distribution of the (N %).

As displayed in Table 7, the soil copper (Cu) in the soils studied ranged from 0.22 to 0.66 (Cu) with an average of 0.31. Figure 11 (Cu) shows the spatial distribution of Cu. The study area was divided into two categories of Cu: very low for 673.87 ha (91.00%) and low for 66.86 ha (9.00%), As shown in Table (1). Treatments for copper deficiencies often involve the following: • Applying acid fertilizers to calcareous soils; • Liming acidic soils to raise pH levels; • Foliar fertilization.

Figure: (11). Spatial distribution of the (Cu ppm).

As displayed in Table 7, the soil zinc (Zn) in the soils studied ranged from 0.36 to 1.26 (Zn) with an average of 0.69. Figure 12 (Zn) shows the spatial distribution of Zn. The study area was divided into two categories of Zn: low for 684.25 ha (92.40%) and adequate for 56.30 ha (7.60%). As

shown in Table (1) The types of soils affected by Zn deficiency include all soils with low Zn availability, such as high pH calcareous soils, intensively cropped soils, and sandy soils (Kochian, 1993).

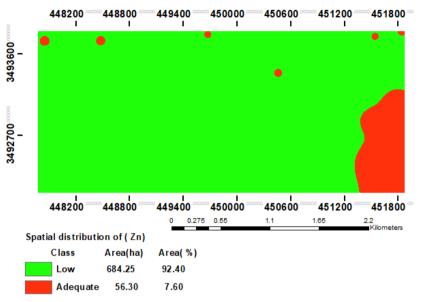


Figure: (12). Spatial distribution of the (Zn ppm).

As displayed in Table 7, the soil iron (Fe) in the soils studied ranged from 0.54 to 3.4 (Fe) with an average of 1.10. Figure 13 (Fe) shows the spatial distribution of Fe. The study area was divided into two categories of Fe: below for 726.14 ha (98.05%) and adequate for 14.41 ha (1.95%), As shown in Table (1). the usage of Fe fertilizers in the soil works in lowering the pH of the soil in the rhizospheric region by the use of sulfur or additional acidifying agents (Sánchez-Rodríguez et al., 2013).

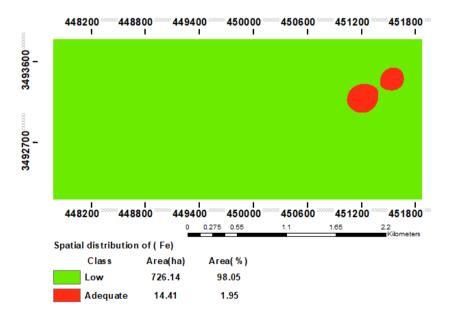


Figure: (13). Spatial distribution of the (Fe ppm).

As displayed in Table 7, the soil Manganese (Mn) in soils studied ranged from 0.78 to 1.7 (Mn) with an average of 1.30. Figure 14 (Mn) shows the spatial distribution of Mn. The study area was

divided into three categories of Mn: be very low for 51.08 ha (6.90%) and low for 235.11 ha (31.75%) adequate for 454.36 ha 61.35%. As shown in Table (1). Because soluble Mn2+ is quickly converted to plant-unavailable Mn oxides, fertilization with Mn salts at the soil surface is frequently ineffective. The soil pH Must be corrected, (Rashed et al., 2019). it is advised to use environmentally friendly sources, such as organic products like compost, animal manure, and microbial fertilizers, which can improve plant growth and increase soil fertility (Ijaz et al., 2021; Marschner et al., 2003; Meek et al., 1968).

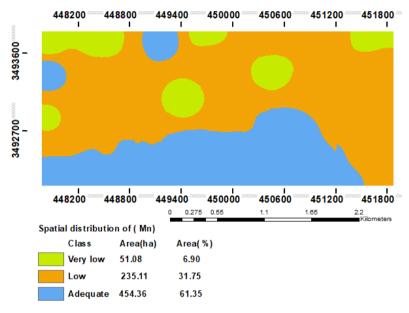


Figure: (14). Spatial distribution of the (Mn ppm).

Index of Soil Fertility

The nutrient index (NI): value was determined to evaluate the research area's macro- and micronutrients' overall nutritional status. By Equation (1), Table (2), and Figure (15).

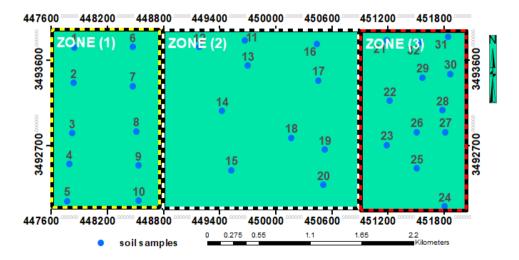


Figure: (15). Spatial distribution of the zones in the area study.

Three zones were used to examine macro- and micronutrients: zone (1) samples from 1 to 10, zone (2) samples from 11 to 20, and zone (3) samples from 21 to 32. Displayed in Figure (14).

Table (8-a). Summary of the Statistics for macro- and micronutrients: zone (1) samples.

	Macro- and micronutrients (ppm but N%)										
Stat	K	р	N	Cu	Zn	Fe	Mn				
Mean	500.00	5.47	.041	.28	.56	.80	1.30				
Med	490.00	6.33	.040	.26	.47	.76	1.38				
Std.	81.10	2.59	.019	.08	.25	.32	0.37				
Ran	280.00	6.68	.04	.24	.64	1.02	.92				
Min	420.00	2.46	.02	.22	.38	.54	.78				
Max	700.00	9.14	.06	.46	1.02	1.56	1.70				

Table (8-b). Summary of the Statistics for macro- and micronutrients: zone (2) samples.

Stat	Macro- and micronutrients (ppm but N%)									
	K	р	N	Cu	Zn	Fe	Mn			
Mean	462.00	4.82	0.03	0.27	0.63	0.85	1.33			
Med	460.00	4.40	0.03	0.26	0.54	0.76	1.38			
Std.	47.56	2.99	0.02	0.05	0.25	0.37	0.40			
Ran	140.00	8.08	.05	.14	.62	1.22	.92			
Min	380.00	1.06	.01	.22	.40	.54	.78			
Max	520.00	9.14	.06	.36	1.02	1.76	1.70			

Table (8-c). Summary of the Statistics for macro- and micronutrients: zone (3) samples.

	Macro- and micronutrients (ppm) (N %)									
Stat	K	р	N	Cu	Zn	Fe	Mn			
Mean	629.17	5.19	0.04	0.37	0.86	1.56	1.26			
Med	700	6.33	0.04	0.34	1.02	1.66	1.38			
Std.	136.94	3.17	0.01	0.15	0.42	0.98	0.23			
Ran	330	7.38	0.03	0.44	0.9	2.86	0.6			
Min	420	1.76	0.03	0.22	0.36	0.54	0.78			
Max	750	9.14	0.06	0.66	1.26	3.4	1.38.			

Equation (1) was used to calculate the nutrient index values of the soil nutrients shown in Table 7. Nutrient Index categories I, II, and III were then assigned to these nutrient index values (Table 2). Using tables (8-a-b-c), the fertility status of the three soil zones for macro- and micronutrients was assessed for the study area. Table 9 provides the calculated values and corresponding nutrient index categories.

Table:(9). Nutrient Index of macro- and micronutrients

Nutrients	soil	NI	Fertility	soil	NI	Fertility status	soil	NI	Fertility
	types		status	types			types		status
K+		III	High		III	High		III	High
P		III	High		III	High	3	III	High
N	(1	I	Low	(2)	I	Low	E (3	I	Low
Cu	男	I	Low	男	I	Low	Ż	I	Low
Zn	Õ	I	Low	[]	I	Low	ZO	I	Low
Fe	Ž	I	Low	17	I	Low	•	I	Low
Mn		I	Low		I	Low		I	Low

The provided information was found in Table (9) for each of the three zone uses, phosphorus and potassium achieved a high value. The potassium values obtained from this investigation show that the three-zone soils contain an adequate amount of available potassium and potassium. While the low is not sufficient nitrogen, copper, zinc, iron, and Manganese fertility status was reported in Table 9 (Abah et al., 2015; Verma et al., 2005). Fertility Index (%): was utilized to determine the soil

fertility index values using Table (3), Table (10) displays the soil fertility values that were discovered during this investigation.

Table: (10). Fertility classes (FS) in the studied area.

Zone study area	Nutrients	Fertility Class	Fertility Index%	Description
urou	\mathbf{K}^{+}	C1	98.39	Excellent
$\widehat{\mathbf{T}}$	P	C6	1.08	
Zone(1)	N	C6	0.01	
Zo	Cu	C6	0.01	Nonagricultural
	Zn	C6	0.11	
	Fe	C6	0.16	
	Mn	C6	0.26	
	K^+	C1	98.31	Excellent
5	P	C6	1.03	
Zone(2)	N	C6	0.01	
Z01	Cu	C6	0.06	Nonagricultural
•	Zn	C6	0.13	
	Fe	C6	0.18	
	Mn	C6	0.28	
	K^{+}	C1	98.55	Excellent
3	P	C6	0.81	
Zone(3)	N	C6	0.01	
Zo	Cu	C6	0.06	Nonagricultural
	Zn	C6	0.13	
	Fe	C6	0.24	
	Mn	C6	0.20	

Table 10 data illustrates how the studied area index's fertility index and fertility class fit into two classes: Excellent (C1) and Nonagricultural (C6).

Soil quality (SQ): Equation (2) and Table (7) were used in the study area's SQ calculation.

Table:(11). Soil quality (SQ) in the studied area

SAMPLE No	FI	Class	SAMPLE No	FI	Class
1	1.65	S3	17	1.22	S2
2	1.22	S2	18	1.44	S2
3	1.63	S3	19	1.65	S3
4	1.44	S2	20	1.44	S2
5	1.22	S2	21	1.22	S2
6	1.65	S3	22	1.22	S2
7	1.44	S2	23	1.44	S2
8	1.44	S2	24	2.09	S3
9	1.44	S2	25	1.44	S2
10	1.22	S2	26	1.76	S3
11	1.65	S3	27	1.76	S3
12	1.22	S2	28	1.76	S3
13	1.44	S2	29	1.76	S3
14	1.06	S1	30	1.76	S3
15	1.65	S3	31	2.09	S3
16	1.22	S2	32	1.44	S2

The findings showed that the three classes of soil quality (SQ) in the study area were low quality (S3), moderate quality (S2), and high quality (S1). The quality of the soil samples was found to be high (3.125%), moderate (3.25%), and low (40.625%), respectively. And the FI ranges from 1.22 to 2.02. according to table (11).

Table (12). Pearson's correlation coefficient between soil Physical, Chemical macro-, and micronutrients in the study area.

Parameter	K	P	N	Cu	Zn	Fe	Mn
PH	0.155	-0.411**	-0.643**	0.222	0.726**	0.177	016
EC	-0.411**	0.532**	-0.364*	0.366*	0.451**	0.238	-0.877**
CaCO3	0.098	0.408*	0.856**	-0.344*	-0.089	-0.274	-0.183
OM	0.320*	0.348*	0.913**	-0.225	-0.114	-0.145	-0.080
ECE	-0.519**	-0.362*	0.463**	-0.189	-0.451**	0.022	0.806**
ESP	-0.470**	0.586**	-0.130	0.274	0.041	0.189	-0.782**
DB	-0.138	-0.344-*	-0.867-**	0.429**	-0.040-	0.381*	0.159

^{**.} Correlation is significant at 0.01.

Table (12). A statistical analysis was performed to find out possible correlations between (K, P, N, Cu, Fe, Zn, and Mn). Contents and the studied soil properties (PH, EC, CaCO3, OM, ECE, ESP, and DB). There is a low significant positive correlation (r = 0.155, 0.098, and 0.320) between the available K and parameters of PH, CaCO3, and OM. There exists a negative correlation (r = -0.411, -0.519, -0.470, and -0.138) among k and (EC, ECE, ESP, and DB) parameters, indicating they a medium, high, and low. There was a medium significant negative correlation (r=- 0.411, -0.362, and -0.344) between p with (PH, ECE, and DB) respectively, and an appositive correlation high, medium, and high (r = 0.532, 0.408, 0.348, and 0.586) between p with (EC, CaCO3, OM and ESP) respectively. An appositive correlation of high, high, and medium (r = 0.856, 0.913, and 0.463) was found between p and (CaCO3, OM, and ECE), and a high, medium, low, and high significant negative correlation (r = -0.643, -0.364, -0.130, and -0.867) was found between p and (PH, EC, ESP, and DB), respectively. There was a medium, low, low, and low significant negative correlation (r=-0.344, -0.225, -0.130, and -0.189) between Cu with (CaCO3, OM, and CEC) respectively, and an appositive correlation low, medium, low and medium (r = 0.222, 0.366, 0.274 and 0.429) between p with (PH, EC, ESP, and DB) respectively. There was a medium, low, low, medium and low significant negative correlation (r= -0.089-0.114, -0.451, and -0.040) between Zn with (CaCO3, OM, ECE, and DB respectively, and an appositive correlation high, low, and low (r = 0.726, 0.451 and 0.041) between Zn with (PH, EC, and ESP) respectively. There was an all-low significant negative correlation (r= -0.274, and -0.145) between Fe with (CaCO3 and OM) respectively, and an appositive correlation low, low, and medium (r = 0.177, 0.238, 0.022, 0.189 and 0.381) between Fe with (PH, EC, ECE, ESP, and DB) respectively. There was a low, high, low, low, low, and high significant negative correlation (r= -0.016, -0.887, -0.183, -0.080, and, -0.782) between Mn with (PH, EC, CaCO3, OM, and ESP) respectively, and an appositive correlation low, low, and medium (r = 0.806, and 0.159) between Mn with (ECE, and DB) respectively.

DISCUSSION

The study has led to the use of GIS for quantitative assessment of asses the validity of the different indices of the determination of Soil Fertility. The results indicated that the soil Fertility (SF) of the study area was classified according to Referring of Physical and Chemical Characteristics of soil and Soil Nutrient Macro and Micro Nutrient concentration to the standard guidelines According to Tables (5 and 6). our noting that This pH range is not suitable for the uptake of most nutrients as the optimum range for plant absorption varies from 6.5 to 7.5 and (Figure 3) shows the soil EC was Strongly Saline>Very Slightly Saline> Non-Saline> Moderately Saline respectively. (Figure 4) show that the soil CaCO₃ was high calcareous> moderately calcareous. This could be the cause of the high CaCO₃ levels to the build-up of Ca⁺⁺ ions in highly salinized soil. (Figure 5) show most soil samples had low OM contents which did not exceed 55.28%. (Figure 6) show Most of the soil

^{*.} Correlation is significant at the 0.05.

had between 5 and 13 ECE contents which did not exceed 98.38%. Noting (figure 7) shows Most soil is Non-Sodic, percentage of 96%. Most soils in the study area are, by nature, alkaline and low in available nutrients. Thus in planning a crop production program, agricultural all types of fertilizers should be applied at the rate required The provided information found macro- and micronutrients in this research for each of the study area uses which were potassium in about (99.39%) high and adequate for about Mn (61.35%), Zn (7.60%) and Fe(1.95%) and low Fe (98.05%), Zn (92.40%), P(48.88%), Mn (31.75%), and Cu(9.00%) and very low Cu (91.00%) and Mn (6.90%) and very poor N(100%).

CONCLUSION

Using the validity of the various indices for determining soil fertility, while assessing the chemical and physical characteristics of the soil, the findings showed that the study area's soil fertility (SF) was different. Inadequate nutrient levels in the soil, the decline is as follows: of the entire study area, very low values are around 50% and low levels are 25%, acceptable levels are 23%, high values are 0.99%, and medium 0.0061%, and very poor and poor levels are 1%. Fertilizer recommendations are dependent on crop types and are based on the levels of nutrients currently present in the soil. Therefore, nutrients should be added to the soil. Usually require the addition of fertilizer: copper, zinc, phosphorus, and nitrogen.

Duality of interest: The authors declare that they have no duality of interest associated with this manuscript.

Author contributions: The author did all the work related to the manuscript, including designing the research, collecting information, formulating theories and proofs, and preparing the entire paper.

Funding: There is no funding to support this manuscript

REFERENCES

- Abah, R. C., Petja, B. M. J. M. R. J. o. A. S., & Science, S. (2015). Evaluation of organic carbon, available phosphorus, and available potassium as a measure of soil fertility. 3(10), 159-167.
- Basavegowda, N., & Baek, K.-H. J. B. (2021). Current and future perspectives on the use of nanofertilizers for sustainable agriculture: the case of phosphorus nanofertilizer. 11(7), 357.
- Bockheim, J. G., Gennadiyev, A. N., Hammer, R. D., & Tandarich, J. P. J. G. (2005). Historical development of key concepts in pedology. *124*(1-2), 23-36.
- Bot, A., & Benites, J. (2005). The importance of soil organic matter: Key to drought-resistant soil and sustained food production. Food & Agriculture Org.
- Brady, N. C., & Weil, R. R. (2002). *The nature and properties of soils* (Vol. 13). Prentice Hall Upper Saddle River, NJ.
- Fang, N.-n., Chen, Z.-h., Liu, Z.-q., Dai, H.-m., Yang, X.-m., & Wang, W. (2022). Effects of mechanochemically activated phosphate rock on maize growth and phosphorus use.
- Fertahi, S., Bertrand, I., Ilsouk, M., Oukarroum, A., Zeroual, Y., & Barakat, A. J. I. j. o. b. m. (2020). New generation of controlled release phosphorus fertilizers based on biological macromolecules: Effect of formulation properties on phosphorus release. *143*, 153-162.

- Gupta, B. (2007). Soil, plant, water and fertilizer analysis. Agrobios (India).
- He, Z., Hu, Q., Zhang, Y., Cao, H., & Nan, X. J. A. W. M. (2023). Effects of irrigation and nitrogen management strategies on soil nitrogen and apple yields in loess plateau of China. 280, 108220.
- Hu, M., Le, Y., Sardans, J., Yan, R., Zhong, Y., Sun, D.,...Peñuelas, J. J. G. C. B. (2023). Moderate salinity improves the availability of soil P by regulating P cycling microbial communities in coastal wetlands. 29(1), 276-288.
- Ijaz, A., Mumtaz, M. Z., Wang, X., Ahmad, M., Saqib, M., Maqbool, H.,...Mustafa, A. J. F. i. p. s. (2021). Insights into manganese solubilizing Bacillus spp. for improving plant growth and manganese uptake in maize. *12*, 719504.
- Istijono, B., & Harianti, M. J. G. J. (2019). Soil quality index analysis under horticultural farming in Sumani upper watershed. *16*(56), 191-196.
- Jones Jr, J. B. (2012). Plant nutrition and soil fertility manual. CRC press.
- Kettler, T., Doran, J. W., & Gilbert, T. J. S. S. S. o. A. J. (2001). Simplified method for soil particle size determination to accompany soil quality analyses. 65(3), 849-852.
- Kilmer, V. J., Younts, S. E., & Brady, N. C. (1968). The role of potassium in agriculture.
- Kochian, L. V. (1993). Zinc absorption from hydroponic solutions by plant roots. Zinc in Soils and Plants: Proceedings of the International Symposium on 'Zinc in Soils and Plants' held at The University of Western Australia, 27–28 September, 1993,
- Laytimi, A. J. P.-O. R., Integrating, & Area, s. t. E. R. (2002). Market and Trade Policies for Mediterranean Agriculture: The case of fruit/vegetable and olive oil MEDFROL PROJECT.
- Liu, Z., Wu, Z., Tian, F., Liu, X., Li, T., He, Y.,...Yu, B. J. S. o. T. T. E. (2023). Phosphate-solubilizing microorganisms regulate the release and transformation of phosphorus in biochar-based slow-release fertilizer. *869*, 161622.
- Marschner, P., Fu, Q., Rengel, Z. J. J. o. P. N., & Science, S. (2003). Manganese availability and microbial populations in the rhizosphere of wheat genotypes differing in tolerance to Mn deficiency. *166*(6), 712-718.
- McBeath, T. M., Facelli, E., Peirce, C. A., Arachchige, V. K., McLaughlin, M. J. J. C., & Science, P. (2020). Assessment of foliar-applied phosphorus fertiliser formulations to enhance phosphorus nutrition and grain production in wheat. 71(9), 795-806.
- Meek, B. D., MacKenzie, A., & Grass, L. J. S. S. S. o. A. J. (1968). Effects of organic matter, flooding time, and temperature on the dissolution of iron and manganese from soil in situ. 32(5), 634-638.
- Mohamed, E., Abdellatif, M., Abd-Elmabod, S. K., & Khalil, M. (2020). Estimation of surface runoff using NRCS curve number in some areas in northwest coast, Egypt. E3S Web of Conferences,

- Moore, F., Sheykhi, V., Salari, M., Bagheri, A. J. E. m., & assessment. (2016). Soil quality assessment using GIS-based chemometric approach and pollution indices: Nakhlak mining district, Central Iran. 188, 1-16.
- Mukherjee, A., & Lal, R. J. C. (2015). Short-term effects of cover cropping on the quality of a Typic Argiaquolls in Central Ohio. *131*, 125-129.
- Nachtergaele, F., van Velthuizen, H., Verelst, L., Wiberg, D., Henry, M., Chiozza, F.,...Boateng, E. (2023). *Harmonized world soil database version 2.0*. FAO.
- Page, A., Miller, R., & Keeney, D. J. S. S. S. o. A., Madison, WI, USA. (1982). Methods of soil analysis. Part 2. American Society of Agronomy. 4(2), 167-179.
- Rashed, M., Hoque, T., Jahangir, M., Hashem, M. J. J. o. E. S., & Resources, N. (2019). Manganese as a micronutrient in agriculture: crop requirement and management. *12*(1-2), 225-242.
- Sánchez-Rodríguez, A., Canasveras, J., del Campillo, M., Barrón, V., & Torrent, J. J. E. j. o. a. (2013). Iron chlorosis in field grown olive as affected by phosphorus fertilization. *51*, 101-107.
- Shokr, M. S., Abdellatif, M. A., El Baroudy, A. A., Elnashar, A., Ali, E. F., Belal, A. A.,...Szantoi, Z. J. S. (2021). Development of a spatial model for soil quality assessment under arid and semi-arid conditions. *13*(5), 2893.
- Soltanpour, P. J. A. i. S. S. V. (1991). Determination of nutrient availability and elemental toxicity by AB-DTPA soil test and ICPS. 165-190.
- Teixeira, R. d. S., Ribeiro da Silva, I., Nogueira de Sousa, R., Márcio Mattiello, E., Barros Soares, E. M. J. J. o. s. s., & nutrition, p. (2016). Organic acid coated-slow-release phosphorus fertilizers improve P availability and maize growth in a tropical soil. *16*(4), 1097-1112.
- Varade, A. M., Khare, Y., Dongre, K., Muley, S., & Wasnik, G. J. S. W. R. M. (2017). Integrated geographical information system (GIS)-based decision support system (DSS) approach to identify the site-specific water conservation structures in a watershed of Nagpur district, Central India. *3*, 141-155.
- Verma, V., Patel, L., Toor, G., Sharma, P. J. I. J. o. A., & Biology. (2005). Spatial distribution of macronutrients in soils of arid tract of Punjab, India. 7(2), 295-297.

Doi: https://doi.org/10.54172/dygg8e08

Research Article 6Open Access

Identification of Insect Pests in Stored Pulses within Tripoli, Libya

Nagat A. Abuelnnor

*Corresponding author:

N.Abuelnnor@uot.edu.ly,

Plant Protection Department,
Faculty of Agriculture,
Tripoli University, Tripoli,

Received: 10 March 2024

Libya'

Accepted: 19 September 2024

Publish online: 06 October 2024

الباحث الاول^{1*}: قسم وقاية النبات، كلية الزراعة، جامعة طرابلس، ليبيا. Abstract: This study investigated the presence of insect pests in five stored pulses which are chickpeas, beans, white pea beans, peas, and red lentils collected from Tripoli city markets. The results revealed that one or more beetle species infested 39.05% of the samples. The percentages of samples infested were as follows: beans 52.38%, peas 42.86%, red lentils 38.11%, white pea beans 33.33%, and chickpeas 28.57%. The results also show that eight weevil species of insect pests were detected in the samples. These were cowpea weevil *Callosobruchus maculatus* (F.), pulse beetle *Callosobruchus chinensis* L., bean weevil *Acanthoscelides obtectus* (Say), faba bean beetle *Bruchidius incarnatus* Boheman, grain weevil *Sitophilus granarius* (L.), lesser grain borer *Rhizopertha dominica* (F.), red flour beetle *Tribolium castaneum* (Herbst) and saw-toothed grain beetle *Oryzaephilus surinamensis* (L.). The most frequently found beetle species were; cowpea weevil *C. maculatus* with 18.10 %, bean weevil *A. obtectus* 14.29 % and lesser grain borer *R. dominica* 8.57 %.

Keywords: Stored Pulses, Insect Pests, Legumes, Tripoli City.

تعريف الآفات الحشرية بالبقوليات المخزونة في مدينة طرابلس، ليبيا

المستخلص أجربت هذه الدراسة للبحث في أنواع الآفات الحشرية المتواجدة بخمسة أنواع من الحبوب البقولية وهي: الحمص، الفول، الفاصوليا البيضاء، البازلاء والعدس الأحمر. تم الحصول على عينات هذه البقوليات عشوائيا من أسواق محلية مختلفة بمدينة طرابلس كما يلى: سوق الجمعة، تاجوراء، عين زارة، طرابلس المركز، أبو سليم، حي الأندلس وجنزور. أظهرت النتائج أن 39.05 % من العينات كانت مصابة بنوع أو أكثر من الحشرات. من خلال النتائج المتحصل عليها كانت النسب المئوبة للعينات المصابة كالتالي: الغول 52.38 %، البازلاء 42.86%، العدس الأحمر 38.11 %، الفاصوليا البيضاء 33.33% والحمص 28.57%. بينت النتائج أيضاً وجود ثماني أنواع من الآفات الحشرية في العينات المدروسة. وهي: سوسة اللوبيا Callosobruchus «maculatus (F.) خنفساء الفول الصينية .Callosobruchus chinensis L خنفساء الفاصوليا (Acanthoscelides obtectus (Say)، خنفساء الفول الصغيرة incarnatus Boheman، سوسة الحبوب (L.) هوسة الحبوب، الصغرى (Rhizopertha dominica (F.) خنفساء الدقيق الحمراء (Herbst) و خنفساء الحبوب المنشارية (L.) Oryzaephilus surinamensis. من خلال النتائج المتحصل عليها كانت أكثر أنواع الخنافس وجوداً هي سوسة اللوبيا C. maculatus بنسبة R. dominica بنسبة مئونة بلغت 8.57 %.

الكلمات المفتاحية: البقوليات المخزنة؛ الآفات الحشرية؛ البقوليات؛ مدينة طرابلس.

INTRODUCTION

Pulses are mostly referred to as grain legumes including all forms of peas and beans (Osman et al., 2015). Grain legumes such as chickpeas, pigeon peas, cowpeas, field peas, lentils, and beans are an excellent supply of protein for vegetarian people, and are an integral part of daily food in many forms worldwide (Akter et al., 2019; Mutungi et al., 2022; Norton et al., 1985). In addition, grains and pulses have remarkable nutritional value in developing countries (Arthur & Throne, 2003; Babu et al., 2003).

In general, pulses are subjected to storage for a long time (Tiwari et al., 2011), which means conditions, such as time, temperature and moisture content lead to physicochemical and biological changes resulting in a serious effect on the nutritional composition, germination and longevity (Akter et al., 2019; Hentges et al., 1991; Menkov, 2000; Stathers et al., 2020). According to (Sharma et al., 2016) major problem in the production of pulses is the infestation of insect pests, which cause serious losses both in the field and storage. However, Infestation begins in the field, but most of the harm is done during storage and may cause total loss within three months (Swella & Mushobozy, 2007).

Previous studies reported that infestation in pulses occurred due to bruchids, which cause *huge* damage in pulses during storage, by eating the whole kernel and only leaving the pericarp, which makes the grain inedible and unfeasible (Gangrade, 1974). *Among* these species of the genus *Callosobruchus, C. maculatus* and *C. chinensis* are some of the most devastating insects during the storage of cowpeas, chickpeas, mung beans, black grams, lentils, and peas (Banga et al., 2018).

According to the literature, in tropical areas, insects may lead to 100 % detrimental effects in stored pulses (Egwuatu, 1987). However, in India, it was found that chickpeas and lentils had suffered about 30 % and 15 % storage losses, respectively (Haile, 2006). Furthermore, a study by (Gujar & Yadav, 1978) found about 55-69 % pulse weight loss and 45.60-66.30 % loss in protein content of chickpeas by the pulse beetle *C. chinensis*.

To effectively control insect pests and reduce the damage caused by insects in storage, it is important to know the kind of insect species occurring in particular pulses. However, in Libya, studies on stored pulses pests are not available. Therefore, this study was conducted to identify insect pests associated with some types of stored pulses in Tripoli, Libya.

MATERIALS AND METHODS

The research was carried out in the Plant Protection Department, Faculty of Agriculture, Tripoli University, Tripoli/Libya from May to September 2023.

Pulses types and study areas

The pulse seeds for the study were: Chickpeas *Cicer arietinum*, beans *Vicia faba*, White pea beans *Phaseolus vulgaris*, peas *Pisum sativum*, and red lentils *Lens culinaris*, and were purchased from random markets in different areas in Tripoli city as following: Soug al Jum'aa, Tajoura, Ain zara, Centre of Tripoli, Abu Salim, Hay al anddalus and Janzur.

Sample collection methods

A random sampling method was used for the selection of pulses. From each market 250 g of each type of pulse were taken from a total of 21 local markets and the total numbers of samples were 105 (five types of pulses \times 7 different areas \times 3 markets in each area = 105 samples total), collected in plastic bags, labelled with important information and brought back to the laboratory.

Sieves of different sizes (mm) were used to separate the adult insects from the sample pulses. Live and dead insects from samples were collected and immediately preserved in glass jars (100 ml) and kept for further identification. Then, samples were kept in glass jars (1000 ml) covered with nylon gauze and rubber bands and incubated at $25^{\circ}\text{C} \pm 2^{\circ}$ for 4 weeks of observation to detect beetles from internal infestation.

Identification and counting of insect pests

The identification of pest species was conducted by observing the external morphology of the pest insects using a dissecting microscope. Finally, the insect species were identified using taxonomic keys of the books related to stored product insect pests by different authors (Hagstrum, 2013; Hagstrum & Subramanyam, 2006, 2009).

RESULTS

Overall, 39.05 % of pulses samples were infested by one or more beetle species. The percentages of samples infested were as follows: beans 52.38%, peas 42.86%, red lentils 38.11%, white pea beans 33.33% and chickpeas 28.57%. The results in Table 1 show that eight weevil species of insect pests were detected in the samples and all of them were under the order Coleoptera. These were cowpea weevil *Callosobruchus maculatus* (F.), pulse beetle *Callosobruchus chinensis* L., bean weevil *Acanthoscelides obtectus* (Say), faba bean beetle *Bruchidius incarnatus* Boheman, grain weevil *Sitophilus granarius* (L.), lesser grain borer *Rhizopertha dominica* (F.), red flour beetle *Tribolium castaneum* (Herbst) and saw-toothed grain beetle *Oryzaephilus surinamensis* (L.). The most frequently found beetle species were; cowpea weevil *C. maculatus* with 18.10 %, bean weevil *A. obtectus* 14.29 % and lesser grain borer *R. dominica* 8.57 % (Table 1).

However, saw-toothed grain beetle *O. surinamensis* was found to be present only in one sample and red flour beetle *T. castaneum* was present only in two samples and was absent in the other samples.

Table (1) Dasda.	: C	1 : 1	1	1	:cc	. T.:: 1: -::4 T ::1
Table (1). Beene s	spices for	ina in storea	buises sam	bies from ai	merent areas ir	n Tripoli city, Libya

Species	Common name	Samples infested	Percentage infested (n= 105)
Callosobruchus maculatus (F.)	Cowpea weevil	19	18.10 %
Acanthoscelides obtectus (Say)	Bean weevil	15	14.29 %
Rhizopertha dominica (F.)	Lesser grain borer	9	8.57 %
Callosobruchus chinensis L.	Pulse beetle	4	3.81 %
Bruchidius incarnatus Boheman	Faba bean beetle	4	3.81 %
Sitophilus granarius (L.)	Grain weevil	3	2.86 %
Tribolium castaneum (Herbst)	Red flour beetle	2	1.90 %
Oryzaephilus surinamensis (L.)	Saw-toothed grain beetle	1	0.95 %

Table 2 shows that four insect species were found in the chickpeas samples. Cowpea weevil *C. maculatus* was found in Soug al Jum'aa and Tajoura areas. Also, pulse beetle *C. chinensis* was found in Soug al Jum'aa and the Centre of Tripoli. While, faba bean beetle *B. incarnatus* was found Centre of Tripoli and Abu Salim areas and not found in the other chickpeas samples. In addition, grain weevil *S. granarius* was found in one chickpea sample in the Tajoura area.

Ctudy one		Total insect distrib	oution of each species	
Study area	C. maculatus	C. chinensis	B. incarnatus	S. granarius
Soug al Jum'aa	17	9	0	0
Tajoura	54	0	0	6
Ain Zara	0	0	0	0
Centre of Tripoli	0	22	35	0
Abu Salim	0	0	35	0
Hay al anddalus	0	0	0	0
Janzur	0	0	0	0

Table (2). Total insect distribution of each species in chickpeas from different areas in Tripoli city, Libya

In addition, five insect species were found in the bean samples. These species were cowpea weevil *C. maculatus*, pulse beetle *C. chinensis*, bean weevil *A. obtectus*, faba bean beetle *B. Incarnates* and lesser grain borer *R. dominica*. Cowpea weevil *C. maculatus* was present in five of the study areas and bean weevil *A. obtectus* was found in six areas. Whereas, lesser grain borer *R. dominica* was present in Soug al Jum'aa and Centre of the Tripoli area. On the other hand, pulse beetle *C. chinensis* was found only Tajoura area while faba bean beetle *B. incarnatus* was present only in Centre of the Tripoli area (see Table 3).

Table (3). Total insects distribution of each species in beans from different areas in Tripoli city, Libya

Study area	Total insect distribution of each species						
Study area	C. maculatus	C. chinensis	A. obtectus	B. incarnatus	R. dominica		
Soug al Jum'aa	16	0	5	0	163		
Tajoura	3	2	11	0	0		
Ain Zara	0	0	5	0	0		
Centre of Tripoli	78	0	37	93	89		
Abu Salim	3	0	0	0	0		
Hay al anddalus	32	0	3	0	0		
Janzur	0	0	78	0	0		

Table 4 shows that three insect species were found in white pea bean samples, which were cowpea weevil *C. maculatus*, bean weevil *A. obtectus* and faba bean beetle *B. incarnates*. However, faba bean beetle *B. incarnates was present in only in the* Centre of Tripoli.

Table (4). Total insect distribution of each species in white pea beans from different areas in Tripoli city, Libya

Ctuder amag	T	otal insect distribution of	each species
Study area	C. maculatus	A. obtectus	B. incarnatus
Soug al Jum'aa	0	37	0
Tajoura	23	11	0
Ain Zara	0	0	0
Centre of Tripoli	3	17	5
Abu Salim	14	76	0
Hay al anddalus	19	0	0
Janzur	0	0	0

The results in Table 5 show that three species of insects were found in peas samples. These were cowpea weevil *C. maculatus*, pulse beetle *C. chinensis*, and bean weevil *A. obtectus*. However, pulse beetle *C. chinensis* was present only in the Tajoura area.

C4 1	T	otal insect distribution of	each species
Study area	C. maculatus	C. chinensis	A. obtectus
Soug al Jum'aa	24	0	0
Tajoura	11	7	0
Ain Zara	0	0	5
Centre of Tripoli	1	0	19
Abu Salim	5	0	12
Hay al anddalus	21	0	0
Ianzur	0	0	11

Table (5). Total insect distribution of each species in peas from different areas in Tripoli city, Libya

As can be seen from Table 6, four species of insects were found in the red lentils samples. These were grain weevil *S. granarius*, lesser grain borer *R. dominica*, red flour beetle *T. castaneum*, and saw-toothed grain beetle *O. surinamensis*. Lesser grain borer *R. dominica* was found in all areas of the study except in Tajoura area. Also, saw-toothed grain beetle *O. surinamensis* was found in Soug al Jum'aa area and it was absent from the other samples in the other areas.

Table (6). Total insect distribution of each species in red lentils from different areas in Tripoli city, Libya.

Ctudy once		Total insect dist	tribution of each species	1
Study area	S. granarius	R. dominica	T. castaneum	O. surinamensis
Soug al Jum'aa	0	408	0	78
Tajoura	23	0	0	0
Ain Zara	0	3	19	0
Centre of Tripoli	0	93	2	0
Abu Salim	0	78	0	0
Hay al anddalus	2	5	0	0
Janzur	0	36	0	0

DISCUSSION

As mentioned before in the results all species found and recorded in the present study were from the order of Coleoptera, this finding suggests the importance of beetles in stored grain pulses. Some studies have reported that infestation in pulses occurred due to bruchids, which causes major losses in pulses during storage (Gangrade, 1974; Mookherjee et al., 1970). Among these pests, the pulse beetle Callosobruchus sp. (Coleoptera: Bruchidae), is a serious pest of stored grain of pulses such as cowpeas, chickpeas, garden peas, and lentil and black gram (Yusuf et al., 2019). According to some studies they are important beetles of pulse crops in Asia and Africa under storage conditions (Menkov, 2000; Msolla & Misangu, 2002). Callosobruchus has been found to cause weight loss, decreased germination potential, and a reduction in the commercial value of the grains (Murithi et al., 2019). Callosobruchus is a major pest of legume seeds and prefers warmer, humid conditions (Rees, 2004). Additionally, the pulse beetle C. maculatus can cause a potential loss in legume ranged from 12-30 % (Proctor, 1994), 55-69 % loss in seed weight and 45.6-66.3 % loss in protein contents of chickpea (Endshaw et al., 2020; Gujar & Yadav, 1978) and even up to 100 % loss in grain legumes (Kulkarni et al., 1985; Magagula & Maina, 2012). Also, losses in stored pulses by C. chinensis infestation have been reported from the Philippines, Japan, Indonesia, Sri Lanka, Burma, India, and Bangladesh (Mahdi & Rahman, 2008).

According to the findings of the current study, bean weevil A. obtectus was also shown to be a pest of stored pulses, this result is corroborated by (Njoroge et al., 2017; Vera-Graziano & Cruz-Izquierdo, 2016; Vuts et al., 2018), who reported a similar observation. However, its populations are commonly detected in legume storages because their life cycle is well adapted for reproduction in a closed environment (do Nascimento et al., 2020). A. obtectus larvae feed inside kernels and cause losses often higher than 30 % (Pemonge et al., 1997). A. obtectus females oviposit a bunch of eggs into the same pod. Only a few pods are likely infested, but due to the weevil's high intrinsic

rate of increase under storage conditions, this initial infestation is sufficient to cause a fast destruction of stored beans by the next weevil generation (Schmale et al., 2002). Several studies reported that severe damage causes by *A. obtectus* on both French bean *Phaseolus vulgaris* L. and lima beans *Phaseolus lunatus* L. in Africa (Elhefny & Abdelfattah, 2022; Msolla & Misangu, 2002; Paul et al., 2009), Europe (Alvarez et al., 2005; Schmale et al., 2002), Australia (Bailey, 2007), America (Kingsolver, 2004; Romero-Nápoles, 2010), the Mediterranean region (Ayvaz et al., 2010; Regnault-Roger et al., 2004).

The results obtained show that the presence of the faba bean beetle *B. incarnates* in chickpeas, beans, and white pea beans samples. A previous study reported that faba bean beetle *B. incarnates* is an important pest that attacks the stored bean and causes heavy losses in quantity, quality, and germination rate of infested faba bean seeds (Sabbour & Abd El Aziz, 2010). Also, the results showed the presence of the grain weevil *S. granarius* in chickpeas and red lentils samples. The grain weevil *S. granarius* is an important primary pest of stored products (Rees, 2004). It is distributed worldwide but particularly in cooler regions and can infest sound grain including wheat, barley maize, and grain products (Rees, 2004). According to (Hagstrum & Subramanyam, 2009), the grain weevil is reported to attack around 53 different commodities.

As shown in Tables 3 and 6 the lesser grain borer *R. dominica* was found in the beans and red lentils samples. According to the literature, the lesser grain borer *R. dominica* is a serious pest of stored wheat (Jaipal et al., 1984), and is distributed in all the countries of the world (Hill, 1990). Also, infest various other commodities including rice, sorghum, rye, barley, maize, pulses, dried vegetables, and fruits, both adults and larvae that feed on cereal grain cause extensive damage (Hagstrum, 2013; Perišić et al., 2021; Phillips & Throne, 2010).

Furthermore, red flour beetle *T. castaneum* and saw-toothed grain beetle *O. surinamensis* were found in the red lentils samples. Presence of major stored pests like grain weevil *S. granarius* and lesser grain borer *R. dominica* can attracts more insect pests and broken grains and pulses consistently favour the development of secondary storage pests during grain storage such as *T. castaneum* and *O. surinamensis*.

CONCLUSION

Insect infestation in stored pulses causes a huge loss by contaminating it or by eating it. Therefore, it is necessary to understand the behavior, type of insects, and their life cycle to reduce post-harvest damage. The focus of this research was to identify insect species in stored pulses. From this study, it can be concluded that eight weevil species of insect pests were collected from the infested pulse samples. These were cowpea weevil *C. maculatus*, pulse beetle *C. chinensis*, bean weevil *A. obtectus*, faba bean beetle *B. incarnatus*, grain weevil *S. granarius*, lesser grain borer *R. dominica*, red flour beetle *T. castaneum* and saw-toothed grain beetle *O. surinamensis*.

Duality of interest: The author declares that I have no duality of interest associated with this manuscript.

Funding: No specific funding was received for this work.

REFERENCES

Akter, T., Sultana, S., Rahman, M., Mahmud, M. R., & Begum, S. J. J. U. J. o. B. S. (2019). Prevalence and abundance of insect pests in stored pulses collected from two local markets of Dhaka city. 8(1), 75-82.

Alvarez, N., Hossaert - McKey, M., Rasplus, J. Y., McKey, D., Mercier, L., Soldati, L., Aebi, A., Shani, T., Benrey, B. J. J. o. Z. S., & Research, E. (2005). Sibling species of bean bruchids:

- a morphological and phylogenetic study of Acanthoscelides obtectus Say and Acanthoscelides obvelatus Bridwell. 43(1), 29-37.
- Arthur, F. H., & Throne, J. E. J. J. o. E. E. (2003). Efficacy of diatomaceous earth to control internal infestations of rice weevil and maize weevil (Coleoptera: Curculionidae). 96(2), 510-518.
- Ayvaz, A., Sagdic, O., Karaborklu, S., & Ozturk, I. J. J. o. i. s. (2010). Insecticidal activity of the essential oils from different plants against three stored-product insects. *10*(1), 21.
- Babu, A., Hern, A., & Dorn, S. J. B. o. e. r. (2003). Sources of semiochemicals mediating host finding in Callosobruchus chinensis (Coleoptera: Bruchidae). 93(3), 187-192.
- Bailey, P. T. (2007). Pests of field crops and pastures: identification and control. CSIRO publishing.
- Banga, K. S., Kotwaliwale, N., Mohapatra, D., & Giri, S. K. J. F. C. (2018). Techniques for insect detection in stored food grains: An overview. 94, 167-176.
- do Nascimento, J. M., Lopes, L. M., Rocha, J. F., dos Santos, V. B., & de Sousa, A. H. J. F. E. (2020). Population development of bean weevils (Coleoptera: Chrysomelidae: Bruchinae) in landrace varieties of cowpeas and common beans. *103*(2), 215-220.
- Egwuatu, R. J. I. J. o. T. I. S. (1987). Current status of conventional insecticides in the management of stored product insect pests in the tropics. 8(4), 695-701.
- Elhefny, A. A., & Abdelfattah, N. A. J. J. o. A.-P. E. (2022). Effect of infestation with Callosobruchus maculatus on the GC/MS chemical constituents and minerals of cowpea seeds. 25(4), 101981.
- Endshaw, W., Hiruy, B. J. C. F., & Agriculture. (2020). The distribution, frequency of occurrence, and the status of stored faba bean insect pests in relation to food security in Farta District, North West Ethiopia. 6(1), 1832400.
- Gangrade, G. J. B. (1974). Insects of soybeans. Jawaharlal Nehru Krishi Vishwa Vidyalaya Tech. 24, 88.
- Gujar, G., & Yadav, T. (1978). Feeding of Callosobruchus maculatus (Fab.) and Callosobruchus chinensis (Linn.) in green gram.
- Hagstrum, D. (2013). Atlas of stored-product insects and mites.
- Hagstrum, D., & Subramanyam, B. (2006). Fundamentals of stored-product entomology.
- Hagstrum, D., & Subramanyam, B. (2009). Stored-product insect resource.
- Haile, A. J. A. J. o. B. (2006). On-farm storage studies on sorghum and chickpea in Eritrea. 5(17).
- Hentges, D., Weaver, C., & Nielsen, S. J. J. o. F. S. (1991). Changes of selected physical and chemical components in the development of the hard to cook bean defect. 56(2), 436-442.
- Hill, D. S. (1990). Pests of stored products and their control.

- Jaipal, S., Zik Singh, Z. S., & Malik, O. (1984). Insecticidal activity of various neem leaf extracts against Rhyzopertha dominica, a stored grain pest.
- Kingsolver, J. M. (2004). Handbook of the Bruchidae of the United States and Canada (Insecta, Coleoptera).
- Kulkarni, S., Harode, S., Deshpande, A., Borikar, P., & Puri, S. (1985). Damage and losses caused by Callosobruchus chinensis L. to different legumes stored in selected containers.
- Magagula, C. N., & Maina, Y. T. J. J. o. N. S. R. (2012). Activity of Callosobruchus maculatus (F.)(Coleoptera: Bruchidae) on selected bambara groundnut (Vigna subterranea L. Verdc.) landraces and breeding lines. 2(3), 67-74.
- Mahdi, S. H. A., & Rahman, M. K. (2008). Insecticidal effect of some spices on Callosobruchus maculatus (Fabricius) in black gram seeds. *University journal of zoology, Rajshahi University*, 27, 47-50.
- Menkov, N. D. J. J. o. F. E. (2000). Moisture sorption isotherms of chickpea seeds at several temperatures. 45(4), 189-194.
- Mookherjee, P., Jotwani, M., Yadav, T., & Sircar, P. (1970). Studies on incidence and extent of damage due to insect pests in stored seeds-II. Leguminous and vegetable seeds.
- Msolla, S., & Misangu, R. (2002). Seasonal distribution of common bean (Phaseolus vulgaris L.) bruchid species in selected areas in Tanzania. Proceedings of the Bean Seed Workshop, Arusha, Tanzania,
- Murithi, H., Wosula, E., Lagos-Kutz, D., Hartman, G. J. A. J. o. F., Agriculture, Nutrition, & Development. (2019). Soybean pests. 19(5), 15151-15154.
- Mutungi, C., Tungu, J., Amri, J., Gaspar, A., & Abass, A. J. J. o. S. P. R. (2022). Nutritional benefits of improved post-harvest handling practices for maize and common beans in Northern Tanzania: A quantitative farm-level assessment. 95, 101918.
- Njoroge, A. W., Affognon, H., Mutungi, C., Richter, U., Hensel, O., Rohde, B., & Mankin, R. W. J. F. E. (2017). Bioacoustics of Acanthoscelides obtectus (Coleoptera: Chrysomelidae: Bruchinae) on Phaseolus vulgaris (Fabaceae). *100*(1), 109-115.
- Norton, G., Bliss, F., Bressani, R. J. G. l. c. e. b. R. S., & Roberts, E. (1985). Biochemical and nutritional attributes of grain legumes.
- Osman, M., Mahmoud, M., & Mohamed, K. J. J. o. A. P. P. (2015). Susceptibility of certain pulse grains to Callosobruchus maculatus (F.)(Bruchidae: Coleoptera), and influence of temperature on its biological attributes. 3(1), 9-15.
- Paul, U. V., Lossini, J. S., Edwards, P. J., & Hilbeck, A. J. J. o. S. P. R. (2009). Effectiveness of products from four locally grown plants for the management of Acanthoscelides obtectus (Say) and Zabrotes subfasciatus (Boheman)(both Coleoptera: Bruchidae) in stored beans under laboratory and farm conditions in Northern Tanzania. 45(2), 97-107.
- Pemonge, J., Pascual-Villalobos, M. J., & Regnault-Roger, C. J. J. o. S. P. R. (1997). Effects of material and extracts of Trigonella foenum-graecum L. against the stored product pests

- Tribolium castaneum (Herbst)(Coleoptera: Tenebrionidae) and Acanthoscelides obtectus (Say)(Coleoptera: Bruchidae). 33(3), 209-217.
- Perišić, V., Vuković, S., Perišić, V., Luković, K., Vukajlović, F., Hadnađev, M., & Dapčević-Hadnađev, T. J. J. o. S. P. R. (2021). The influence of Rhyzopertha dominica (F.) on the technological quality of cereal grains treated with diatomaceous earth. *90*, 101750.
- Phillips, T. W., & Throne, J. E. J. A. r. o. e. (2010). Biorational approaches to managing stored-product insects. 55(1), 375-397.
- Proctor, D. (1994). *Grain storage techniques: Evolution and trends in developing countries*. Food & Agriculture Org.
- Rees, D. (1995). Coleoptera. In: Subramanyam, Bh. and Hagstrum, D. (Eds), Integrated Management of Insects in Stored Products. Marcel-Dekker Inc, New York, pp.1-39.
- Rees, D. P. (2004). Insects of stored products. CSIRO publishing.
- Regnault-Roger, C., Ribodeau, M., Hamraoui, A., Bareau, I., Blanchard, P., Gil-Munoz, M.-I., & Barberan, F. T. J. o. S. P. R. (2004). Polyphenolic compounds of Mediterranean Lamiaceae and investigation of orientational effects on Acanthoscelides obtectus (Say). 40(4), 395-408.
- Romero-Nápoles, J. J. T. C. B. (2010). A new species of Acanthoscelides Schilsky, 1905 (Coleoptera: Bruchidae) from Nuevo León, Mexico, with a key to the obtectus speciesgroup. 64(2), 125-128.
- Sabbour, M., & Abd El Aziz, S. E. (2010). Efficacy of some bioinsecticides against Bruchidius incarnates (Boh.)(Coleoptera: Bruchidae) infestation during storage.
- Schmale, I., Wäckers, F., Cardona, C., & Dorn, S. J. E. E. (2002). Field infestation of Phaseolus vulgaris by Acanthoscelides obtectus (Coleoptera: Bruchidae), parasitoid abundance, and consequences for storage pest control. *31*(5), 859-863.
- Sharma, H. C., Manuele, T., Bouhssini, M., & Ranga Rao, G. (2016). Pest management in grain legumes: potential and limitations.
- Stathers, T. E., Arnold, S. E., Rumney, C. J., & Hopson, C. J. F. S. (2020). Measuring the nutritional cost of insect infestation of stored maize and cowpea. *12*(2), 285-308.
- Swella, G. B., & Mushobozy, D. M. J. P. P. S. (2007). Evaluation of the efficacy of protectants against cowpea bruchids (Callosobruchus maculatus (F.)) on cowpea seeds (Vigna unguiculata (L.) Walp.). 43(2), 68.
- Tiwari, B. K., Gowen, A., & McKenna, B. (2011). Pulse Foods: Processing, Quality and Nutraceutical Applications. Academic Press.
- Vera-Graziano, J., & Cruz-Izquierdo, S. J. A. (2016). Insect population parameters of Acanthoscelides obtectus (Say.) in grains of five cultivars of common bean (Phaseolus vulgaris L.). 50(3), 347-353.

- Vuts, J., Woodcock, C. M., König, L., Powers, S. J., Pickett, J. A., Szentesi, Á., & Birkett, M. A. J. P. o. (2018). Host shift induces changes in mate choice of the seed predator Acanthoscelides obtectus via altered chemical signalling. *13*(11), e0206144.
- Wakefield, M. E., Bryning, G. P. & Chambers J (2005). Progress towards a lure to attract three stored product weevils, *Sitophilus zeamais* Motschulsky, *S. oryzae* (L.) and *S. granarius* (L.) (Coleoptera: Curculionidae). *Journal of Stored Products Research*, 41(2), 145-16.
- Yusuf, S., Musa, A., Adebayo, A., & Lawal, M. J. A. (2019). Suppression of damaging effects of Callosobruchus maculatus (F.)(Coleoptera: Chrysomelidae) by plant powders. 19(1), 1-12.

Doi: https://doi.org/10.54172/a5zeqg31

Research Article ⁶Open Access

Investigation of fungi contaminating broiler feed in some poultry farms in Syria

Ammar M. Mostafa 1*, Tawfek K. Dalla 2, Fahem A. Abdalaziz 3 and Munzer S. Tamouz 4

- *Corresponding author: ammarmostafa110@gmail.com Department of Animal Production, Faculty of Agriculture engineering, Tishreen University, Syria.
- ² Department of Animal Production, Faculty of Agriculture engineering, Tishreen University, Syria.
- ³ Department of Laboratory Medicine, Faculty of Human Medicine, Tartous University, Syria.
- ⁴ Department of Plant Protection, Faculty of Agricultural Engineering, Tishreen University, Syria.

Received: 16 April 2024

Accepted:

21 September 2024

Publish online: 05 October 2024

Abstract: Fungi contaminating poultry feed are considered a reason for the decrease in their nutritional value, and a major cause of diseases in poultry. Information about fungi contaminating poultry feed is not available locally. Therefore, this study aimed to investigate fungal contamination of both raw and manufactured feeds used on six different farms dedicated to raising poultry (broiler) in Tartous Governorate - Syria, during the period extending from October 2023 to January 2024; By growing samples of these feeds in the laboratory on Potato Dextrose Agar (PDA) culture, to determine the fungal genera present in those studied feeds. 290 fungal isolates were obtained (169 isolates from raw feed, 121 isolates from manufactured feed) belonging to five genera of filamentous fungi and yeasts, including Aspergillus spp. (36.2%), followed by Yeast spp. (33.8%), *Penicillium spp.* (4.8%), *Mucor spp.* (3.8%), and the fungus Trichoderma spp. (1%), and it was found that Aspergillus spp. Fungi were the most common (34.3%, 38.8%) in the raw and manufactured feeds, respectively. The study concluded that the detection of fungi contaminating poultry feed is of great importance, due to their health risks to poultry.

Keywords: Fungal Genera; Raw Feed (Starter); Manufactured feed; Broiler; Farms.

التقصي عن الفطريات الملوثة لأعلاف الفروج في بعض مزارع الدواجن، سورية

المستخلص: تعتبر الفطريات الملوثة لأعلاف الدواجن سبباً في انخفاض قيمتها الغذائية، وسبباً وي حدوث الأمراض لدى الدواجن، كما أن المعلومات حول الفطريات الملوثة لأعلاف الدواجن غير متوفرة محلياً، ولذلك هدفت هذه الدراسة الى تقصي التلوث بالفطريات لكل من الأعلاف الخام والأعلاف المصنعة المستخدمة في ستّ مزارع مختلفة مخصصة لتربية الدواجن الأعلاف الخام والأعلاف المصنعة المستخدمة في المتدة من تشرين الأول 2023 وحتى كانون الثاني 2024؛ بزراعة عينات من تلك الأعلاف في المختبر على مستنبت آجار البطاطا كانون الثاني 4204؛ بزراعة عينات من تلك الأعلاف في المختبر على مستنبت آجار البطاطا المدروسة. تم الحصول على 290 عزلة فطرية (169 عزلة من الأعلاف الخام، 121 عزلة من الأعلاف المصنعة) تنتمي الى خمس أجناس من الفطريات الخيطية والخمائر، تشمل الرشاشيات الأعلاف المصنعة) تنتمي الى خمس أجناس من الفطريات الخيطية والخمائر، تشمل الرشاشيات التابعة للجنس 33.8) وفطر 33.8) البنسليوم الرشاشيات التابعة للجنس (3.8)، وفطر Aspergillus spp. الكشف عن الفطريات الملوثة لأعلاف الدواجن له أهمية كبيرة، وذلك بسبب خطورتها على صحة الدواحن.

الكلمات المفتاحية: أجناس الفطريات، أعلاف خام (بادئة)، أعلاف مصنّعة، الفرّوج، مزارع.

The Author(s) 2024. This article is distributed under the terms of the *Creative Commons Attribution-NonCommercial 4.0 International License* (http://creativecommons.org/licenses/by-nc/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, *for non-commercial purposes only*, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

INTRODUCTION

The infection of fodder crops with fungal pathogens is one of the most important reasons for their production decline in quantity and quality, which causes a decline in the nutritional value of the crop. This applies to the quality of the resulting feed and its economic value, and contamination with mycotoxins remains the greatest threat to human and animal health (Magkos 2003).

Contamination of poultry feed with fungi negatively affects the health and production of poultry, resulting in significant losses. There are more than 100,000 fungal species that are natural living contaminants of food and agricultural products (Abo-Shama, 2015). It has been found that the most common types of fungi in feed belong to the genera *Aspergillus spp*, *Fusarium spp*, *Penicillium spp*, *Rhizopus spp*, and *Mucor spp* (Okoli et al. 2006; Stuper et al. 2015).

It is worth noting the ability of some fungal species, which are belonging to the genus *Aspergillus spp*, to infect animal tissues (Richard, 2007), in addition to the produced mycotoxins by fungi, where about 400 types of different mycotoxins have been identified, which differ greatly in size and structural shapes (Iamanaka et al. 2010).

One study showed that the most common species in poultry feed were *Aspergillus spp* at 44.5%, followed by *Penicillium spp* at 7.22%, and *Fusarium spp* at 6.7% (Saleemi et al. 2010). In Nigeria, a study was conducted to evaluate the level of fungal contamination in poultry feed during the rainy season (September - April), and the results showed that the most common fungal genus is *Aspergillus spp*, followed by *Fusarium spp* (Anifowose et al. 2021).

It was also found in Iran that the most frequent fungal genera are *Fusarium spp* (90%) and *Aspergillus spp* (70%) in raw and manufactured feeds, respectively (Ghaemmaghami et al. 2018), while another study in Iraq showed the isolation of fourteen different genera of molds in poultry feed, the most common contaminated fungi were *Aspergillus spp* (88.8%), followed by *Penicillium spp* (62.2%), *Mucor spp* (62.2%), *Rhizopus spp*, and *Scopulariopsis spp* (Shareef, 2010); The fungus *Penicillium spp* had the highest contamination rate of 74.58% (44 isolates), followed by the fungus *Aspergillus spp* with 20.34% (12 isolates), then the fungus *Trichoderma spp* with 3.39% (2 isolates), and finally, the fungus *Rhizopus spp* with 1.70% (one isolate) in six samples of poultry feed in Algeria (Najiha, 2019).

Based on previous studies, the presence of fungi in poultry feed may cause diseases in poultry, or increase poultry mortality rates because of mycotoxins in these contaminated feeds, and therefore they can be considered a threat to the health of poultry and humans; this requires periodic scrutiny of the content of poultry feeds for these dangerous contaminants, and since there are no documented local studies to date on the diagnosis of fungi contaminating ready-made poultry feeds, this research was therefore carried out to investigate and detect the fungal species contaminated with ready-made feeds used in some broiler farms.

MATERIALS AND METHODS

Sample collection: Identical quantities were randomly taken from the stock of raw feed bags, and after mixing them, one final sample with weight (500 g) was taken and kept in a transparent plastic bag with the sample card. Another sample was taken in the same way from the used manufactured feed bags in each of the studied farms. Thus, 12 samples of broiler feed were collected (6 raw feed samples, 6 manufactured feed samples), from 6 designated farms for raising broilers in Tartous Governorate, then they were transported to the laboratory in the Faculty of Agricultural Engineering at Tishreen University and stored in the refrigerator at 7°C until use.

Examination of samples: Laboratory tests of feed samples were conducted in the laboratories of

the Plant Protection Department at the Faculty of Agricultural Engineering at Tishreen University according to the following:

Fungal isolation: The process of fungal isolation was carried out on a general solid nutrient medium, which is Potato Dextrose Agar (PDA), where the contents of each sample were remixed individually, in succession, in the isolation chamber, and only (1 g) of it was taken to Erlenmeyer containing (9 ml) of sterile distilled water. The resulting suspension mixture was mixed well with a glass rod for five minutes to obtain a concentration of 10⁻¹, then the dilution was performed again by taking (1 ml) of the solution and adding (9 ml) of sterile distilled water to it to obtain a concentration of 10⁻², and in the same way to obtain a concentration of 10⁻³. For each treatment (concentration), three glass Petri dishes (replicates) with a diameter of 9 cm were allocated and each replicate contained the nutrient culture medium at a thickness of 2 mm, where 1 ml of each concentration was put on the surface of the nutrient culture medium for each replicate; Also, three Petri dishes were allocated for treating the control in the same way, where 1 ml of sterile distilled water was put on the surface of the culture in each of them.

Incubation and monitoring: All replicates of the treatments were incubated in the dark at a temperature of $25 \pm 2^{\circ}$ C and monitored for 10 days until the fungal colonies appeared and differentiated. Then, they were examined to identify and determine the fungal genera, and their number was calculated using a set of macroscopic and microscopic morphological features at the genus level according to standard methods (Pitt and Hocking 2009; Samson et al. 2010; Bennett, 2010).

The frequency percentage was calculated through the following equation: Percentage frequency % = Number of Isolates of one Species / Total Number of Isolates of all Fungi X 100 (Saleemi et al. 2010).

Data analysis: The SPSS v25 program was used to analyze the data. The Independent Samples T-Test was conducted to verify the significance of the significant differences between the average results of the studied elements for the raw and manufactured feed samples.

RESULTS

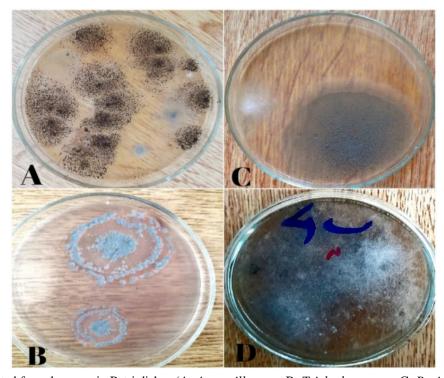
The results of fungal isolation for 12 samples of broiler feed, taken from the targeted farms in the study, showed the growth of fungal colonies and yeasts. Based on the results, the minimum value, the highest value, and the average number of fungal colonies of the isolated fungi were calculated.

Table (1) shows the results of a study of fungal genera isolated from ready-made broiler feed, taken from designated farms for the production of broiler chickens, where a total of 290 fungal isolates were isolated (169 isolates from raw feed, 121 isolates from manufactured feed) belonging to five Genera of filamentous fungi and yeasts, including *Aspergillus spp*, followed by *Yeast spp*, *Penicillium spp*, *Mucor spp*, and the fungus *Trichoderma spp*, (Figure 1, 2). The T-test for independent samples showed that there were no significant differences (P > 0.05) between the means of the fungal genera isolated from the tested samples of raw and processed broiler feed, except for *Trichoderma spp*, and other fungi (unknown), a significant difference was found (P < 0.05).

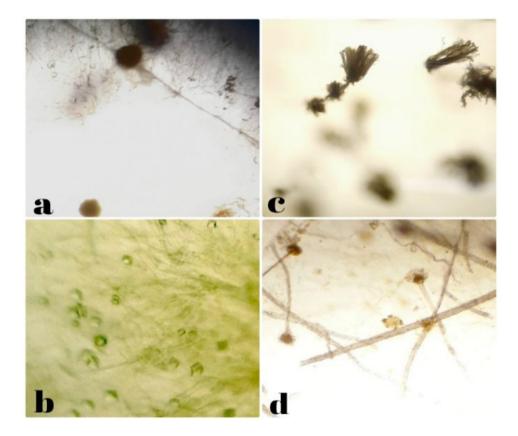
It was also found that the genus *Aspergillus spp* was the most frequently isolated fungus with (34.3% and 38.8%) from raw and manufactured feed, respectively.

In general, the most common isolated fungi from finished feeds were: *Aspergillus spp.* (36.2%), followed by *Yeast spp.* (33.8%), *Penicillium spp.* (4.8%), *Mucor spp.* (3.8%), and the fungus *Trichoderma spp.* (1%), (Table 2).

Table: (1). Descriptive data for isolated fungal genera from ready-made feed samples for broiler.


		Raw Feed $(n = 6)$			Manufactured feed $(n = 6)$				
Genus		Isolates		— F.0/	Isolates			E o	
	Range	Mean	Range	Fr%	Range	Mean	Range	Fr%	
Aspergillus spp.	0 - 50	10 ^a	58	34.3	3- 13	8 ^a	47	38.8	
Penicillium spp.	0 - 4	1 ^b	7	4.1	0 - 2	1 ^b	7	5.8	
Mucor spp.	0 - 4	1°	7	4.1	0 - 3	1°	4	3.3	
Trichoderma spp.	0 - 2	1 ^{d1}	3	1.8	0	0^{d2}	0	0	
Yeast spp.	0 - 20	9 ^e	54	32.0	0 - 25	7 ^e	44	36.4	
other fungi (unknown)	0 - 25	7^{f1}	40	23.7	0 - 10	3 ^{f2}	19	15.7	
Total			169	100			121	100	

a, b, /1,2; Levels of significant differences between the means of fungi for raw and manufactured feeds at the 5% level; n; Number of samples; Fr: Frequency Percentage


Table: (2). Total frequency of isolated fungal genera from broiler feed

C	n= 12	T-4-1 F- 0/
Genus -	Total number of isolates	Total Fr %
Aspergillus spp.	105	36.2
Penicillium spp.	14	4.8
Mucor spp.	11	3.8
Trichoderma spp.	3	1
Yeast spp.	98	33.8
other fungi (unknown)	59	20.3
Total	290	100

n; Total of samples; Fr: Frequency percentage

Figure: (1). Isolated fungal genera in Petri dishes (A: *Aspergillus spp*, B: *Trichoderma spp*, C: *Penicillium spp*, D: *Mucor spp*)

Figure: (2). Isolated fungal genera under the microscope (a: *Aspergillus spp*, b: *Trichoderma spp*, c: *Penicillium spp*, d: *Mucor spp*)

DISCUSSION

Several studies have indicated that *Aspergillus spp* is the most frequent fungus in poultry feed (Anifowose et al. 2021; Shareef, 2010; Saleemi et al. 2010), and this is consistent with the general results of this study; A study (Ghaemmaghami et al. 2018) showed that *Fusarium spp* was the most frequent fungus, while *Penicillium spp* was the most frequent in a study (Najiha, 2019).

It is worth noting that some studies indicated that the *Aspergillus spp* fungi were the most common in manufactured feeds from raw feeds (Greco et al. 2014; Ghaemmaghami et al. 2018), and this is consistent with the results of this study; In terms of the number of isolates, the total number of fungal genera isolated from raw feed samples in this study was greater than in manufactured feed samples, and this differs from the study (Ghaemmaghami et al. 2018).

The reason for the increase in contamination of raw feed may be attributed to poor drying the feed ingredients during agricultural operations and transportation, in addition to inappropriate storage and weather conditions (Ghaemmaghami et al. 2016), and the use of air in the cooling process can also lead to recontamination of manufactured feed by allowing additional pathogens to reach the feed, in addition to the ability of some fungal species to survive after heat treatment (Ghaemmaghami et al. 2018; Jones, 2011).

CONCLUSION

The data and results of this study showed that ready-made feed used to feed broilers in some poultry farms is contaminated with different levels of fungal species. It has been noted that heat treatment may reduce fungi, but some species continue to form spores despite being exposed to heat.

This study concluded that detecting contaminated fungi in used feed to feed broilers is of great importance, because of their health risks to poultry, and thus to humans.

ACKNOWLEDGEMENT

The authors would like to appreciate the cooperation of the Faculty of Agricultural Engineering at Tishreen University, Syria, the laboratory staff, and all who contributed to this work.

Duality of interest: The authors declare that they have no duality of interest associated with this manuscript.

Author contributions: Conceptualization: Tawfek Dalla and Fahem Abdalaziz. Methodology, investigation & writing the original draft Ammar Mahmoud Mostafa and Munzer Tamouz. Laboratory tests, supervision, writing, review, and editing of the final draft of the manuscript: All authors.

Funding: This study was funded by the authors

REFERENCES

- Abo-Shama, U.H. (2015). The investigation of pathogenic fungi in poultry feed in some selected poultry farms in Sohag Governorate, Egypt. *J Microbiol Biotech Res*, 5(6):1-8.
- Anifowose, O.R., Adetolase, A. and Bakre, A.A. (2021). Evaluation of Fungal Contamination in Poultry Feeds During the Rainy Season in Ogun State, Nigeria. *AJVS*, 69 (1): 107-112.
- Bennett, J.W. (2010). An overview of the genus *Aspergillus*. *In: Aspergillus Molecular Biology and Genomics (pp. 1–17)*. Caister Academic Press, Norfolk, UK.
- Ghaemmaghami, S.S., Modirsaneii, M., Khosravi, A.R. and Razzaghi-Abyaneh, M. (2016). Study on mycoflora of poultry feed ingredients and finished feed in Iran. *Iranian journal of microbiology*, 8(1): 47 54.
- Ghaemmaghami, S.S., Nowroozi, H. and moghadam, M.T. (2018). Toxigenic Fungal Contamination for Assessment of Poultry Feeds: Mashed vs. Pellet. *Iranian Journal of Toxicology*, 12(5): 5 10.
- Greco, M.V., Franchi, M.L., Rico, S.L., Pardo, A.G. and Pose, G.N. (2014). Mycotoxins and mycotoxigenic fungi in poultry feed for food-producing animals. *Sci World J*, 968215.
- Iamanaka, B.T., Oliveira, I.S. and Taniwaki, M.S. (2010). Micotoxins Em Alimentos. *Anais da Academia Pernambucana de Ciência Agronômica*, 7: 138-161.
- Jones, F.T. (2011). A review of practical Salmonella control measures in animal feed. *Journal of Applied Poultry Research*, 20(1):102-13.
- Magkos, F., Arvaniti, F. and Zampelas, A. (2003). Putting the safety of organic food into perspective. *Nutrition Research Reviews*, *16*(2): 211-22.
- Najiha, J. (2019). Biological control of the fungus *Aspergillus flavus* contaminating poultry food using Pichia anomala bacteria and Bacillus megaterium yeast. Ph.D. thesis. *Department of*

- Microbiology, Faculty of Natural and Life Sciences, Farhat Abbas University, Setif 1, People's Democratic Republic of Algeria.
- Okoli, I.C., Nweke, C.U., Okoli, C.G. and Opara, M.N. (2006). Assessment of the mycoflora of commercial poultry feeds sold in the humid tropical environment of Ino State, *Nigeria*. *International Journal Environ Sciences*, 3(1): 9-14.
- Pitt, J.I. and Hocking, A.D. (2009). Fungi and Food Spoilage. Springer Dordrecht Heidelberg London, Cambridge, New York.
- Richard, J.L. (2007). Some major mycotoxins and their mycotoxicoses—An overview. *International journal of food microbiology*, 20,119(1-2): 3-10.
- Saleemi, M.K., Khan, M.Z., Khan, A. and Javed, I. (2010). Mycoflora of poultry feeds and mycotoxins producing potential of *Aspergillus* species. *Pakistan journal of Botany*, 42(1): 27-34.
- Samson, R.A., Houbraken, J., Thrane, U., Frisvad, J.C. and Andersen, B. (2010). Food and indoor fungi. CBS-KNAW Fungal Biodiversity Centre, C B S Laboratory Manual Series.
- Shareef, A.M. (2010). Molds and mycotoxins in poultry feeds from farms of potential mycotoxicosis. *Iraqi Journal of Veterinary Sciences*, 24(1).
- Stuper, K., Renata, C.R., Szablewski, T., Ostrowska, A., Busko, M. and Perkowski, J. (2015). Contamination with microscopic fungi and their metabolites in chicken feed produced in western Poland in the years 2009-2010. *Act Sci Pol Zootechnica*, 4(3): 107-122.

Doi: https://doi.org/10.54172/n5r61847

Research Article 6Open Access

A Descriptive Study of The Barbary Partridge in the Green Mountain Region of Cyrenaica - Libya

Tarek A. S. Altief 1*, Rayiqh A. Saeid 2, Salem A. Amaizik3

*Corresponding author: tarekhhakam@gmail.com, Department of Animal Production, Faculty of Agriculture, Omar Al-Mukhtar University, Libya.

^{2, 3} Department of Animal Production, Faculty of Agriculture, Omar Al-Mukhtar University, Libya.

Received: 30 June 2024

Accepted: 16 December 2024

Publish online: 31 December 2024

3.2.1 قسم الإنتاج الحيواني، كلية الزراعة، جامعة عمر المختار، ليبيا.

Abstract: This study was on the Barbary partridge found in the Jabal Al Akhdar region / Cyrenaica / Libya, (8) birds were captured, 4 males and 4 females, their estimated age (25 months). Body weight, body length, tail length and claw leg length were non-significantly increased in males. The distance between the tips of the wings was significantly higher (P < 0.05) in males. Beak length was non-significantly longer in females. The weight of the viscera in females was significantly higher (P < 0.05). The weight of the liver and gizzard of females was non-significantly higher. Heart weight in males is high without significance. The weight of the crop, glandular stomach and intestine was significantly higher (P < 0.05) in females. Red and white blood cells, hemoglobin, PCV, MCV, MCH, MCHC, platelets, glucose, calcium, magnesium, alkaline phosphatase, GOT, and LDL were elevated in females without significance. The urea concentration of males was significantly higher (P < 0.05). Triglycerides and VLDL were significantly higher (P < 0.05) in females. The level of uric acid, protein, albumin, potassium, cholesterol, GPT, total bilirubin, direct bilirubin, and indirect bilirubin was high without significance in males. Creatinine, sodium, chloride, and globulin are almost identical between males and females.

Keywords: Partridge, Blood, Blood Biochemistry, External Measurements, Viscera.

دراسة وصفية لطائر الحجل في منطقة الجبل الأخضر برقة- ليبيا

المستخلص: هذه الدراسة كانت على حجل البربري الموجود في منطقة الجبل الأخضر برقة – ليبيا، تم حصول على 8 طيور 4 نكور و 4 إناث وتقدر اعمارها (25 شهر). وزن الجسم طول الجسم وطول الذيل والساق المخلب مرتفعة بدون معنوية في الذكور. بسطة الجناحين كان مرتفع معنويا وطول الذيل والساق المخلب مرتفعة بدون معنوية في الإناث. وزن الأحشاء في الإناث كانت مرتفعة معنوية ((P < 0.05)). وزن الكبد والقانصة للإناث اعلى بدون معنوية. وزن القلب في الذكور مرتفع بدون معنوية. وزن الحوصلة والمعدة الغدية والامعاء كان مرتفع بمعنوية ((P < 0.05)) في الإناث. خلايا الدم الحمراء والبيضاء والهيموجلوبين و (P < 0.05) و MCH و MCY و DCV و DCV

الكلمات المفتاحية: الحجل، الدم، التركيب الكيموحيوي للدم، القياسات الخارجية، الأحشاء.

INTRODUCTION

The Barbary partridge (*Alectoris Barbara*) is widespread in North Africa from Morocco to Egypt. The local partridge has been identified in Morocco, Algeria, Tunisia, and Libya, and may have become extinct in Egypt (Madge & McGowan, 2002). Partridges of the Phasianidae family, Galliformes species are widely distributed across southern Europe and North Africa (Libya, Algeria, Morocco, and Tunisia). Partridges have a short lifespan, which corresponds demographically to high hatching rates as reported by (Mahmood, et al., 2019). The partridges are among those species that have adapted to harsh climatic and environmental conditions and reproduce successfully. Partridges have strong beaks and legs. Partridges often coexist in family or social groups (flocks), especially outside the breeding season, and both sexes have similar plumage (Jennings, 2010). The partridge is one famous bird in Libya, whether in mountainous forests or semi-desert areas. Partridges in Libya:

During the summer and fall, in groups, but at the end of the year, they are in pairs or a few individuals. This bird builds its ground nests made of dry grass. During March and April, the female lays 8-16 eggs, which hatch within 22 days. they spend most of their time on the ground. They are fast running birds, and this adaptation helps them escape from enemies. They may resort to flying short distances. They breed once a year depending on environmental conditions and their breeding season usually ranges from October to February (Pavel, Abbas, & Dyary, 2023). Partridges are herbivores and eat leaves, seeds, grains, fruits, and sometimes insects if available. The declining numbers of this bird in Libya are attributed to overhunting by humans and egg collectors, or predation of eggs, chicks, and adults by jackals or foxes, as well as overgrazing, which leads to the deterioration of environmental conditions for this bird and the destruction of its living places and nesting sites. It was supported by (Gruychev, Dyakov, & Dimitrov, 2014). It is known that unregulated hunting of wild birds causes the mortality of more than 15% of breeding populations that produce 2-5 chicks per pair (Sandercock, Nilsen, Brøseth, & Pedersen, 2011). Several factors that increase this sharp decline in chick survival due to the use of pesticides, the loss of suitable areas due to intensive agriculture and the use of advanced agricultural mechanization, a decrease in the hatching rate, and an increase in predation (Wymenga, 2009). Tests are usually performed on domesticated birds and serve as supplementary data obtained by conducting various experiments.

The blood values of partridges in Libya are still unknown. No program has been conducted to inventory or estimate the numbers of these birds and to provide external descriptions and physiological tests and use them as a database for this bird in Libya. Due to the lack of research on the external description and some parts of the digestive tract and biochemical tests for the blood of partridges in Libya, this experiment was conducted on both sexes of partridges in Jabal al-Akhdar region in Cyrenaica/Libya as the beginning of a database about this bird to benefit in establishing reserves to preserve this bird from extinction

MATERIALS AND METHODS

Eight Barbary partridge birds were captured, 4 males and 4 females, their estimated age (25 months). The lengths of some of the external parts and the weight of some of the internal organs were measured. Blood samples were analyzed to measure each of the total number of red blood cells (RBC), the total number of white blood cells (WBC), packed cell volume (PCV), hemoglobin Hb, mean corpuscular volume (MCV), mean corpuscular hemoglobin (MCH), mean corpuscular hemoglobin concentration (MCHC) and platelets (Plt.) using a device (Nihon Kohaden). Blood

samples were separated by centrifugation at 750 g (2500 rpm) for 15 minutes and stored at -20 °C until further analysis. Biochemical parameters of blood samples by a device (GBA 1000), and ions by a device (Diestro).

The data were statistically analyzed using the statistical program SPSS (Version 25), Kinnear and Gray, 2017, where LSD was used to compare means according to difference. Overall, p-values less than 0.05 were regarded as statistically significant.

RESULTS AND DISCUSSION

Table (1) shows the average body weight and lengths of some external parts for both sexes. Body weight was non-significantly but high in males, and this agrees with what is found for Gray partridges (Kokoszyński, et al., 2017) and (Kokoszyński, Bernacki, Korytkowska, Wilkanowska, & Frieske, 2013) and for Green-legged partridges (Kasperek, et al., 2021). However, (Mohammed & Al-Barzinji, 2022) in the Rock partridge and (Kirikçi, Tepeli, Çetin, Yilmaz, & Günlü, 2017) in the Barbary partridge, body weight was significantly higher (P < 0.05) in males than in females, and this may be due to The weight of the chest and thigh muscles of males, while (Nowaczewski, Kolanos, Krystianiak, Kontecka, & Gorecki, 2014) found that the weight of female Gray partridges is non-significantly higher than males. Body, tail, and claw leg length were non-significantly high in males. The distance between the tips of the wings was significantly higher (P < 0.05) in males than in females and was close to the values found by (Nowaczewski, Kolanos, Krystianiak, Kontecka, & Gorecki, 2014) and without significance. While beak length was non-significantly longer in females.

Table (1). Average external description of the two sexes of partridge.

Statement	Males	Females	SE±	Average
Body weight/g	328	308	11.9	320
Body length/cm	36.6	35.7	0.53	36.3
Tail length/cm	11.3	10.3	0.46	10.9
Wing span/cm	53.4a	49.3 ^b	0.79	51.9***
Beak length/cm	1.9	2.0	0.06	1.94
Claw leg length/cm	9.6	8.7	0.31	9.3

(P < 0.05) a,b

The weight of the viscera in Table (2) of females was significantly higher (P < 0.05) than males. This may be due to the higher weight of the liver, gizzard, glandular stomach, and intestines in females, or to the percentage of the abdominal fat pad in females, as it was found in the Green-legged partridge (Kasperek, et al., 2021). The liver weight of females is non-significantly higher than that of males, consistent with what was reported for the Green-legged partridge (Kasperek, et al., 2021), the Gray partridge (Kokoszyński, et al., 2017), and in the Chukar partridge (Sevim, et al., 2020). While the general average was lower than Gray partridge (Putaala & Hissa, 1995). Heart weights in males are insignificantly higher than those in females, as in the Green-legged partridge (Kasperek, et al., 2021) and the Gray partridge (Kokoszyński, et al., 2017). It is significantly high (P < 0.05) in male Chukar partridge (Sevim, et al., 2020). The overall mean for this measurement was lower than for Gray partridge (Putaala & Hissa, 1995). The weight of the gizzard in females is non-significantly higher than in males, and it agrees with both (Putaala & Hissa, 1995), (Kokoszyński, et al., 2017) in Gray partridge and Chukar partridge (Sevim, et al., 2020). The overall mean of the

gizzard in this study was lower than that of the Sardinian partridge (Cappai, Arru, Manconi, Muzzeddu, & Pinna, 2016). The weight of the crop, glandular stomach, and intestines were significantly higher (P < 0.05) in females than in males.

Table (2). Average weight of internal viscera for both sexes of partridge.

Statement	Males	Females	SE±	Average
Weight of viscera/g	29.8 ^b	32.7ª	0.77	30.9
Liver weight/g	4.91	5.38	0.22	5.09
Heart weight/g	2.03	1.67	0.11	1.90
Gizzard weight/g	12.0	12.9	0.40	12.4
Weight of crop, glandular stomach and intestine/g	10.8 ^b	12.7ª	0.45	11.5*

(P < 0.05) a,b

Table (3) shows the total number of WBC and RBC blood cells, some of their characteristics, and some biochemical compositions of the plasma. RBC was non-significantly higher in females than in males, contrary to what (Farooq, et al., 2019) found in Chukar partridge. The general mean RBC was close to what was published (Straková, Suchý, Kábelová, Vitula, & Herzig, 2010) for the Chukar and Gray partridge, and was least for the Red-legged partridge (Rico, Braun, Benard, & Burgat-Sacaze, 1977). The total WBC count in females was high without significance, and this is in contrast to what was found in the Chukar partridge (Farooq, et al., 2019), where it was found to be higher in males and also without significance. The level of Hb was high in females without significance, while (Farooq, et al., 2019) found it higher in males of Chukar partridge, as well as (Kasperek, et al., 2021) in Green-legged partridge, it was significantly high (P < 0.05) in males. This difference may be due to the sex of the bird (Fallaw, Jones, & Hughes, 1976). The overall average Hb was lowest for Chukar and gray partridge (Straková, Suchý, Kábelová, Vitula, & Herzig, 2010). The PCV level was high in females without significance. It does not agree with what was published on the Chukar partridge (Farooq, et al., 2019), where this measurement was found to be high in males, and also what was reported by (Kasperek, et al., 2021) about the Green-legged partridge, so it was Significantly higher (P < 0.05) in males, this difference may also be due to the sex of the bird (Fallaw, Jones, & Hughes, 1976).

The overall mean PCV in the study was consistent with what was found (Straková, Suchý, Kábelová, Vitula, & Herzig, 2010) for the Chukar and Gray partridge, and lower than what was found (Rico, Braun, Benard, & Burgat-Sacaze, 1977) for the Red-legged partridge. The MCHC level for this measurement in this research was higher in females without significance, while in Chukar partridge, the opposite was found, as it was higher in males than females (Farooq, et al., 2019). The overall average MCHC was similar to that of the Red-legged partridge (Rico, Braun, Benard, & Burgat-Sacaze, 1977), and lower than that of the Chukar and Gray partridge (Straková, Suchý, Kábelová, Vitula, & Herzig, 2010). Total number Plt. it was non-significantly higher in females than in males, and this agrees with that of the Chukar partridge (Farooq, et al., 2019).

Glucose concentration was higher in females than males and without significance, which agreed with the Chukar partridge for both (Sevim, et al., 2020) and (Nazifi, Mosleh, Ranjbar, & Khordadmehr, 2011). This may be due to the physiological state of the birds, or the collection of blood samples in the stage of preparation for laying eggs, and at this stage ,many changes in the organs may lead to high blood glucose levels in females, as in chickens (Adewole, et al., 2021). This average glucose concentration in this study was higher than that of the Red-legged partridge (Ozbey & Esen, 2006) and (Rico, Braun, Benard, & Burgat-Sacaze, 1977), and lower than that of the Chu-

kar partridge (Simsek, et al., 2020). The protein concentration in birds ranges between (3-5 g/dl) (Khazraiinia, Saei, Mohri, Haddadzadeh, & Darvisihha, 2006). Total blood protein levels increase with age, and this is due to the development and improvement of protein biosynthesis processes, which is associated with the growth and development of the digestive system in partridges (Topchiyeva, 2022). Increased blood protein concentration can be due to dehydration or chronic infections with low plasma protein due to low protein content in the leech and decreased albumin formation in the liver. The protein was high in males without significance, consistent with what was published about the Chukar partridge (Nazifi, Mosleh, Ranjbar, & Khordadmehr, 2011).

The value of the average overall protein in this study is consistent with what was reported by (Ozbey & Esen, 2006) in the Rock partridge, (Rico, Braun, Benard, & Burgat-Sacaze, 1977) in the Red-legged partridge, and higher than what was reported by (Topchiyeva, 2022). Albumin level was higher in males than females and without significance. The globulin concentration was like that in males and females. The urea concentration in this research was significantly higher (P < 0.05) in males than in females, while (Sevim, et al., 2020) found that the urea level was higher in males than females, but without significance. While (Kasperek, et al., 2021) found that, this measurement in Green-legged partridge is higher in females than in males, without significance. The average urea in this study was higher than what was found in the Rock partridge (Ozbey & Esen, 2006), the Redlegged partridge (Rico, Braun, Benard, & Burgat-Sacaze, 1977), and the Chukar partridge (Simsek, et al., 2020). High-protein diet intake, increased protein metabolism, stress, and dehydration affect blood uric acid concentration because it is produced because of protein metabolism (Odunitan-Wayas, Kolanisi, & Chimonyo, 2018). The uric acid level was non-significantly high in males, and may be due to the higher metabolic rate in males due to sexual activities and the development of secondary sexual characteristics (Rodríguez, Tortosa, & Gortázar, 2006).

The uric acid level is consistent with that of both gray partridge and Shukar partridge (Nikolov & Kanakov, 2021). While it is contrary to what was found in the Chukar partridge (Nazifi, Mosleh, Ranjbar, & Khordadmehr, 2011). The overall mean of this measure in this study was higher than for the Gray partridge and the Chukar partridge (Nikolov & Kanakov, 2021), the Red-legged partridge (Rico, Braun, Benard, & Burgat-Sacaze, 1977), and the Chukar partridge (Simsek, et al., 2020). Knowing the level of creatinine determines the functional status of the kidneys. In this study, creatinine was almost identical between males and females, with a slight increase in males, consistent with what was mentioned by (Nikolov & Kanakov, 2021) in Gray partridge and Chukar partridge, and it may be due to skeletal muscle activity. The level of this measurement is not consistent with what was found in Chukar partridge (Nazifi, Mosleh, Ranjbar, & Khordadmehr, 2011), where creatinine was found to be significantly higher (P < 0.05) in females than in males. While (Kasperek, et al., 2021) found that, this measurement in Green-legged partridge is higher in males than females without significance. The overall average for this measure in this study was lower than for the Redlegged partridge (Rico, Braun, Benard, & Burgat-Sacaze, 1977) and (Nikolov & Kanakov, 2021) Gray partridge and Chukar partridge.

Cholesterol was higher in males than females and without significance, consistent with what was written by (Simsek, et al., 2020) and in Chukar partridge (Nazifi, Mosleh, Ranjbar, & Khordadmehr, 2011). While it was higher in female Green-legged partridges than in males (Kasperek, et al., 2021). The general mean value of this measurement is higher than what was found by (Ozbey & Esen, 2006) in the Rock partridge and (Rico, Braun, Benard, & Burgat-Sacaze, 1977) in the Red-legged partridge. Triglyceride is significantly higher (P < 0.05) in females than in males, consistent with what was published by (Sevim, et al., 2020) and (Nazifi, Mosleh, Ranjbar, & Khordadmehr, 2011) in Chukar partridge and (Kasperek, et al., 2021) in the Green-legged partridge,

and this difference between the sex may be due mainly to physiological factors (Scholtz, Halle, Flachowsky, & Sauerwein, 2009) or the effect of preparation for laying eggs (Adewole, et al., 2021). The overall mean of this measurement in this study was higher than that of Rock partridge (Ozbey & Esen, 2006) and Chukar partridge (Simsek, et al., 2020). This study found that calcium level was high in females without significance, as found by (Nazifi, Mosleh, Ranjbar, & Khordadmehr, 2011) in Chukar partridge, where this measurement was found to be higher in females than in males. The average concentration in this research is consistent with that of the Rock partridge (Ozbey & Esen, 2006), and higher than (Simsek, et al., 2020) in the Chukar partridge.

The sodium level between males and females was identical; this result is consistent with what was found in Rock partridge (Ozbey & Esen, 2006). The overall mean was identical to that of the Redlegged partridge (Rico, Braun, Benard, & Burgat-Sacaze, 1977). The potassium measurement for males was non-significantly higher than for females, and its average was lower than that of Rock partridge (Ozbey & Esen, 2006). The overall mean was slightly lower than for the Red-legged partridge (Rico, Braun, Benard, & Burgat-Sacaze, 1977). There were no significant differences between chloride between males and females, and the average concentration was very close to what was published by (Ozbey & Esen, 2006) about the Rock partridge. The general average was highest for the Red-legged partridge (Rico, Braun, Benard, & Burgat-Sacaze, 1977). Magnesium was slightly and non-significantly high in females. The phosphate concentration in males was higher than its level in females without significance, consistent with what was mentioned by (Nazifi, Mosleh, Ranjbar, & Khordadmehr, 2011) in Chukar partridge. Alkaline phosphatase level was non-significantly higher in females than males. The general average was lower than what was reported (Rico, Braun, Benard, & Burgat-Sacaze, 1977).

The activity of the enzyme Alanine aminotransferase (ALT) in the blood of the partridge indicates the destruction of tissue cells that contain this enzyme, and its increased activity in the blood of the partridge may appear before the appearance of pathological signs (Topchiyeva, 2022). This measurement was non-significantly higher in males than females, consistent with the Green-legged partridge (Kasperek, et al., 2021), while (Nikolov & Kanakov, 2021) found it to be higher in females than males in the Gray partridge and (Nazifi, Mosleh, Ranjbar, & Khordadmehr, 2011) in Chukar partridge. The overall mean in this study was higher than that found for Rock partridge (Ozbey & Esen, 2006) and lower than for Gray partridge (Nikolov & Kanakov, 2021).

The level of aspartate transaminase (AST) was higher in females than males and without significance, consistent with the Gray partridge (Nikolov & Kanakov, 2021), the Green-legged partridge (Kasperek, et al., 2021), and the Chukar partridge (Nazifi, Mosleh, Ranjbar, & Khordadmehr, 2011). The overall mean for this measurement in this research was lower than (Nikolov & Kanakov, 2021) in Gray partridges and (Ozbey & Esen, 2006) in Rock partridges. These enzymes are negatively affected by factors such as muscle injury, organ disruption, nutritional status, physical activity, hemolysis, treatment, and preservation method of plasma samples (Adewole, et al., 2021). Serum proteins act as a transport medium for bilirubin and hormones.

The level of total bilirubin was higher in males than in females without significance, while (Nazifi, Mosleh, Ranjbar, & Khordadmehr, 2011) a significant increase (P < 0.05) was found for this measurement in females of the Chukar partridge than in males. The levels of both Bili direct and Bili indirect are higher in males than in females without significance. The level of High Density Lipoprotein (HDL) was higher in males than in females, without significance. Low Density Lipoprotein (LDL) plays a role in providing cholesterol to the body's tissues because LDL is the main carrier of cholesterol and triglycerides from the liver to the body's tissues, so the level of LDL in the blood is

affected by the cholesterol concentration. LDL in females is non-significantly higher than in males, and the overall average in this study was higher than that of the Chukar partridge (Simsek, et al., 2020). Fatty acid synthesis in birds is mainly in the liver, and adipose tissue growth and subsequent fattening depend on the availability of plasma triglycerides, which are transported as components of lipoproteins by Very Low-Density Lipoproteins (VLDL) (Dominique, 1997). The VLDL level in females is significantly higher (P < 0.05) than in males, consistent with that of broiler chickens (Angoua, Soualio, Howélé, Julia-Francine, & Angoué, 2021).

Table (3). Average measurements of blood and plasma components for both sexes of partridge.

Statement	Males	Females	SE±	Average
Red blood cells (106 /μl)	2.33	2.34	0.12	2.34
White blood cells (103 /µl)	111	116	9.7	113
HGB(g/dL)	8.7	10.8	1.38	9.5
PCV(%)	38.5	40.4	1.89	39.2
MCV(fl)	166	172	3.47	169
MCH pg	30.5	38.1	4.08	33.0
MCHC(g/dl)	22.0	26.7	3.19	23.8
PLT (103 /μl)	22.2	31.0	8.39	25.5
Glucose (mg/dL)	34.5	2.45	40.1	39.1
Protein (mg/dL)	4.39	4.29	0.23	4.35
Albumin (g/dL)	1.26	1.15	0.12	1.22
Globulin (mg/dL)	3.13	3.14	0.25	3.13
Urea (mg/dL)	11.9a	6.5 ^b	1.05	9.9
Uric acid (mg/dL)	12.9	5.7	2.18	10.1
Creatinine (mg/dL)	0.43	0.42	0.02	0.43
Cholesterol (mg/dL)	246	242	12.2	244
Triglycerides (mg/dL)	88.2 ^b	160ª	6.56	115
Calcium (mg/dL)	10.4	10.7	0.14	10.54
Sodium (mg/dL)	154.5	154.6	0.55	154.5
Potassium (mg/dL)	5.98	5.80	0.06	5.91
Chloride (mg/dL)	115.8	115.3	0.34	115.6
Magnesium (mg/dL)	2.03	2.23	0.09	2.10
Alkl. Phosphate U/L	693	1086	194	841
GPT / ALT (U/L)	23.6	13.8	8.07	19.9
AST/ GOT (U/L)	14.7	19.6	5.36	16.5
Bilitotal (mg/dL)	0.134	0.107	0.02	0.123
Bili direct (mg/dL)	0.042	0.027	0.007	0.036
Bili direct (mg/dL)	0.092	0.080	0.015	0.088
HDL (mg/dL)	149	155	1.87	151
LDL (mg/dL)	79.6	55.0	13.0	70.4
VLDL (mg/dL)	17.6 ^b	31.7ª	2.86	22.9

(P < 0.05) a,b

Conclusion and recommendation

This bird is considered one of these birds that symbolizes the identity of Libya. Previously, postage stamps carried the image of this bird. This study is the beginning of conducting multiple researche to create a broad database that may establish reserves for that kind of bird. Also knowing the positive and negative impacts, especially on birds and farm animals. We recommend that research be conducted on the partridge bird on a broader scale that includes all research interests.

ACKNOWLEDGEMENT

The work team extends its sincere thanks to the Department of Wildlife Materials, College of Natural Resources, especially Dr. Kamila Al-Wahsh, as well as the faculty members in the Department of Animal Production, Faculty of Agriculture, Omar Al-Mukhtar University, for the scientific guidance they provided that would benefit the research.

Duality of interest: The authors declare that they have no duality of interest associated with this manuscript.

Author contributions :Contribution is equal between authors.

Funding: No specific funding was received for this work.

REFERENCES:

- Adewole, F. A., Egbeyale, L. T., Ekunseitan, D. A., Bello, K. O., Lala, O. A., & Famakinde, S. A. (2021). Effect of strain and sex on haematological and serum biochemical indices of tropical indigenous chickens. *Nig. J. Anim. Prod.*, 48(2): 18 26.
- Angoua, K., Soualio, K., Howélé, O., Julia-Francine, Y., & Angoué, Y. (2021). Study of Lipid profile in broilers and local chickens in Korhogo, Côte d'Ivoire. *Journal of Pharmacy and Biological Sciences.*, V.16,PP 25 29.
- Cappai, M. G., Arru, G., Manconi, M., Muzzeddu, M., & Pinna, W. (2016). Morphometric traits of gizzard in relation to feeding habits of wild Sardinian partridges (Alectoris barbara barbara, Bonnaterre, 1790) with particular regard to clast selection. *Journal of Animal Physiology and Animal Nutrition.*, Pa.1-6.
- Dominique, H. (1997). Lipoprotein Metabolism and Fattening in Poultry. *The Journal of Nutrition*., 127(5):805S–808S.
- Fallaw, S., Jones, J., & Hughes, B. (1976). Hematocrit, erythrocyte, and hemoglobin values for male and female guineas at various ages. *Poult. Sci.*, 55, 814–816.
- Farooq, Z., Baboo, I., Wajid, M., Sadia, H., Abrar, M., Iqbal, K., & Hussain, D. (2019). Hematological and Plasma biochemical reference values in Chukar Partridge (Alectoris chukar) under captive facilities. Biologia. (Pakistan)., VOL. 65 (II).
- Gruychev, G., Dyakov, N., & Dimitrov, D. (2014). Habitat VInfluencing Chukar Partridge Decrease in Southeastern Bulgaria. *Folia Zool.*, 63, 171–179.
- Jennings, M. (2010). Atlas of the Breeding Birds of Arabia. Fauna Arab., 25, 1–751.
- Kasperek, K., Drabik, K., Miachalak, K., Pietras, D. O., Winiarczyk, S., eba, G. Z., & Batkowska, J. (2021). The Influence of Sex on the Slaughter Parameters and Selected Blood Indices of Greenleg Partridge, *Polish Native Breed of Hens.*. *Animals.*, 11, 517.
- Khazraiinia, P., Saei, S., Mohri, M., Haddadzadeh, H., & Darvisihha, H. K. (2006). Serum biochemistry of ostrich (Striothio camelus) in *Iran. Comparative Clininical Pathology*, 15: 87-89.

- Kirikçi, K., Tepeli, C., Çetin, O., Yilmaz, A., & Günlü, A. (2017). Growth, Fattening Performance, Slaughter And Carcass Characteristics of Rock Partridges (A. gracea) Obtained from Molting Partridge Hens. *Bull. Env. Pharmacol. Life Sci.*, Vol 6[5].
- Kokoszyński, D., Bernacki, Z., Korytkowska, H., Wilkanowska, A., & Frieske, A. (2013). Carcass composition and meat quality of grey partridge (perdix perdix 1.). *Journal of Central European Agriculture.*, 14(1), p.378-387.
- Kokoszyński, D., Biegniewska, M., Wilkanowska, A., Saleh, M., Bernacki, Z., Stęczny, K., & Kmiecik, M. (2017). Body Morphometry and Development of the Digestive System of Grey Partridge (Perdix Perdix) Depending on Age and Gender. *Brazilian Journal of Poultry Science.*, v19 / n4:695-700.
- Madge, S., & McGowan, P. (2002). Pheasants, Partridges e Grouse. Including Buttonquails, Sandgrouse and Allies. London: Christopher Helm.
- Mahmood, T., Ahmad, I., Akrim, F., Hamid, A., Waseem, M., Hussain, A., & Nadeem, M. (2019). Breeding ecology of chukor partridge (Alectoris chukar) in lower Dir district, Khyber Pakhtunkhwa. *Pakistan. Pak J Zool.*, 51(1):265-271.
- Mohammed, K. S., & Al-Barzinji, Y. M. (2022). Genetic Characterization Of Body Weight Traits In Rocky Partridge Chicks. *Iraqi Journal of Agricultural Sciences.*, 53(6):1289-1297.
- Nazifi, S., Mosleh, N., Ranjbar, V., & Khordadmehr, M. (2011). Reference Values of Serum Biochemical Parameters in Adult Male and Female Iranian Chukar Partridge (Alectoris Chukar). *Australian Journal of Basic and Applied Sciences.*, 5(3): 252-256.
- Nikolov, S., & Kanakov, D. (2021). Blood Plasma Biochemical Parameters of Captive Black-Necked Pheasant (Phasianus Colchicus), Gray Partridge (Perdix Perdix) and Chukar Partridge (Alectoris Chukar) of Both Sexes In Bulgaria. *Trakia Journal of Sciences.*, No 2,pp 142 146.
- Nowaczewski, S., Kolanos, B., Krystianiak, S., Kontecka, H., & Gorecki, M. T. (2014). Body weight and some biometrical traits of grey partridges (perdix perdix) at different ages. *Bulgarian Journal of Agricultural Science.*, 20 (No 4), 962-966.
- Odunitan-Wayas, F., Kolanisi, U., & Chimonyo, M. (2018). Haematological and Serum Biochemical Responses of Ovambo Chickens Fed Provitamin A Biofortified Maize. Brazilian Journal of Poultry Science., v.20 / n.3 / 425-434.
- Ozbey, O., & Esen, F. (2006). The Effects of Breeding Systems and Stocking Density on Some Blood Parameters of Rock Partridges (Alectoris graeca). *Poultry Science Association Inc.*, pa. 420-422.
- Pavel, O., Abbas, B., & Dyary, H. (2023). Chukar partridge in northern Iraq. *Iraqi Journal of Veterinary Sciences.*, Vol. 37, No. 2, (495-505).
- Pettingill, O. (1984). Ornithology in laboratory and field. New York: Elsevier Academic Press Inc.

- Putaala, A., & Hissa, R. (1995). Effects of hand-rearing on physiology and anatomy in the grey partridge. *Wildl. Biol.*, 1: 27-31.
- Rico, A. G., Braun, J., Benard, P., & Burgat-Sacaze, V. (1977). Biometrie, Hematologie, Biochimie Plasmatique, Enzymologie Plasmatique et Tissulaire de La Perdrix Rouge (Alectoris Rufa). Ann. *Rea.vet.*, 8(3): 251-256.
- Rodríguez, P., Tortosa, F. S., & Gortázar, C. (2006). Daily variations of blood biochemical parameters in the red-legged partridge (Alectoris rufa). *Eur. J. Wildl Res.*, pa.1-5.
- Sandercock, B., Nilsen, E., Brøseth, H., & Pedersen, H. (2011). Is Hunting Mortality Additive or Compensatory to Natural Mortality? Effects of Experimental Harvest on the Survival and Cause-Specific Mortality of Willow Ptarmigan. J. Anim. *Ecol.*, 80, 244–258.
- Scholtz, N., Halle, I., Flachowsky, G., & Sauerwein, H. (2009). Serum chemistry reference values in adult Japanese quail (Coturnixcoturnix japonica) including sex-related differences. *Poult. Sci.*, 88, 1186–1190.
- Sevim, B., Gümüş, E., Harman, H., Ayasan, T., Başer, E., Altay, Y., & Akbulut, K. (2020). Effects of Dietary Rosemary Essential Oil on Growth Performance, Carcass Traits and Some Hematological Values of Chukar Partridge. *Turkish Journal of Agriculture- Food Science and Technology.*, 8(2): 430-435.
- Simsek, U. G., Ciftci, M., Yaman, M., Ozcelik, M., Baykalir, Y., Kizilaslan, A., & Erisir, Z. (2020). Effects of Light Color on Growth Performance, Histomorphometric Features of Small Intestine and Some Blood Parameters in Chukar Partridges. *Univ. Vet. Fak Derg.*, 26 (1): 33-39.
- Soultan, A., Shah, M. S., Almalki, A. M., Browne, S., & Arcilla, N. (2023). Arabian Partridge Abundance and Limiting Factors at the Northern Boundary of Its Range. *Birds.*, 4, 179–189.
- Straková, E., Suchý, P., Kábelová, R., Vitula, F., & Herzig, I. (2010). Values of Selected Haematological Indicators in Six Species of Feathered Game. *Acta. Vet. Brno.*, 79: S3–S8.
- Topchiyeva, S. A. (2022). Age Related Changes in the Biochemical Parameters of the Blood Plasma of Partridges (Alectoris chukar). Am. J. *Biomed. Sci. & Respa.*, 475-478.
- Wymenga, E. (2009). Decline and potential recovery of the European grey partridge (Perdix perdix) population. *Eur J Wildl Res.*, 55(5):455 463.

Doi: https://doi.org/10.54172/v66q4w65

Research Article ⁶Open Access

Impact of Soaking Wheat Grains in Gibberellic Acid Under Varying Sodium Chloride (NaCl) Concentrations

Imbarkah F Aboubakr¹, Ahmed S Issa*², Ayiman F Ahmed³ and Gamila S Muhammed⁴

^{1,3,4}Department of Agronomy, Faculty of Agriculture, Omar Al-Mukhtar University, Libya.

*Corresponding author Ahmed.buhedma@omu.edu.ly, Department of Agronomy, Faculty of Agriculture, Omar Al-Mukhtar University, Libya.

Received:

06 October 2024

Accepted:

21 December 2024

Publish online:

31 December 2024

قسم المحاصيل كلية الزراعة جامعة عمر المختار ، ليبيا

Abstract

an experiment was conducted in the laboratory of the Department of Crop Science, Faculty of Agriculture, Omar Al-Mukhtar University, during the 2022-2023 season to study the effect of gibberellic acid GA3 on the germination and growth characteristics of wheat seedlings (Salambo) under salt stress. The experiment was conducted using a completely randomized design (C.R.D) in three replications, the treatments were (soaking wheat grains in gibberellic acid, no soaking) and concentrations of sodium chloride salt (NaCl) (distilled water compared to control, 4000ppm, 6000 ppm, and 8000 ppm). The results indicated that the treatment of soaking grains in gibberellic acid was significantly superior to the treatment without soaking in all the studied traits represented by "germination percentage %, seedling length (cm), root length and shoot length "cm", seedling wet and dry weight "g" and Seedling vigour index ". The results showed highly significant differences between sodium chloride salt concentrations compared to the (Control) treatment, where the germination percentage %, seedling length "cm", shoot and root length "cm", seedling wet and dry weight (g), and Seedling vigor index decreased with increasing salt concentration up to (8000 ppm). The results showed no significant differences in the interaction between soaking treatments and sodium chloride salt concentrations in all studied traits except for germination percentage, where the treatment of soaking grains in gibberellic acid with distilled water (control) recorded the highest values compared to the lowest values recorded when grains were not treated with sodium chloride concentration (8000 ppm).

Keywords: wheat, seeding growth, gibberellic acid, conditions of salt stress

تأثير نقع حبوب القمح في حمض الجبربليك تحت تركيزات مختلفة من ملح كلوربد الصوديوم (NaCl) المستخلص: نفذت تجربة معملية في قسم المحاصيل كلية الزراعة جامعة عمر المختار خلال موسم 2022-2022 وذلك لدراسة تأثير حمض الجبربليك على خصائص إنبات ونمو بادرات القمح صنف (سلامبو) تحت الإجهاد الملحى، نفذت التجربة باستخدام تصميم تام العشوائية في ثلاث مكررات، حيث كانت المعاملات (نقع حبوب القمح في حمض الجبربليك، عدم النقع) وتراكيز ملح كلوريد الصوديوم (ماء مقطر مقارنية، 4000 جزء بالمليون، 6000 جزء بالمليون و8000 جزء بالمليون). اشارت النتائج إلى تفوق معاملة نقع الحبوب في حمض الجبريليك معنوياً على المعاملة عدم النقع في كل الصفات المدروسة المتمثلة في " نسبة الإنبات %، طول البادرة (سم)، طول الروبشة "سم"، الوزن الرطب والجاف للبادرة "جم" وقوة الإنبات". أظهرت النتائج وجود فروقاً عالية المعنوبة بين تراكيز ملح كلوريد الصوديوم مقارنة بالمعاملة بالماء المقطر حيث انخفضت صفات نسبة الإنبات %، طول البادرة "سم"، طول الروبشة والجذير "سم"، الوزن الرطب والجاف للبادرة (جم) وقوة الإنبات بزيادة تركيز الأملاح حتى 8000 جزء بالمليون. أظهرت النتائج عدم وجود فروق معنوبة في التفاعل بين معاملات النقع وتراكيز ملح كلوربد الصوديوم في كل الصفات المدروسة باستثناء صفة نسبة الانبات حيث سجلت معاملة نقع الحبوب في حمض الجبربليك مع الماء المقطر أعلى القيم مقارنة بأقل القيم المسجلة عند عدم معاملة الحبوب مع تركيز كلوريد الصوديوم 8000 جزء بالمليون. أظهرت النتائج وجود فروقاً عالية المعنوية بين تراكيز ملح كلوريد الصوديوم مقارنة بمعاملة control.

الكلمات المفتاحية: القمح، نمو البادرات، حمض الجبريليك، ملح كلوريد الصوديوم (Nacl).

INTRODUCTION

Wheat is considered the most important and widespread seed crop in the world, as it leads field crops in terms of the globally cultivated area where the total area (217) million hectares reached global production of about (624) million tons (FAO, 2005). Wheat is the most important food seed crop in the world, as it provides 19% of the calories for humanity, it is the largest commercial crop that is circulated internationally and its unique flexible physical properties make it an industrial material value, so the countries are interested in cultivating its high nutritional value as well as its strategic role and its role in achieving security Food. (Collins, 1993).

Stress factors are a major reason for the deterioration of agricultural productivity, with losses ranging from 50 % and 80 % according to the type of crop and geographical location (Shinozaki et al., 2015) However, adaptation to salinity during germination of visibility and the growth of rams is very important for plants, while seed germination is a mechanism in which morphological and physiological changes lead to the stimulation of the fetus, seeds absorb water before germination, which leads to the elongation of the seed fetus when it grows The root is a layer of covered seeds, the seed germination process (Hermann et al., 2007). germination is the most important stage in the life cycle of the plant, and it is a decisive factor in determining the distribution of vegetarian species (1993, many researchers assess the processes included in seed germination and how they are affected by non -non-biological stress, and salt mediation on one type or more of the stressful media that which that It is known that it affects many physiological and environmental characteristics such as plant growth, development, reproduction and geographical distribution (QU and Huang, 2005). Research revealed the effect of salinity on the germination of the various seeds of crops belonging to the naughty, vertical, and vehicle families, the most important of which is wheat germination (Akbarimoghaddam et al.,2011).

The growth of crops in harsh environments, including saline soils, remains one of the most significant challenges for researchers in agriculture and plant production. Soil salinity is a critical issue that restricts agricultural expansion in many regions worldwide, particularly in arid and semi-arid areas. Salinity adversely impacts seed germination rates and affects various stages of plant growth, disrupting physiological functions critical to development.

As global populations grow, countries are striving to increase agricultural production to achieve self-sufficiency and ensure nutritional security. To address this, farmers employ diverse strategies to enhance crop yields, such as the application of fertilizers or plant growth regulators like gibberellic acid (GA3). Gibberellic acid, a plant hormone produced in the leaves and developing tips of roots and stems, promotes cell elongation and helps reduce the detrimental effects of saline stress.

This study aims to evaluate the effects of gibberellic acid on the Salambo wheat variety, focusing on its ability to improve germination characteristics and early growth under saline stress conditions. By investigating these effects, the study seeks to provide insights into practical solutions for managing salinity challenges in agriculture.

MATERIALS AND METHODS

A lab experiment was carried out in the Seed Technology Laboratory, Department of Crop Sciences, Faculty of Agriculture, Omar Al-Mukhtar University, during the "2022-2023" season to determine the effect of soaking wheat seeds with gibberellic acid on improving germination characteristics under saline solution conditions. A completely random design with three replica-

tions was used to carry out the experiment I used 10 sterile seeds for each dish under the factors of the laboratory in the degree of temperature (25 C⁰) to know the effect of soaking the seeds with gibberellic acid (GA3) 500PPM for 24 hours and another soaked in distilled water for the same fruit for germination and growth of seeds in salt circles with different concentrations resulting from Dissolve the quantities of sodium chloride salt (NaCl) with a concentration of 99.9 % in distilled water (Control, 4000 PPM, 6000 PPM, and 8000 PPM) to study the effect of gibberellin and sodium chloride salts levels on the characteristics of germination and growth of wheat seeds. The studied characteristics were as follows:-

1- germination percentage (%) It was measured after the end of the period of measurement 7 days) according to (ISTA, 2005).

Germination percentage (%) = Number of developing seedlings /number of total seeds x 100.

After "14 days of germination, the following

traits were recorded:

- 2-Seedling length(cm).
- 3-Root length "cm".
- 4-Shoot length "cm".
- 5-Wet weight of seedling (g)
- 6- Seedling dry weight (g).
- 7- Seedling vigor index)SVI).

Seedling vigor index(SVI)= shoot length+ root length X Germination percentage (%).

According to (Arafa et al., 2009)

Statistical analysis

Data were subjected to regular analysis of variance of CRD according to the method outlined by (Gomez & Gomez 1984) using the Gestate computer program. The comparison test between treatments was made according to the least significant differences method (LSD). LSD values were calculated to verify differences between means).

RESULTS AND DISCUSSION

Germination percentage (%)

Results in Table (1) showed that there is a highly moral effect of gibberellic acid on the percentage of germination, as the highest values were recorded when the wheat bean was soaked in the gibberellin GA3 (95.80 %) compared to the least when the soaking in distilled water (80.00 %) and this is agreed upon With what is mentioned (Attia & Jaddoa, 2011)that gibberellic acid is one of the most important growth organizations that increase physiological changes, which increases the percentage of germination and stimulating cell elongation. The data in Table (1) demonstrated that the increase in the concentration of salts led to a reduction in the percentage of germination, as the treatment of the control (distilled water) exceeded morality over the rest of the concentration transactions. 8000 ppm (53.3 %) and the reason may be attributed to the fact that the increase in salinity in growth leads to a decrease in the percentage of germination due to rising salts for osmotic pressure in the center of the cell, which reduces the amount of water that is easy Which causes failure or delaying germination (Othman et al., 2006)

The interaction between the soaking of gibberellic acid and the concentration of sodium chloride showed moral differences, as the treatment of grain soaking with gibberellic acid exceeded the distilled water in giving the highest values to the average percentage of the germination of (99.7 %), while the treatment of illegal grains with the concentration of sodium chloride salt

8000 PPM was recorded less Values (66.30 %). The observed differences arise from the role of gibberellin in promoting seed growth under stress conditions.

This response was linked to the activation of antioxidant systems. (Carvalho et al., 2011).

Table (1). Effect of Soaking Wheat Seeds of the Salambo Variety in Gibberellic Acid under Different Concentrations of Sodium Chloride Salt on Germination Percentage (%) Characteristics

Salt concentration					
gibberellic acid treatment	0 ppm	4000 ppm	6000 ppm	8000 ppm	Square gibberellin
soaking with gibberellin	99.70	95.70	80.00	67.20	95.80
non-soaking with gibberellin	95.00	86.70	76.60	66.30	80.00
L.S.D _{0.05}	9.09				7.07
Square salt concentration	93.90	91.70	83.30	53.30	7.07
L.S.D _{0.05}	7.04				

Seedling length (cm)

From the results shown in Table (2), we notice that there are highly significant differences between soaking treatments with gibberellin or non-soaking, as the treatment of soaking wheat seeds in gibberellin gave the shoot length characteristic the highest value (8.63 cm) compared to the lowest value when not treated (7.39 cm). Increasing salt concentrations led to a decrease in seedling length, as the highest value (11.56 cm) was recorded when treated with distilled water compared to the lowest value (5.27 cm) when the salt concentration was 8000 ppm. This is consistent with what (Piwowarczyki *et al.*, 2014) mentioned that the decrease in length Transplantation with increased salt stress led to an impediment in the absorption of water and mineral elements due to a decrease in the difference in the solution potential between the plant and the growth medium. The interaction between grain soaking treatments in gibberellin and salt concentrations did not reach the level of significance, which indicates the independence of the two study factors in their effect on the seedling length (cm).

Table (2). Effect of Soaking Wheat Seeds Salambo Variety in gibberellic acid under different concentrations of Sodium Chloride Salt to Seedling length(cm) characteristic

Salt concentration					
gibberellic acid treatment	0 ppm	4000 ppm	6000 ppm	8000 ppm	Square gibberellin
soaking with gibberellin	12.70	9.04	7.50	5.30	8.63
non-soaking with gibberellin L.S.D $_{0.05}$	10.42 N.S	7.47	6.43	5.23	7.39 0.96
Square salt concentration	11.56	8.25	6.97	5.27	
L.S.D _{0.05}	1.36				

Root length (cm):

Data from Table (3) show that there are no significant differences between the grain soaking treatments in gibberellic for root length (cm), while the data from the same table showed that there are highly significant differences between salt concentrations. The irrigation treatment with distilled water recorded the highest values with an average root length (5.27 cm) compared to the lowest values (2.18 cm) recorded when wheat grains were treated with salts at a concentration of 8000 ppm. This is consistent with what was stated by (Leyl et al., 2012) that increas-

ing the concentration of salts leads to negative effects on the length of the root and shoot. The interaction between soaking treatments of wheat grains in ink and salt concentrations did not show a significant effect, which indicates the independence of the two study factors in their effect on this trait.

Table (3). Effect of Soaking Wheat Seeds Salambo Variety in gibberellic acid under different concentrations of Sodium Chloride Salt to Root length (cm) characteristic.

Salt concentration gibberellic acid treatment	0 ppm	ppm 4000	6000 ppm	8000 ppm	Square gib- berellin
soaking with gibberellin	5.67	3.91	2.77	2.07	3.60
non-soaking with gibberellin	4.86	3.00	2.77	2.10	3.23
L.S.D _{0.05}	N.S				N.S
Square salt concentration	5.27	3.34	2.88	2.18	11.5
$L.S.D_{0.05}$	0.87				

Shoot length (cm)

The results obtained from Table (4) show that there are highly significant differences between the treatments in the character of the shoot length (cm), where the treatment of soaking wheat grains in gibberellin gave the highest values compared to the lowest values recorded when the grains were not treated, (5.03 cm), (4.16 cm) respectively. Increasing the concentration of salts up to a concentration of 8000 ppm led to a decrease in the length of the shoot. The highest values were recorded in the irrigation treatment with distilled water (6.29 cm) compared to the lowest averages recorded at a concentration of 8000 ppm (3.08 cm). This was consistent with what was mentioned by (Leyl et al., 2012) that salinity hurts the length of the shoot. The interaction between the treatments of soaking wheat grains in acrylic and salt concentrations did not show a significant effect, which indicates the independence of the two study factors in their effect on this trait.

Table (4). Effect of Soaking Wheat Seeds Salambo Variety in gibberellic acid under different concentrations of Sodium Chloride Salt to shoot length(cm) characteristic

Salt concentration					
gibberellic	0 ppm	4000 ppm	6000 ppm	ppm8000	Square gibberellin
acid treatment					
soaking with gibberellin	7.03	5.13	4.73	3.23	5.03
non-soaking with gibberellin	5.55	4.70	3.43	2.93	4.16
$L.S.D_{0.05}$	N.S				
Square salt concentration	6.29	4.92	4.08	3.08	0.59
L.S.D _{0.05}	0.83				

Seedling wet weight (g)

Data from Table (5) show that there are significant differences between the treatments of soaking grains in gibberellin for the seedling wet weight (g). Gibberellin treatment of wheat grains produced the highest average (0.309 g), whereas non-soaking (control) produced the lowest value (0.292 g). The salinity treatments had a significant effect on the wet weight. Increasing

the salinity concentration led to a decrease in the wet weight up to a concentration of 8000 ppm. The treatment of irrigating the wheat grains with water gave the salinity treatments a significant effect on the wet weight. Increasing the salinity concentration led to a decrease in the wetweight up to a concentration of 8000 ppm, the treatment of irrigating wheat grains with distilled water gave the highest values with an average of (0.331 g) compared to the lowest values recorded at a concentration of 8000 ppm with an average of (0.267 g). When wheat grains were treated with distilled water and gibberellin, the greatest value was 0.342 g, while the lowest value was 0.265 g when the grains were not soaked at a salt concentration of 8000 ppm. (Anaya et al., 2013) indicated that the fresh and dry weights of the raw wheat or the stem are affected by changes in salinity concentration. The interaction between soaking treatments of wheat grains in acrylic and salt concentrations did not show a significant effect.

Table (5). The effect of soaking Salambo variety wheat seeds in gibberellic acid at varying sodium chloride salt concentrations on the wet weight (g) characteristics of the seedlings

Salt concentration					
gibberellic acid treatment	0 ppm	4000 ppm	6000 ppm	ppm8000	Square gibberellin
soaking with gibberellin	0.342	0.320	0.304	0.286	0.309
non-soaking with gibberellin	0.320	0.317	0.268	0.265	0.292
L.S.D _{0.05}	9.09				0.16
Square salt concentration	0.331	0.319	0.287	0.267	
L.S.D _{0.05}	0.03				

Dry weight of seedlings (g)

Data from Table (6) shows that there are highly significant differences between the treatments for soaking wheat grains in gibberellin regarding the dry weight of the seedling (g), where the treatment of soaking wheat grains in gibberellic acid gave the highest averages (0.176 g) compared to the non-soaking treatment (0.157 g). The seedling dry weight (g) was significantly affected by increasing salt concentrations. Seedling weight decreased with increasing salt concentration up to 8000 ppm, which gave the lowest average seedling weight (0.137 g) compared to the highest values recorded when irrigating wheat grains with distilled water (0.195 g). These results are It was in agreement with what was stated by (Memon *et al.*, 2010) that the dry and fresh weights are affected by increasing the concentration of salts and the type of plant. The interaction between gibberellic a soaking treatments and salt concentrations did not show significant differences.

Table (6). The effect of soaking Salambo variety wheat seeds in gibberellic acid at varying sodium concentrations Chloride Salt to Dry weight of seedlings (g)characteristic

Salt concentration		4000	6000	0000	
gibberellic	0 ppm	4000 ppm	6000 ppm	ppm 8000	Square gibberellin
acid treatment					
soaking with gibberellin	0.206	0.184	0.169	0.143	0.176
non-soaking with gibberellin	0.184	0.181	0.132	0.129	0.157
L.S.D 0.05	N.S				0.015
Square salt concentration	0.195	0.183	0.151	0.137	0.015
L.S.D 0.05	0.022				

Seedling vigor index (SVI)

The results obtained in Table (7) showed that there were highly significant differences between the soaking treatments in gibberellin for the Seedling vigor index(SVI) the treatment of soaking wheat grains in gibberellic acid gave the highest average for SVI (825) compared to the lowest value when not treated (608). This came as follows: In agreement with what was found by (Attia and Jaddoa, 2011), they indicated that gibberellic acid is considered an essential auxiliary factor in the formation of the alpha-amylase enzyme in the aleurone layer of the endosperm of cereal grains. This enzyme mainly works to convert starch into reducing sugars, which leads to raising the osmotic pressure in the cells. Plants then increase the entry of water and food into them, causing them to swell and increase in size. The data from the same table also showed that there were highly significant differences between the salt concentration treatments. The highest averages were recorded when treating wheat grains with distilled water (1081) compared to the lowest (420) at a concentration of 8000. Ppm. The interaction between soaking treatments of wheat grains in ink and salt concentrations did not show a significant effect, which indicates the independence of the two study factors in their effect on this trait.

Table (7). The effect of soaking Salambo variety wheat seeds in gibberellic acid at varying sodium chloride salt concentrations on the characteristics of the seedling vigor index (SVI)

Salt concentration Gibberellic acid treatment	0 ppm	4000 ppm	6000 ppm	ppm8000	Square gibberellin
soaking with gibberellin	986	869	678	530	825
non-soaking with gibberellin	938	651	495	349	608
L.S.D _{0.05}	N.S				96.4
Square salt concentration	1081	760	586	420	
L.S.D _{0.05}	136.4				

CONCLUSION

To obtain good germination of wheat grains under conditions of salt stress, it is necessary to treat the wheat grains by soaking them in gibberellic acid GA3 at a concentration of 500 ppm for 24 hours, which improves the germination and growth characteristics of the seedlings.

ACKNOWLEDGEMENT

We thank our colleagues for their assistance in the laboratory. Thanks to all the technicians for preparing the samples.

REFERENCES

Akbarimoghaddam, H., Galavi, M., Ghanbari, A & Panjehkeh, N. (2011). Salinity effects on seed germination and seedling growth of bread wheat cultivars. Trakia J. Sci. 9 (1), 43–50.

Anaya, F., Fghire, R., Issa Ali, O., Wahbi, S & Loutfi, K. (2013). Effet du stress salin sur la germination de fe`ve (Vicia faba, L.). 5e`me Rencontre Nationale Gestion et Protection de l'Environnement G-ENVIRO5. 28-05-2013 Casablanca Maroc.

- Arafa,A.A., M . A. Khafagy & M. F. El-Benna. (2009). The effect of glycine betaine or ascorbic acid on grain germination and leaf structure of sorghum plant grown under salinity stress, J.Crop Sci.3(5):294-304.
- Attiya, H. J & K.A.Jaddoa.(2011). Plant Growth Regulator, The Theory and Practice. Ministry of Higher Education and Scientific Research. Publication Republic of Iraq.
- Carvalho, R.F., Piotto, F.A., Schmidt, D., Peters, L.P., Monteiro, C.C& Azevedo, R.A. (2011). Seed priming with hormones does not alleviate induced oxidative stress in maize seedlings subjected to salt stress. Sci. Agric. 68,598-602.
- Collins, E. (1993). Why Wheat? Choice of Food Grains in Europe in the Nineteenth and Twentieth Centuries, Journal of European Economic History; Rome Vol. 22, Iss. 1, https://Search.Proquest.com.
- FAO, (2010). bandue de donnees statistiaue: www.fao.org.
- Gomez, K.A. &A.A. Gomez. (1984). Statistical Procedures for Agricultural Research. 2nd Edn., John Wiley Sons, New York, USA., ISBN: 978-0-471-87092-0, Pages: 704.
- Hermann, K., Meinhard, J., Dobrev, P., Linkies, A., Pesek, B., Heß, B& Leubner-Metzger, G. (2007). 1-Aminocyclopropane-1-carboxylic acid and abscisic acid during the germination of sugar beet (*Beta vulgaris* L.): a comparative study of fruits and seeds. J. Exp. Bot.58(11),3047–3060.
- ISTA"International Seed Testing Association". (2005). International Rules for Seed Testing. Adopted at the Ordinary Meeting., Budapest, Hungary to become effective on 1st January 2005. The International Seed Testing Association.
- Leyl,I., Z. Dumlupinar., S. N. Kara.,C. yurudurmaz & M. Colkesen. (2012). The effect of different temperature and salt concentrations on some popcorn lium. AJCS,5(8):973-978.
- Memon, S.A., Hou, X& Wang, L.J. (2010). Morphological analysis of salt stress response of Pak Choi. ejeafche 9 (1): 248–254.
- Othman, Y, G, AL-Karaki, A, R, Tawaha and A, AL-Horani. (2006). variation germination and ion uptake in genotype barley under salinity condition world J, Agric, sci 2, 11-15.
- Piwowarczyki. B., W. Kaminska &W. Rybinski. (2014). In fluence of PEG Generated osmotic stress on shoot regeneration and some Biochemical parameters in Lathyrus culture, Czech J. Genet. Plant Breeding, 50 (2). 77-83.
- Qu, X.X., Huang, Z.Y. (2005). The adaptive strategies of halophyte seed germination. Acta Ecol. Sin. 25 (9), 2389–2398.
- Shinozaki, K., Uemura, M., Bailey-Serres, J., Bray, E. A. & Weretilnyk, E. (2015) In Biochemistry and Molecular Biology of Plants (eds Buchanan, B. B., Gruissem, W. & Jones, R. L.) Ch. 22, 1051–1100 (Wiley, Chichester).

Doi: https://doi.org/10.54172/sya2wa19

Research Article 6Open Access

Prevalence of Babesia Infection in the Northeastern Part of Libya (Camelus Dromedaries)

Salwa M.S Al-Fazzani *, Radya A.A. Mustufa², Mohamed S.M. Elgther³ Nawara M. B. Eissa⁴

*Corresponding author: slwyalfzany101@gmail.com
Department of Clinical Veterinary Medicine and Infectious Diseases, Faculty of Veterinary Medicine, Omar Al-Mukhtar University, Libya.

- ² Department of Preventive Veterinary Medicine, Faculty of Veterinary Medicine, Omar Al-Mukhtar University, Libya.
- ³ Department of Microbiology and Parasitology, Faculty of Veterinary Medicine, Omar Al-Mukhtar University, Libya.
- ⁴ Department of Clinical Veterinary Medical& Infectious Diseases, Faculty of Veterinary Medicine, Omar Al-Mukhtar University, Libya.

Received: 09 October 2024

Accepted: 26 December 2024

Publish online: 31 December 2024

الباحث الاول¹*: سلوى الفزاني، قسم الباطنة والامراض المعدية، كلية الطب البيطري، جامعة عمر المختار، ليبيا.

الباحث الثاني: رضية عبد الرحيم مصطفى، قسم الطب الوقائي ، كلية الطب البيطري، جامعة عمر المختار، لسا

الباحث الثالث: محمد الجدر قسم علم الأحياء الدقيقة وعلم الطفيليات، كلية الطب البيطري، جامعة عمر المختار، ليبيا.

الباحث الرابع: نوارة محمد بلقاسم، قسم الأمراض السريرية البيطرية والطبية والمعدية، كلية الطب البيطري، جامعة عمر المختار، ليبيا. **Abstract:** A study was conducted to investigate *Babesia spp*. infections in one-humped camels (Camelus dromedarius) in northeastern Libya. Blood samples were randomly collected from camels of both sexes (115 females and 45 males) across seven selected regions: Tobruk Khoury, Alhamamuh, Sultana, Alqabah, Ajdabiya Road, Qanduluh, and Imsaeid. The sampling period spanned from February 2021 to January 2022. Giemsa-stained blood smears were used to diagnose *Babesia spp*. infections. The results revealed an overall infection prevalence of 35% among the tested samples. The highest prevalence rates were recorded in Tobruk Khoury (70%), followed by Ajdabiya Road (60.6%), Alhamamuh (60%), Sultana (46.6%), Alqabah (28.57%), Qanduluh (19.35%), and Imsaeid (7.1%). The prevalence among females (42.6%) was significantly higher than that among males (15.5%). Regarding age groups, middle-aged camels (1–15 years) exhibited the highest prevalence rate (45.1%). Seasonally, the highest infection rate was observed in autumn (50%), followed by spring (47.36%).

Keywords: Babesia Haemoparasitic, protozoa, Piroplasma,camels, Northeastern, Libya

نسبة انتشار البابيزيا في شمال شرق ليبيا في الإبل (ذو السنام الواحد)

المستخلص: تم العثور على إصابة بالبابيزيا في الإبل ذات السنام الواحد, في مناطق شمال شرق ليبيا. تم اخذ عينات دم من الإبل من كلا الجنسين عشوائي (115 أنثى و 45 ذكراً) من سبع مناطق مختارة هي طبرق الخوير، الحمامة، اسلنطه، القبه، طريق أجدابيا، قندوله وامساعد خلال شهر فبراير 2021. حتى يناير 2022. تم استخدام مسحات دموية ملطخة بالغيمزا لتشخيص العدوى البابيزيا وأظهرت النتائج أن 35% من العينات كانت مصابة بالبابيزيا. وسجلت أعلى معدلات الإصابة في طبرق الخوير (70%)، طريق أجدابيا (60.6%)، الحمامة (60%)، السلنطه الإصابة بين القبة (75.8%)، قندوله (19.35%) وإمساعد (7.1%). وكانت نسبة الإصابة بين الإناث (42.6%) أعلى من الذكور (5.51%). ومن بين جميع الفئات العمرية، سجلت الأعمار المتوسطة (1-15 سنة) أعلى معدل انتشار (45.4%)، في حين سجلت أعلى نسبة إصابة هي المتوسطة (1-50) عن الربيع (47.36%).

الكلمات المفتاحية: بابيزيا، طفيليات الدم، الأوليات، بيروبلازما، الجمال، شمال شرق ليبيا.

INTRODUCTION

The camel has been a vital animal for centuries, serving as a means of transportation and a source of meat, milk, and wool (Kamani et al., 2008). Its ability to thrive in harsh arid environments is attributed to its unique physiological adaptations (El-Naga & Barghash, 2016).

The genus Babesia, a protozoan parasite, causes diseases such as red water fever, babesiosis, piroplasmosis, Texas fever, and tick fever, which are emerging tick-borne diseases with significant global economic, medical, and veterinary impacts. Despite its importance, there is limited research on the potential infection of camels by *Babesia spp.*, particularly under local conditions (Swelum et al., 2014).

Babesia spp. primarily infects red blood cells and affects a variety of species, including sheep, goats, cattle, horses, and camels, with a potential risk of zoonotic transmission to humans. The parasite is transmitted by ticks, with Anocentor nitens being the specific vector responsible for its spread (Abd-Elmalek et al., 2014).

Camels infected with *Babesia spp*. may exhibit symptoms such as fever, weakness, loss of appetite, depression, hemoglobinuria, anemia, and other blood abnormalities, which can result in mortality if untreated (Swelum et al., 2014; Jesca et al., 2017). Among dromedary camels, Babesia caballi is the primary species causing the disease, with age, gender, and season significantly influencing susceptibility (Abdelrahim et al., 2009).

Despite its importance, there is limited information on camels infected with B. caballi in northeastern Libya. To address this gap, the present study aims to:

- 1. Diagnose *Babesia spp*. infections in camels through microscopic examination using Giemsa-stained blood smears.
- 2. Determine the prevalence of *Babesia spp*. infections in camels across various regions in Al Jabal Al Akhdar and Tobruk.

Given the lack of comprehensive research on parasitic infections in camels in these regions, this study seeks to contribute to the understanding of *Babesia spp*. prevalence and its impact on camel health under local environmental conditions.

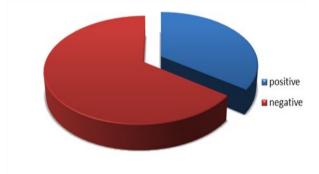
MATERIALS AND METHODS

The present study was conducted on 160 randomly selected camels from various localities in north-eastern Libya, specifically in regions within Al-Jabal Al-Akhdar and Tobruk. The study spanned the period from 2021 to 2022. The areas included in this study were Tubrug-Khuayri, Al-Qubah, Al-Hamamuh, Sulanta, Qanduluh, Ajdubiya Road, and Imsaeid. Samples were collected from camels of different ages, both sexes, and across the different regions.

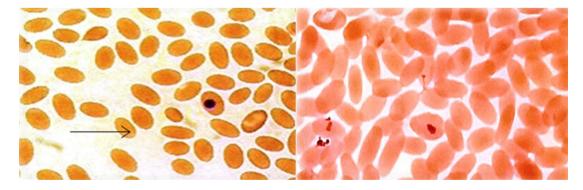
Blood samples collection

A total of 160 blood samples were collected from the jugular veins of camels using tubes containing EDTA as an anticoagulant. The samples were kept on ice during transportation to the Faculty of Veterinary Medicine, University of Omar Al-Mukhtar, Al-Bayda, Libya, for parasitological analysis.

Parasitological Examination


Thin blood smears were prepared and stained using the Giemsa staining method, following the standard protocol described by (Soulsby, 1968). The procedure involved the preparation of blood smears, air drying, fixation with methanol, staining with Giemsa, and examination under a compound binocular microscope using the 100x oil immersion lens. This method facilitated the identification and morphological characterization of *Babesia spp*.

Statistical Analysis


Data analysis was performed using SPSS version 20. Differences between means were assessed using the Student's t-test and ANOVA, while Chi-square tests were employed to examine the relationships between various risk factors. A significance level of p < 0.05 was set for the entire analysis.

RESULTS

Between February 2021 and January 2022, a total of 160 blood samples were collected from camels in northeastern Libya. Microscopic examination revealed that 56 samples (35%) were infected with *Babesia spp*. The infection was observed in camels of both sexes and across all age groups. Morphologically, *Babesia spp*. appeared as reddish-violet particles within red blood cells. The parasites displayed various shapes, including single or double pyriform, round, oval, and ring-shaped forms, depending on the specific type of parasite. These findings are illustrated in Figures 1 and 2.

Figure (1). Overall prevalence of *Babesia spp* infection in camels

Figure (2). Pear-shaped and paired *Babesia spp*. blood smear from a naturally infected dromedary camel close to the edge of infected red blood cells (Giemsa, 100×)

The prevalence of *Babesia spp*. infections varied significantly across the seven regions studied. The highest prevalence was observed in Tubrug-Khuayri (70%), followed by Ajdubiya Road (60.6%),

Alhamamuh (60%), Sultana (46.6%), Alqabah (28.57%), Qanduluh (19.35%), and Imsaeid (7.1%), respectively. These results are summarized in Table 1.

Table (1). The prevalence of *Babesia spp* in Camels infected to different regions:

Regions	NO. of samples	Babesia spp infection			
		Positive	%		
Tubrug-khuayri	10	7	70%		
Ajdubiya- road	33	7	60.6%		
Alhamamuh	15	9	60%		
Sulanta	15	7	46.6%		
Alqabah	14	6	28.4%		
Qanduluh	31	4	19.35%		
Imsaeid	42	3	7.1%		
Total	160	56	35%		

Among the 160 camel blood samples examined, the prevalence of *Babesia spp*. infections differed significantly between sexes. Infected females accounted for 49/115 (42.6%), while infected males comprised 7/45 (15.5%). Age-wise, the prevalence was highest in camels aged 1–15 years (37/82; 45.1%), followed by camels aged 15 – 25 year 15–25 years (12/32; 37.5%). The lowest prevalence was observed in camels aged less than 1 year (7/46; 15.2%).

These results indicate a statistically significant difference (p < 0.05) in the prevalence of *Babesia spp*. based on both sex and age, as detailed in Table 2.

Table (2): The prevalence of *Babesia spp.* in Camels infected both sexes and ages.

Parameters	No of examination	n No of infected camels		
		Positive	%	
Overall	160	56	35	
Sex	Female (115)	49	42.6	
	Male (45)	7	15.5	
Age (years)	<1 (46)	7	15.2	
	1-15 (82) *	37	45.1	
	15-25 (32)	12	37.5	

^{*}significant difference at p<0.05

The prevalence of *Babesia spp*. infections in camels varied significantly across different seasons. The highest prevalence rates were recorded in autumn (17/34; 50%) and spring (18/38; 47.36%). Conversely, lower prevalence rates were observed in summer (16/68; 23.52%) and winter (5/20; 25%). These differences were statistically significant (p < 0.05), as presented in Table 3.

Table (3). The Prevalence of *Babesia spp.* Infection in Camels Infected to Season:

Season	No. of samples	Babesia .spp infected			
		positive	%		
Autumn*	34	17	50%		
Spring*	38	18	47.36%		
Summer	68	16	23.52%		
Winter	20	5	25%		
Total	160	56	35%		

^{*}significant difference at p<0.05

DISCUSSION

The findings of the present study revealed that out of 160 camel blood samples examined microscopically, 35% were infected with *Babesia spp*. This prevalence aligns closely with the rates reported by Elmaleck et al. (2016) in Egypt (46.9%) and (Ibrahim et al., 2017) in Sudan (43.6%). However, lower prevalence rates were reported in Iraq (19.5%, 17.5%, and 25%) by (Farhan & Hameed., 2017), (Amery et al., 2017), and (Al-Mialy et al., 2018), respectively. Similarly, (Wakil et al., 2016) found a prevalence of 24.3% in Nigeria. The lowest rates of infection were observed in Tunisia (1.0%) by (Selmi et al., 2019) and in Iran (10%) by (Mirahmadi et al., 2022). These variations in prevalence are attributed to factors such as the number of samples collected, availability of veterinary services, environmental conditions, and the geographic and strategic characteristics of study areas. Regional Prevalence

In our study, the highest prevalence rate was recorded in Tubruk-Khuayri (70%), followed by Ajdabiya Road (60.6%), Alhamamuh (60%), Sultana (46.6%), Alqabah (28.57%), Qanduluh (19.35%), and Imsaeid (7.1%). The elevated rate in Tubruk-Khuayri is likely influenced by high temperatures and humidity, with temperatures ranging from 30°C to 40°C, even during winter. These environmental conditions create an ideal habitat for tick vectors, promoting the growth and reproduction of *Babesia spp.* carriers. Sex-Based Prevalence

The infection rate among female camels (42.6%) was significantly higher than in males (15.5%). This finding is consistent with (Al-Mialy et al., 2018), who reported infection rates of 30% in females and 16% in males in Iraq, and (Ibrahim et al., 2017), who recorded rates of 47.1% in females and 38.1% in males in Sudan. Other studies, such as (Farhan & Hameed., 2017) in Iraq, observed similar prevalence in females (48.79%) and males (51.21%), while (Abdalla et al., 2017) in Somalia recorded a higher rate in females (54%). The disparity in infection rates between sexes is influenced by stress-related immune suppression in females, particularly during pregnancy and lactation, and the longer lifespan of females compared to males, which are often transported for slaughter. Age-Based Prevalence.

The highest prevalence was observed in camels aged 1–15 years (45.1%), followed by the 15–25 years group (37.5%) and the less than 1-year-old group (15.2%). These results align with those of (Al-Mialy et al., 2018), who reported 15.9% infection in young camels. Conversely, (Al-Amery et al., 2017) reported a lower prevalence of 6.66% in one-year-olds and 28.33% in middle-aged camels in Iraq. The higher prevalence in middle-aged camels is associated with sustained tick exposure under traditional grazing systems. Younger animals exhibit lower infection rates due to fewer tick infestations and the presence of maternal immunity, which enhances resistance to infection. Seasonal Prevalence

The prevalence of *Babesia spp*. was highest in autumn (50%) and spring (47.36%), compared to winter (25%) and summer (23.52%). Similar seasonal trends were noted by (Al-Mialy et al., 2018), who reported infection rates of 33.5% in summer and 17.6% in winter. Other studies, such as those by (Farhan & Hameed., 2017) and (Alimam et al., 2022) in Iraq, observed higher infection rates during the rainy season. Extreme climate changes, including rising temperatures and reduced cultivated areas due to water scarcity, have led to an unprecedented increase in tick populations, the primary vector for *Babesia spp*. These changes significantly impact the seasonal dynamics of infection.

CONCLUSION

The results of the present study showed that 35% of camels in northeastern Libya were infected with *Babesia spp.*, highlighting the impact of *Babesia spp.* on the apparent health of one-humped camels (Camelus dromedarius) in the studied regions. The analysis revealed statistically significant differences in infection prevalence based on regions, sex, age, and seasons, emphasizing the influence of these factors on the distribution and severity of the infection.

RECOMMENDATION

In a different study, PCR was utilized for the detection of *Babesia spp*. due to its high sensitivity and specificity. Future research should focus on investigating whether *Babesia spp*. has the potential for zoonotic transmission to humans, particularly farmers and animal owners who are in direct contact with infected camels. Such studies are crucial to assess the pathogenic effects on humans and to develop appropriate preventive and control measures.

Duality of interest: The authors declare that they have no duality of interest associated with this manuscript.

Author contributions :Contribution is equal between authors.

Funding: No specific funding was received for this work.

REFERENCES

- Abd-Elmaleck, B. S., Abed, G. H., & Mandourt, A. (2014). Some protozoan parasites infecting blood of camels (Camelus dromedarius) at Assiut locality, Upper Egypt. *J. Bacteriol. Parasitol*, 5(2), 1-6.
- Abdelrahim, I., Ismail, A., Majid, A., Mohammad, A., Ibrahim, A., Allsop, M., & Oosthuizen, M. (2009). Detection of Babesia caballi in the one-humped Camel (Camelius dromedarius) using the Reverse Line Block (RLB) in Sudan. *The Sudan Journal of Veterinary Research*, 24, 69-72.
- Al-Amery, A., Faraj, A., & Majeed, S. (2017). Detection of Haemoprotozoa in camels in Al-Najaf province, Iraq. *Int. J. Adv. Biol. Res*, 7(2), 238-241.
- Al-mialy, A. J., Hatem, A. A., & AL-Abedi, A. H. J. (2018). Some epidemiological aspects of Piroplasmosis of sheep and camels in desert of Al-Najaf. *Kufa Journal For Veterinary Medical Sciences*, 9(2), 1-7.
- Alimam, H. M., Moosa, D. A., Ajaj, E. A., Dahl, M. O., Al-Robaiee, I. A., Allah, S. F. H., . . . Hadi, E. D. (2022). Proportion and seasonality of blood parasites in animals in Mosul using the Veterinary Teaching Hospital Lab data. *Plos one*, 17(2), e0264121.
- Coles, E. H. (1974). Veterinary clinical pathology: WB Saunders.
- El-Naga, T. R. A., & Barghash, S. (2016). Blood parasites in camels (Camelus dromedarius) in Northern West Coast of Egypt. *J. Bacteriol. Parasitol*, 7(1), 258.

- Farhan, B., & Hameed, M. (2017). PREVALENCE OF BABESIA, THEILERIA AND EVALUATED OF SOME BLOOD PARAMETERS IN CAMELS IN AL NAJAF PROVINCE. *International Journal of Science and Nature*, 8(3), 561-564.
- Ibrahim, A. M., Kadle, A. A., & Nyingilili, H. S. (2017). Microscopic and molecular detection of camel piroplasmosis in Gadarif State, Sudan. *Veterinary Medicine International*, 2017.
- Jesca, N., Mary, L. N., Daniel, A., & Duke, O. (2017). Serological prevalence of Babesia caballi and Theileria equi in camels and donkeys from Karamoja sub-region, North-eastern Uganda. *Journal of Veterinary Medicine and Animal Health*, 9(6), 137-142.
- Kamani, J., Turaki, A., Egwu, G., Mani, A., Kida, S., Abdullahi, J., . . . Dogo, G. (2008). Prevalence of gastrointestinal parasites in camels (Camelus dromedarius) slaughtered in Maiduguri, Nigeria. *Journal of Camel Practice and Research*, 15(2), 181-182.
- Mirahmadi, H., Ghaderi, A., Barani, S., Alijani, E., Mehravaran, A., & Shafiei, R. (2022). Prevalence of camel babesiosis in southeast of Iran. *Veterinary Medicine and Science*, 8(1), 343-348.
- Selmi, R., Dhibi, M., Ben Said, M., Ben Yahia, H., Abdelaali, H., Ameur, H., . . . Mhadhbi, M. (2019). Evidence of natural infections with Trypanosoma, Anaplasma and Babesia spp. in military livestock from Tunisia. *Trop. Biomed*, 36(3), 742-757.
- Soulsby, E. J. L. (1968). Helminths, arthropods and protozoa of domesticated animals. *Helminths, arthropods and protozoa of domesticated animals*.
- Swelum, A. A., Ismael, A. B., Khalaf, A. F., & Abouheif, M. A. (2014). Clinical and laboratory findings associated with naturally occurring babesiosis in dromedary camels. *Journal of Veterinary Research*, 58(2), 229-233.
- Wakil, Y., Lawal, J., Gazali, Y., Mustapha, F., Bello, A., Mshelia, E., & Ayomikun, A. (2016). Survey on prevalence of haemoparasites of trade camels (Camelus dromedarius) in Maiduguri; Nigeria. *Journal of Veterinary Medicine and Animal Science*, 2, 7-10.

Doi: https://doi.org/10.54172/3fmwsd62

Research Article ⁶Open Access

تأثير الأموكسيسلين على مرحلة الإنبات والنمو الأولى لبادرات أصناف من العدس والحمص

إسراء سمير البوش

قسم المحاصيل الحقلية، كلية الهندسة الزراعية، جامعة دمشق، سوريا

المستخلص: نُقَذت الدراسة في مختبر قسم المحاصيل الحقلية، في كلية الهندسة الزراعية بجامعة دمشق، خلال العام 2023، بهدف تقييم استجابة ستة أصناف من العدس (إدلب 1، إدلب 2، إدلب 4، إدلب 5، إدلب 5، إدلب 5، ايبلا 1) وصنفين من الحمص (غاب 3، غاب 5) لتركيزاتٍ مختلفة من المضاد الحيوي الأموكسيسلين (تتراوح من 0 إلى 1000 ملغ. ليتر⁻¹) معملياً عند مستوى البادرة، وقد نُفذت التجربة وفق التصميم العشوائي الكامل (CRD)، بمعذل ثلاث مكررات لكلِّ صنف ومعاملة، وقد بيّنت النتائج أنّ إنبات البذور لم يتأثر بالأموكسيسلين ولا حتى بتطبيق التركيز المرتفع منه، فيما انخفض كلٍّ من طول الجُذير والبادرة والطول الكلي بشكل مطرد بازدياد التركيز المطبق عليها ولكافة الأصناف المدروسة، وكان طول الجُذير على وجه الخصوص الصفة الأكثر حساسية. كما تباينت الأصناف المدروسة في استجابتها، فكان صنف العدس (ادلب 4) وصنف الحمص (غاب 3) الأكثر تحملاً لمستويات الأموكسيسلين المختلفة، حيث أظهرا أدنى نسبة انخفاض في طول الجذور وطول البادرة الكلى، وأعلى طول مطلق لهما مقارنةً مع باقى الأصناف المدروسة.

الكلمات المفتاحية: بادرة، جُذير، حمص، سُميّة، عدس، مضاد حيوي.

*Corresponding author:
Esraa Samir Al-Boush,
esraa21.boush@damascusunivers
ity.edu.sy, Department of Field
Crops, Faculty of Agricultural
Engineering, Damascus University. Damascus, Syrian Arab Republic.

Received: 01 January 2024

Accepted: 05 October 2025

Publish online: 31 December 2024

Impact of Amoxicillin on the Germination and Early Growth Phase of Seedlings of Lentil and Chickpea Varieties

Abstract: The study was conducted in the Laboratory of the Field Crops Department, Faculty of Agricultural Engineering, Damascus University, during the 2023 season. The objective was to evaluate the response of six lentil varieties (Idlib 1, Idlib 2, Idlib 3, Idlib 4, Idlib 5, Ebla 1) and two chickpea varieties (Ghab 3, Ghab 5) to different concentrations of the antibiotic amoxicillin (ranging from 0 to 1000 mg/L) under laboratory conditions during the germination and early seedling growth stages. The experiment was designed as a completely randomized design (CRD) with three replicates for each variety and treatment. The results showed that seed germination was not affected by amoxicillin, even at the highest concentrations. However, root length, shoot length, and total seedling length decreased progressively with increasing amoxicillin concentrations across all studied varieties, with root length being the most sensitive parameter. The varieties responded differently to the treatments, with Idlib 4 (lentil) and Ghab 3 (chickpea) demonstrating the highest tolerance to varying levels of amoxicillin. These varieties exhibited the lowest percentage decrease in root and total seedling length and the highest absolute lengths compared to the other varieties studied.

Keywords: Antibiotic, Chickpea, Lentil, Phytotoxicity, Root, Shoot.

The Author(s) 2024. This article is distributed under the terms of the *Creative Commons Attribution-NonCommercial 4.0 International License* (http://creativecommons.org/licenses/by-nc/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, *for non-commercial purposes only*, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

المقدمة

يُعدُ محصول العدس (Nath et al., 2014) واحداً من أهم المحاصيل البقولية (Phaseolus vulgaris L.) والبع أكبر (Cicer arietinum L.)، الحمص (Phaseolus vulgaris L.)، الخمص (Pisum sativum L.)، والفول (Pisum sativum L.)، حيث بلغت المساحة المزروعة بمحصول العدس البازلاء (Pisum sativum L.)، والفول (Vicia faba L.)، والفول (Pisum sativum L.)، حيث بلغت المساحة المزروعة بمحصول العدس عالمياً 5585879 هكتاراً والإنتاج العالمي 5610104 طناً والإنتاجية 10043 كغ. هكتار (PAO, 2023)، تتم زراعته في مناطق مختلفة من العالم بما في ذلك المناطق الاستوائية والشبه استوائية والمعتدلة (Nath et al., 2014)، إنّ العدس من أوائل المحاصيل البقولية التي نشأت في مركز الشرق الأدنى (Zohary, 1999). وانتشرت في وقت لاحق في آسيا الوسطى وحوض البحر الأبيض المتوسط (2000) المحاصيل البقولية الشتوية المهمة في الشرق الأوسط وشبه القارة الهندية وأمريكا الشمالية وشمال أفريقيا وغرب آسيا (2021 هكتاراً والإنتاج 200218 طناً والإنتاجية 1777 كغ. هكتار (المجموعة الإحصائية السنوية النروعية الغربية السنوية الغربية السورية نحو 11265 هكتاراً والإنتاج 200218 طناً والإنتاجية 1777 كغ. هكتار (المجموعة الإحصائية السنوية الزراعية، 2020).

يُعدّ الحمص (Cicer arietinum L.) من المحاصيل القديمة حيث زُرع لأول مرة من قبل مزارعي العصر الحجري الحديث، ولا يول الحمص إلى اليوم يؤدي دورًا مهمًا في النظم الزراعية في العالم، حيث يأتي في المرتبة الثانية بعد الفاصوليا الجافة (Phaseolus vulgaris L.) من حيث إنتاج المحاصيل البقولية، وقد ظل الإنتاج العالمي من الحمص مستقرًا نسبيًا منذ ستينيات القرن الماضي، ولكن حدثت مؤخرًا تحسينات في الإنتاجية وتغيرات في المناطق المزروعة بالحمص (Phaseolus vulgaris للقرن الماضي، ولكن حدثت مؤخرًا تحسينات في الإنتاجية وتغيرات في المناطق المزروعة بالحمص (15004885 هكتار بإنتاجية 15878 كغ. هكتار أوالإنتاج 15808 أوالإنتاج 1869 كغ. هكتار ألمجموعة الإحصائية السنوية الزراعية، 2020).

حظيت المستحضرات الصيدلانية Pharmaceuticals ومنتجات العناية الشخصية Daughton & Ternes, 1999). وكثُرت الأبحاث المتعلقة بتأثير وتأثيرها على البيئة باهتمام العلماء في أواخر التسعينات (PCPPs). وكثُرت الأنظمة المائية، ومن المعروف أن النظم وتراكيز ومصير (PCPPs) بشكل ملحوظ منذ ذلك الوقت، حيث ركّزت الدراسات على الأنظمة المائية، ومن المعروف أن النظم الزراعية هي مصدر مهم محتمل لهذه المنتجات عن طريق الجريان السطحي لمياه الري والترشيح بعد استخدام المواد الصلبة الحيوية من محطات معالجة مياه الصرف wastewater treatment plants) أو السماد الناتج عن مخلفات الثروة الحيوانية، أو مخلفات الماشية، ولكن لم توثّق التأثيرات على الترب الزراعية بشكل جيد وكاف (WWTPs). بالعموم، فهمنا الحالي لاستجابة النباتات المحتملة لهذه المركبات بعد التعرض لها في التربة محدود، ويعتمد امتصاص النباتات لهذه المركبات على نوع المركب (Berry et al., 2007; Schneider, 2007).

تميل الدراسات النباتية التي تقيّم سمية المستحضرات الصيدلانية إلى إجراء اختبارات طويلة المدى في قطاع التربة، وعلى الرغم من أنها واقعية، إلا أنّها يمكن أن تكون مكلفة وتتطلب عمالة وتميل إلى التركيز على مركبات وأنواع نباتية معينة , 1982; Boxall et al., 2006) (1982; Boxall et al., 2006) المربّقة الخيارات الإنبات واستطالة الجذور على نطاق واسع على الرُغم من انتقادها أحياناً باعتبارها غير دقيقة كونها تشمل مرحلة تطورية واحدة، إلّا أنّه غالباً ما يتم استخدام استطالة الجذر كمقياس تأثير أساسي لاختبارات المميّة النبات، لأن الجذور هي نقطة الاتصال مع وسط التعرض وقد تدخل الملوثات إلى النبات من خلال الجذور (α-amino-p-hydroxy) والناحية الكيميائية هو ألفا أمينو -بارا -هيدروكسي بنزايل بنسيلين (α-amino-p-hydroxy)

benzyl penicillin) وله الصيغة التركيبية الآتية:

إنّ الأموكسيسلين يشابه عملياً الأمبسلين إذ يؤثر على البكتريا السالبة والموجبة لصبغة جرام ويكون تأثيره على جدار الخلية البكترية إذ يمنع انقسامها وتكاثرها (Ellsworth et al., 2003)، ويُعدّ الأموكسيسلين من أدوية الجيل الثاني من مركبات البنسلين ولكنه يختلف عن البنسلين بأنه أكثر فعالية تجاه البكتريا السالبة لصبغة جرام ولكنّه غير فعال تجاه الخمائر الثانوية (بيتا-لاكتاميز) فهو أكثر امتصاصاً من الأمبسلين في الأمعاء ولا يسبب الإسهال، يستخدم في علاج التهابات الأذن الوسطى (إبيتا-لاكتاميز) فهو أكثر امتصاصاً من الأمبسلين في الأمعاء ولا يسبب الإسهال، يستخدم في علاج التهابات الأذن الوسطى واستطالة جذور أنواع محصولية منتوعة، وفي هذا السيّاق أشار (Eluk et al., 2016) إلى أنّ تركيز 0.004 ملغ. ليتر⁻¹ من البنسلين أثر على إنبات واستطالة جذور نباتات الذو الصفراء Maize وفول الصويا Soybean والذرة البيضاء Sorghum. بيّن (Ghava et al., 2015) من خلال دراستهم تأثير ثلاثة أنواع من المضادات الحيوية (الأموكسيسيلين، ليفوفلوكساسين، التتراسيكلين) على ثلاثة أصناف من القمح Wheat أنّ التراكيز المنخفضة كانت ذات تأثير أعلى من النراكيز المرتفعة، ولم كان وأكثر حساسية للمضادات الحيوية، ولم (الخس، الجزر، والبرسيم الحجازي) أنّ أكثر المحاصيل حساسية لتأثير المضادات الحيوية هو الجزر، فيما كان أقلها حساسية البرسيم الحجازي، وإنّ المضادات الحيوية لم تؤثر على إنبات بذور المحاصيل ولكنها أثرت بشكل واضح على طول الجذور والبادرات خاصة عند تطبيق التراكيز المرتفعة (10000 ملغ. ليتر⁻¹).

تهدف الدراسة الحالية إلى تحديد تأثير الأموكسيسلين على معايير إنبات ونمو محصولي العدس والحمص، حيثُ أُختير العدس والحمص بسبب فوائدهما المباشرة كمحصولين غذائيين وغير المباشرة المتمثلة في علاقتها بالبكتيريا المثبتة للأزوت الجوي Rhizobium leguminosarum.

المواد وطرق البحث

المادة النباتية: أستخدمت ستة أصناف من العدس (إدلب 1، إدلب 2، إدلب 3، إدلب 4، إدلب 5، إيبلا 1)، وصنفين من الحمص (غاب 3، غاب 5). حيث تم الحصول عليها من قسم إدارة بحوث المحاصيل في الهيئة العامة للبحوث العلمية الزراعية السورية.

تصميم التجربة: نُفذّت التجربة في مختبر قسم المحاصيل الحقلية، في كلية الهندسة الزراعية بجامعة دمشق، وفق التصميم العشوائي الكامل (Complete Randomized Design (CRD). حيث عُقّمت البذور بمحلول هيبوكلوريد الصوديوم تركيز 5% لمدة خمس دقائق، ثمّ تمّ غسل البذور بالماء المقطر عدة مرات، وبعد ذلك تمّ توزيع ورق الترشيح على أطباق بتري Petri dishes

(100 × 15 مم)، ووضع باستخدام الملقط 10 بذور في كل طبق وذلك بمعدل ثلاث مكررات من كل صنف ولكل معاملة مدروسة (0، 200، 400، 600، 800، 800 مليغ الأموكسيسلين. ليتر⁻¹). وأضيف (10 مل) لكل طبق بتري من الأموكسيسلين حسب التركيز لكل معاملة، ثُمَّ وضعت الأطباق في الحاضنة لمدة 7 أيام، بمتوسط درجة حرارة للحاضنة 25 م°، تم عد البذور النابتة بشكل يومي حتى نهاية تجربة الإنبات، وبعد ذلك أُخذت قراءات لطول كلٍّ من الجُذير Root length، البادرة وطول Shoot length الجذير وطول الجذير وطول الجذير وطول الجذير وطول البادرات مقارنة بمعاملة الشاهد من خلال المعادلة الآتية (AL-Ouda, 1999):

التحليل الإحصائي: خُلَات البيانات إحصائياً بعد تبويبها باستخدام برنامج GenStat. V12 وتم تقدير قيم أقل فرق معنوي عند مستوى معنوية (5%) لتحديد معنوية القيم المدروسة ولمقارنة الفروقات بين المتوسطات (Gomez & Gomez, 1984).

النتائج والمناقشة

لم تُلاحظ أي آثار لاستخدام المضاد الحيوي على إنبات البذور حتى التركيز المرتفع منه 1000 ملغ. ليتر⁻¹، حيث اكتمل إنبات بذور المحصولين خلال ثلاثة أيام وبنسب إنبات مرتفعة تراوحت بين (95–100%)، فيما لُوحظ تأثر واضح وانخفاض في طول كلاً من جذّور وبادرات محصولي العدس والحمص، خاصةً مع زيادة تركيز الأموكسيسلين، ويتفق ذلك مع نتائج (,Conserved process)، يمكن تفسير ذلك من خلال حقيقة أنّ إنبات البذور هو عملية مصانة تماماً Conserved process، حيث يتم تخزين العديد من العناصر الغذائية والكربوهيدرات والبروتينات وإتاحتها لنمو وتطور البادرات، وحتى لو تأثرت العمليات الخلوية لتحويل هذه المركبات إلى أشكال أكثر توفرًا حيويًا سلبًا بفعل عامل ما (2005).

طول الجُذير: بيّنت نتائج التحليل الإحصائي وجود فروق معنوية ($P \le 0.05$) في صفة طول الجُذير بين تركيزات الأموكسيسلين المختلفة المدروسة، وكان متوسط طول الجّذير لأصناف العدس ($P \le 0.05$ سم) والحمص ($P \le 0.05$ سم) الأعلى معنوياً عند التركيز ($P \le 0.05$ ملغ. ليتر $P \ge 0.05$ معنوياً عند التركيز المرتفع ملغ. ليتر $P \ge 0.05$ من متوسط طول الجُذير الأقل معنوياً ($P \le 0.05$ سم العدس، $P \ge 0.05$ سم الحمص) عند التركيز المرتفع ($P \le 0.05$ ملغ. ليتر $P \ge 0.05$ الجدول، 1)، ويُلاحظ أنّ نسبة الانخفاض في طول الجُذير تزداد بشكلٍ طردي ومعنوي بزيادة تركيز الأموكسيسلين في وسط النمو، حيث كانت نسبة الانخفاض الأعلى معنوياً عند المستوى ($P \le 0.05$ ملغ. ليتر $P \ge 0.05$ المعنوياً بين التراكيز المطبقة في أصناف العدس و($P \le 0.05$) للحمص عند المستوى ($P \le 0.05$) الجدول، 2).

أشارت نتائج التحليل الإحصائي إلى وجود فروقاتٍ معنوية ($P \le 0.05$) في استجابة أصناف العدس والحمص المدروسة لمستويات الأموكسيسلين المطبقة، حيث لُوحظ استناداً إلى صفة طول الجُذير ونسبة الانخفاض فيه أنَّ صنف العدس (إدلب 4) وصنف الحمص (غاب 3) كانا الأكثر تحملاً لمستويات الأموكسيسلين المختلفة، لأنهما أبديا أعلى طول للجُذير (6.77, 6.27) سم على التوالي) وأقل نسبة انخفاض في طول الجُذير (11.07)، في حين أظهر صنف العدس (ايبلا 1) وصنف الحمص (غاب 5) حساسية عالية لإضافة الأموكسيسلين لوسط النمو، لأنهما أظهرا أقل طول للجُذير (9.5, 9.5, هم على التوالي)، وأعلى نسبة انخفاض فيها (9.5, 9.5, 9.5, هم على التوالي)، وأعلى نسبة انخفاض فيها (9.5, 9.5, 9.5, هم على التوالي).

جدول رقم (1). متوسط طول الجُذير لأصناف العدس والحمص تحت مستويات مختلفة من الأموكسيسلين

المتوسط	تركيز الأموكسيسلين ملغ. ليتر ⁻¹					الصنف	11	
	1000	800	600	400	200	0	الطلك	المحصول
3.73 d	1.36	2.61	3.36	4.21	4.86	5.98	إدلب 1	
6.07 b	3.89	4.63	5.87	6.82	7.42	7.79	إدلب 2	
6.68 a	4.34	5.83	6.95	7.18	7.41	8.36	إدلب 3	
6.77 a	5.54	6.08	6.74	7.19	7.47	7.61	إدلب 4	
4.83 c	3.08	3.76	4.45	4.56	6.15	6.95	إدلب 5	العدس
3.69 d	1.76	2.34	3.67	4.21	4.71	5.43	ايبلا 1	_
5.30	3.33 f	4.21 e	5.18 d	5.7 c	6.34 b	7.02 a	المتوسط	
	التركيز	الأصناف *		التركيز		الأصناف	L.S.D	.
		0.89		0.36		0.36		
			10.30				C.V%	
6.27 a	4.65	5.19	6.5	6.87	7.08	7.35	غاب 3	
4.99 b	2.77	3.25	4.75	5.03	6.46	7.67	غاب 5	
5.63	3.71 e	4.22 d	5.63 c	5.95 c	6.77 b	7.51 a	المتوسط	الحمص
	التركيز	الأصناف *		التركيز		الأصناف	L.S.D	
		0.53		0.37		0.22	L.S.D	
			5.50				C.V%	

. تشير الأحرف المتماثلة أمام المتوسطات إلى عدم وجود فروق معنوية عند مستوى المعنوية 0.05

جدول رقم (2). متوسط نسبة الانخفاض في طول الجُذير الأصناف العدس والحمص تحت مستويات مختلفة من الأموكسيسلين

المتوسط	تركيز الأموكسيسلين ملغ. ليتر ⁻¹						الصنف	المحصول
	1000	800	600	400	200	0	<u> </u>	
37.64 a	77.29	56.38	43.83	29.61	18.74	0	إدلب 1	
22.70 c	51.13	41.50	25.37	13.01	5.20	0	إدلب 2	
19.22 d	46.22	30.94	16.49	13.24	8.43	0	إدلب 3	
11.07 e	28.21	20.17	8.83	6.46	2.77	0	إدلب 4	
31.70 b	57.44	46.85	37.72	35.97	12.19	0	إدلب 5	العدس
32.42 b	68.11	57.38	32.76	22.77	13.51	0	ايبلا 1	J
25.79	54.73 a	42.20 b	27.50 c	20.18 d	10.14 e	0 f	المتوسط	
	کِیز	الأصناف * التر		التركيز		الأصناف	L.S.D	
		5.20		2.12		2.12	L.S.D	
			12.40				C.V%	
14.62 b	36.74	29.38	11.51	6.42	3.65	0	غاب 3	
34.88 a	63.76	57.52	37.99	34.46	15.52	0	غاب 5	
24.75	50.25 a	43.45 b	24.75 c	20.44 c	9.59 d	0 e	المتوسط	الحمص
	کِیز	الأصناف * التر		التركيز		الأصناف	L.S.D	
		7.81		5.53		3.19	L.S.D	
-			18.60				C.V%	

تشير الأحرف المتماثلة أمام المتوسطات إلى عدم وجود فروق معنوية عند مستوى المعنوية 0.05

طول البادرة: أظهرت نتائج التحليل الإحصائي وجود فروق معنوية ($P \le 0.05$) في صفة طول البادرة بين تركيزات الأموكسيسلين المختلفة المدروسة، حيثُ كان متوسط طول البادرة لأصناف العدس ($P \le 0.05$ سم) والحمص ($P \le 0.05$ سم) الأعلى معنوياً عند التركيز المرتفع ($P \le 0.05$ ملغ. ليتر $P \ge 0.05$ في حين كان متوسط طول البادرات الأقل معنوياً ($P \le 0.05$ سم العدس، $P \le 0.05$ المردي ومعنوي بزيادة تركيز ($P \le 0.05$ ملغ. ليتر $P \ge 0.05$ ويُلاحظ أنّ نسبة الانخفاض في طول البادرات تزداد بشكل طردي ومعنوي بزيادة تركيز الأموكسيسلين في وسط النمو، حيث كانت نسبة الانخفاض الأعلى معنوياً عند المستوى ($P \le 0.05$ ملغ. ليتر $P \ge 0.05$ في محصول الحمص، في حين كانت نسبة الانخفاض الأقل معنوياً بين التراكيز المطبقة في محصول العدس عند المستوين ($P \le 0.05$ ملغ. ليتر $P \ge 0.05$ المحصول الحمص عند المستويين ($P \le 0.05$ ملغ. ليتر $P \ge 0.05$ وجود فروق معنوية بينهما (الجدول، 4).

أشارت نتائج التحليل الإحصائي إلى وجود فروق معنوية (\$0.00 P في استجابة أصناف العدس والحمص المدروسة لمستويات الأموكسيسلين المطبقة، حيث لُوحظ استناداً إلى صفة طول البادرات ونسبة الانخفاض فيها أنَّ صنف العدس (إدلب 2) وصنف الحمص (غاب 5) أظهرا أقل نسبة انخفاض في طول البادرات (\$17.05 %، \$24.75 على التوالي) مقارنةً مع باقي الأصناف المدروسة، لكنهما يمتلكان أقل طول مطلق لها (\$2.20 £.5 سم على التوالي)، أيّ أنّ بادرات هذين الصنفين لم يتأثرا كثيراً بإضافة الأموكسيسلين لوسط النمو (الجداول، \$و 4)، في حين أظهر صنفا العدس (إدلب 4، إدلب 5) وصنف الحمص (غاب \$) حساسية متوسطة لإضافة الأموكسيسلين لوسط النمو، لأنّها أعطت أعلى طول للبادرات (\$3.60 \$.00 هم على التوالي)، ونسبة انخفاض متوسطة فيها (\$19.80 كادى صنف العدس (ايبلا 1)، في حين أنّ نفس الصنف سجّل أقل قيمة لمتوسط طول البادرة (\$2.92 سم) مشيراً ذلك إلى أنّ هذا الصنف متوسط الحساسية أيضاً، بناءً على ماسبق نجد أنّ تأثر بادرات الأصناف المدروسة بإضافة الأموكسيسلين لوسط النمو كان أقل من درجة تأثر نمو جذورها.

جدول (3) متوسط طول البادرة لأصناف العدس والحمص تحت مستوبات مختلفة من الأموكسيسلين

المتوسط		1	ىيسلىن ملغ. ليتر ⁻¹	تركيز الأموكم			الصنف	المحصول
	1000	800	600	400	200	0	CEDZE!	المحصون
2.33 d	1.24	2.14	2.07	2.37	2.85	3.29	إدلب 1	
2.27 d	1.83	2.12	2.16	2.16	2.65	2.74	إدلب 2	
2.81 c	1.95	2.54	2.68	2.93	3.08	3.68	إدلب 3	
3.66 b	2.63	3.06	3.64	3.91	4.16	4.54	إدلب 4	
3.93 a	2.91	3.08	3.65	4.26	4.62	5.05	إدلب 5	العدس
2.92 c	1.48	2.03	2.36	3.26	4.03	4.36	ايبلا 1	_
2.99	2.01 f	2.50 e	2.76 d	3.15 c	3.57 b	3.94 a	المتوسط	
	التركيز	الأصناف *		التركيز		الأصناف	L.S.D	
		0.47		0.19		0.19		
			9.80				C.V%	
3.20 a	1.92	2.74	3.20	3.38	3.42	4.51	غاب 3	
2.51 b	1.70	1.92	2.08	2.85	3.17	3.36	غاب 5	
2.85	1.81 d	2.33 c	2.64 c	3.11 b	3.29 b	3.94 a	المتوسط	الحمص
	التركيز	الأصناف *		التركيز		الأصناف	L.S.D	-
		0.45		0.32		0.18	L.S.D	
			9.20				C.V%	

تشير الأحرف المتماثلة أمام المتوسطات إلى عدم وجود فروق معنوية عند مستوى المعنوية 0.05

جدول (4). متوسط نسبة الانخفاض في طول البادرة لأصناف العدس والحمص تحت مستوبات مختلفة من الأموكسيسلين.

1 - 11		1	يسلين ملغ. ليتر ^{-ا}	تركيز الأموكس			s. ti	t ti
— المتوسط	1000	800	600	400	200	0	الصنف	المحصول
29.45 b	62.68	35.16	37.30	28.13	13.45	0	إدلب 1	_
17.05 e	33.49	22.82	21.34	21.34	3.31	0	إدلب 2	
23.86 с	47.44	31.26	27.42	20.57	16.45	0	إدلب 3	
19.83 d	42.88	33.23	20.21	14.14	8.53	0	إدلب 4	
22.23 c	42.41	39.04	27.75	15.66	8.52	0	إدلب 5	العدس
33.32 a	66.64	53.92	46.28	25.45	7.64	0	ايبلا 1	العدس
24.29	49.26 a	35.90 b	30.05 c	20.88 d	9.65 e	0 f	المتوسط	
	لتركيز	الأصناف * ال		التركيز		الأصناف	L.S.D	
		4.03		1.64		1.64	L.S.D	
			10.20				C.V%	
28.89 a	57.08	38.48	28.17	25.26	24.34	0	غاب 3	
24.75 b	49.15	42.38	37.04	14.42	5.54	0	غاب 5	
26.82	53.11 a	40.43 b	32.60 c	19.84 d	14.94 d	0 e	المتوسط	الحمص
	لتركيز	الأصناف * ال		التركيز		الأصناف	L.S.D	J
		9.20		6.51		3.76		
			20.30				C.V%	

تشير الأحرف المتماثلة أمام المتوسطات إلى عدم وجود فروق معنوية عند مستوى المعنوية 0.05

الطول الكلي: أوضحت نتائج التحليل الإحصائي وجود فروق معنوية ($P \le 0.05$) في صفة الطول الكلي للبادرات بين تركيزات الأموكسيسلين المختلفة المطبقة، وكان متوسط الطول الكلي لأصناف العدس ($P \le 0.05$ سم) والحمص ($P \le 0.05$ سم) الأعلى معنوياً عند التركيز ($P \le 0.05$ ملغ. ليتر $P \ge 0.05$ مي حين كان متوسط الطول الكلي الأقل معنوياً ($P \le 0.05$ سم العدس، $P \le 0.05$ سم الحمص) عند التركيز المرتفع ($P \le 0.05$ ملغ. ليتر $P \ge 0.05$ الجدول، $P \ge 0.05$ ويُلاحظ أنّ نسبة الانخفاض في طول البادرات الكلي تزداد بشكلٍ طردي ومعنوي بزيادة تركيز الأموكسيسلين في وسط النمو، حيث كانت نسبة الانخفاض الأعلى معنوياً عند المستوى ($P \le 0.05$ ملغ. ليتر $P \le 0.05$ في محصول العدس و($P \le 0.05$) في محصول العدس و($P \le 0.05$ المحصول الحمص، في حين كانت نسبة الانخفاض الأقل معنوياً بين التراكيز المطبقة ($P \le 0.05$) لمحصول العدس و($P \le 0.05$) لمحصول الحمص عند المستوى ($P \le 0.05$) المحصول العدس و($P \le 0.05$) لمحصول الحمص عند المستوى ($P \le 0.05$)

وقد أشارت نتائج التحليل الإحصائي إلى وجود فروق معنوية ($P \le 0.05$) في استجابة أصناف العدس والحمص المدروسة لمستويات الأموكسيسلين المطبقة، حيث لُوحظ استناداً إلى صفة طول البادرات الكلي ونسبة الانخفاض فيها أنَّ صنف العدس (إدلب 4) وصنف الحمص (غاب 3) كانا الأكثر تحملاً لمستويات الأموكسيسلين المختلفة، لأنهما أظهرا أقل نسبة انخفاض في الطول الكلي (10.50, 10.50% على التوالي) مقارنةً بباقي الأصناف المدروسة، وأعلى طول مطلق لها (10.50, 10.50 سم على التوالي) (الجداول، 10.50% في حين أعطى صنف العدس (إدلب 1) وصنف الحمص (غاب 5) حساسية عالية لإضافة الأموكسيسلين لوسط النمو، لأنهما أظهرا أقل طول كلي (10.50% مع على التوالي)، وأعلى نسبة انخفاض فيه (10.50% على التوالي)، وأعلى نسبة انخفاض فيه (10.50% على التوالي)، وأعلى التوالي) (الجداول، 10.50% و

جدول (5). متوسط الطول الكلى لبادرات أصناف العدس والحمص تحت مستويات مختلفة من الأموكسيسلين.

المتوسط]	يسلين ملغ. ليتر -	تركيز الأموكس			الصنف	الم جميدان
	1000	800	600	400	200	0	<u> </u>	المعتصول
6.06 e	2.61	4.76	5.44	6.59	7.72	9.28	إدلب 1	
8.35 c	5.72	6.75	8.03	8.98	10.07	10.56	إدلب 2	
9.65 b	6.55	8.41	9.75	10.27	10.82	12.12	إدلب 3	
10.50 a	8.17	9.21	10.65	11.10	11.63	12.22	إدلب 4	
8.74 c	5.94	6.84	8.04	8.77	10.77	12.04	إدلب 5	العدس
6.61 d	3.24	4.37	6.03	7.47	8.74	9.80	ايبلا 1	_
8.32	5.37 f	6.72 e	7.99 d	8.86 c	9.96 b	11.00 a	المتوسط	
	التركيز	الأصناف *		التركيز		الأصناف	L.S.D	
		1.12		0.46		0.46	L.S.D	
			8.20				C.V%	
9.47 a	6.57	7.93	9.70	10.24	10.49	11.86	غاب 3	
7.50 b	4.47	5.17	6.84	7.88	9.63	11.03	غاب 5	
8.48	5.52 f	6.55 e	8.27 d	9.06 c	10.06 b	11.45 a	المتوسط	الحمص
	التركيز	الأصناف *		التركيز		الأصناف	L.S.D	
		0.71		0.51		0.29		
			5.00				C.V%	

تشير الأحرف المتماثلة أمام المتوسطات إلى عدم وجود فروق معنوية عند مستوى المعنوية 0.05

جدول (6). متوسط نسبة الانخفاض في الطول الكلي لبادرات أصناف العدس والحمص تحت مستويات مختلفة من الأموكسيسلين.

المحصول	الصنف			تركيز الأموكسيس	لين ملغ. ليتر ⁻¹			المتوسط
المحتصون		0	200	400	600	800	1000	
	إدلب 1	0	16.85	29.05	41.47	48.81	72.03	34.70 a
	إدلب 2	0	4.71	15.18	24.31	36.60	46.50	21.22 d
	إدلب 3	0	10.87	15.47	19.82	31.03	46.59	20.63 d
	إدلب 4	0	4.83	9.17	12.85	24.63	33.14	14.10 e
العدس	إدلب 5	0	10.58	27.24	33.32	43.32	50.81	27.55 c
	ايبلا 1	0	10.90	23.96	38.77	55.84	67.46	32.82 b
	المتوسط	0 f	9.79 e	20.01 d	28.42 c	40.04 b	52.76 a	25.17
	L.S.D	الأصناف		التركيز		الأصناف * التر	کِیز	
		1.51		1.51		3.70		
	C.V%	9.00						
	غاب 3	0	11.47	13.51	17.98	32.93	44.51	20.07 b
	غاب 5	0	12.72	28.50	37.98	53.12	59.47	31.96 a
الحمص	المتوسط	0 f	12.09 e	21.00 d	27.98 c	43.02 b	51.99 a	26.02
	LCD	الأصناف		التركيز		الأصناف * التر	کیز	
	L.S.D	2.66		4.61		6.52		
	C.V%	14.80						

تشير الأحرف المتماثلة أمام المتوسطات إلى عدم وجود فروق معنوية عند مستوى المعنوية 0.05

إنّ المضادات الحيوية لها قابلية امتصاص متباينة من قبل النباتات وتخزينها في بعض أجزائها، حيث يمكن أن تصل هذه المواد للترب الزراعية عن طريق مياه الري أو السماد الناتج عن مخلفات الثروة الحيوانية، أو مخلفات الماشية، ويُمكن أن يؤدي تعرض الإنسان المستمر لمستويات منخفضة من المضادات الحيوية عبر تناول المزورعات الملوثة بها إلى ظهور مقاومة في أمعاء الإنسان، أو ربما تظهر بكتريا في التربة مقاومة للمضادات الحيوية بسبب انخفاض تركيز المضادات الحيوية الموجودة في التربة واحتمالية انتقالها إلى المزروعات وخاصةً تلك التي تكون على اتصال وثيق بالتربة (Azanu et al., 2016).

الاستنتاج:

بيّنت نتائج الدراسة أنّ المضاد الحيوي الأموكسيسلين أدّى دوراً ساماً ومثبطاً لنمو بادرات العدس والحمص، حيث تراجع كلا من طول الجُذير والبادرة والطول الكلي بشكل مطّرد بازدياد التركيز المطبق عليها ولكافة الأصناف المدروسة، وكان طول الجُذير على وجه الخصوص الصفة الأكثر حساسية، فقد تراجع متوسط طول الجُذير بمقدار 3.69 سم تقريباً عند تطبيق التركيز 1000 ملغ. ليتر⁻¹ مقارنة مع معاملة الشاهد (التركيز 0 ملغ. ليتر⁻¹) (الجدول، 1).

وقد أظهرت الأصناف المدروسة تبايناً في استجابتها لتراكيز الأموكسيسلين المطبقة، فكان صنف العدس (إدلب 4) وصنف الحمص (غاب 3) الأكثر تحملاً لمستويات الأموكسيسلين المختلفة، لأنهما أظهرا أقل نسبة انخفاض في طول الجُذير وطول البادرة الكلى، وأعلى طول مطلق لهما مقارنة مع باقى الأصناف المدروسة.

ازدواجية الاهتمام: يعلن المؤلف أنه ليس لديه ازدواجية في الاهتمام مرتبطة بهذه المخطوطة.

مساهمات المؤلف: متساوبة بين المؤلفين.

التمويل: هذا البحث ممول من قبل جامعة دمشق وفق رقم الممول 501100020595.

المراجع

المجموعة الإحسائية السنوية الزراعية. (2020). منشورات وزارة الزراعة والإصلاح الزراعي. الرابط: http://moaar.gov.sy/main/archives/21619

- AL-Ouda, A. S. (1999). Genetic variability in temperature and moisture stress tolerance in sunflower (Helianthus annus L.) hybrids: Assessment of some physiological and biochemical traits (Doctoral dissertation, Ph. D. Thesis Submitted to Crop Physiology Dept., UAS, Bangalore, India). http://krishikosh.egranth.ac.in/handle/1/5810117762
- Azanu, D., Mortey, C., Darko, G., Weisser, J. J., Styrishave, B., & Abaidoo, R. C. (2016). Uptake of antibiotics from irrigation water by plants. *Chemosphere*, 157, 107-114. https://doi.org/10.1016/j.chemosphere.2016.05.035
- Basset, G. J., Quinlivan, E. P., Gregory, J. F., & Hanson, A. D. (2005). Folate synthesis and metabolism in plants and prospects for Biofortification. *Crop Science*, 45(2), 449-453. https://doi.org/10.2135/cropsci2005.0449
- Batchelder, A. R. (1982). Chlortetracycline and Oxytetracycline effects on plant growth and development in soil systems. *Journal of Environmental Quality*, 11(4), 675-678. https://doi.org/10.2134/jeq1982.00472425001100040023x

- Berry, J., Aga, D., & Farkas, M. (2007). Antibiotic transformation in plants via Glutathione conjugation. *Fate of Pharmaceuticals in the Environment and in Water Treatment Systems*, 199-213. https://doi.org/10.1201/9781420052336.ch9
- Boxall, A. B., Johnson, P., Smith, E. J., Sinclair, C. J., Stutt, E., & Levy, L. S. (2006). Uptake of veterinary medicines from soils into plants. *Journal of Agricultural and Food Chemistry*, 54(6), 2288-2297. https://doi.org/10.1021/jf053041t
- Daughton, C. G., & Ternes, T. A. (1999). Pharmaceuticals and personal care products in the environment: Agents of subtle change? *Environmental Health Perspectives*, 107(suppl 6), 907-938. https://doi.org/10.1289/ehp.99107s6907
- Ellsworth, A.J., Witt. D.M., Dugdate D.C. and Oliver. L.M. (2003). Medical Drug Reference, Mosby, Inc., Washington, pp. 50, 774.
- Eluk, D., Nagel, O. G., Zimmermann, J., Molina, M. P., & Althaus, R. L. (2016). Effect of antibiotics on the germination and root elongation of argentine intensive crops. *International Journal of Environmental Research*, 10(4), 471-480. https://doi.org/10.22059/IJER.2016.59521
- Erskine, W., Bayaa, B., & Saxena, M. C. (1996). Registration of ILL 5588 lentil Germplasm resistant to vascular wilt and Ascochyta blight. *Crop Science*, 36(4), 1080-1080. https://doi.org/10.2135/cropsci1996.0011183x0036000400055x
- FAO. (2023). Food and Agriculture Organization of the United Nations. Rome, Italy. http://faostat.fao.org.
- Ghava, K., Rathod, M. C., & Dhale, D. A. (2015). Effect of antibiotics on seed germination and root elongation of wheat. *International Journal of Current Microbiology and Applied Science*, 4(1), 516-527.
- Gomez, K. A., & Gomez, A. A. (1984). *Statistical procedures for agricultural research* (2nd Edition). New York: John wiley & sons.
- Hillis, D. G., Fletcher, J., Solomon, K. R., & Sibley, P. K. (2010). Effects of ten antibiotics on seed germination and root elongation in three plant species. *Archives of Environmental Contamination and Toxicology*, 60(2), 220-232. https://doi.org/10.1007/s00244-010-9624-0
- Kapustka, L. (1997). Selection of phytotoxicity tests for use in ecological risk assessments. *Plants for Environmental Studies*, 515-548. https://doi.org/10.1201/9781420048711.ch17
- Lev-Yadun, S., Gopher, A., & Abbo, S. (2000). The cradle of agriculture. *Science*, 288(5471), 1602-1603. https://doi.org/10.1126/science.288.5471.1602
- Mzoughi, R., Hassine, F., Bouallegue, O., Methlouthi, I., Bensaid, H., Selmi, H. and Jeddi, M. (2001). Prevalence of antimicrobial resistant pathogen in middle ear fluid. *Arab Journal of Pharmaceutical Sciences*, 9, 51-55.
- Nath, U. K., Rani, S., Paul, M. R., Alam, M. N., & Horneburg, B. (2014). Selection of superior lentil (*Lens esculenta* M.) genotypes by assessing character association and genetic diversity. *The Scientific World Journal*, 2014, 1-6. https://doi.org/10.1155/2014/372405

- Pope, L., Boxall, A., Corsing, C., Halling-Sorensen, B., Tait, A., Topp, E. (2009). Exposure assessment of veterinary medicines in terrestrial systems. In: Crane M, Boxall ABA, Barrett K (eds) Veterinary medicines in the environment. CRC Press, New York, NY, pp 129–153.
- Schneider, R. (2007). Plant uptake of pharmaceuticals from soil determined by ELISA. *Fate of Pharmaceuticals in the Environment and in Water Treatment Systems*, 179-198. https://doi.org/10.1201/9781420052336.ch8
- Thiele-Bruhn, S. (2003). Pharmaceutical antibiotic compounds in soils a review. *Journal of Plant Nutrition and Soil Science*, 166(2), 145-167. https://doi.org/10.1002/jpln.200390023
- Wrigley, C.W., Corke, H., & Walker, C.E. (2004). Encyclopedia of grain science (1st ed.). Elsevier Academic Press. December 31 2023.
- Zohary, D. (1999). Monophyletic vs. polyphyletic origin of the crops on which agriculture was founded in the Near East. *Genetic Resources and Crop Evolution*, 46(2), 133-142. https://doi.org/10.1023/a:1008692912820

Al-Mukhtar Journal of Agricultural, Veterinary and Environmental Science 02 (2): 74-86, 2024

Doi: https://doi.org/10.54172/xes59r12

Research Article 6 Open Access

تقدير بعض المؤشرات الوراثية لصفات النمو والإنتاجية للسلالات النقية من الفليفلة الحريفة

 4 لمى علون $^{1^*}$ ، عزيزة مرديخي 2 ، شيماء سمعو 8 ، لافا مصطفى

1، 2، 3، 4 الهيئة العامة للبحوث العلمية الزراعية، حلب، سورية المستخلص: نفذ هذا البحث في محطة بحوث تلحديا خلال موسم 2022، بهدف تقييم أداء بعض السلالات المحلية من الفليفلة الحريفة في محافظة حلب ودراسة درجة التوريث والتباين الوراثي والمظهري لصفاتها الإنتاجية، وذلك لاستخدامها لاحقاً في برامج التربية والحفاظ على المادة الأولية المحلية. أجريت الدراسة باستخدام 22 سلالة من الفليفلة المحلية وتم دراسة الأطوار الفينولوجية (عدد الأيام من التشتيل حتى إزهار 75% من النباتات وحتى العقد وحتى اول قطفة) إضافة إلى طول فترة القطاف، كما تم دراسة ارتفاع النبات، وعدد الفروع الرئيسية، وطول الثمرة، وقطر الثمرة، ومتوسط وزن الثمرة وسماكة جدار الثمرة، وإنتاجية النبات. تم تنفيذ التجربة باستخدام تصميم القطاعات العشوائية الكاملة (RCBD) بثلاث مكررات. أظهرت نتائج الدراسة وجود اختلافات في الأطوار الفينولوجية والصفات النباتية بين سلالات الفليفلة. كما أظهر ارتفاع النباتات وعدد الفروع الرئيسية للنبات تبايناً واضحاً بين السلالات. ووجدت الدراسة أن العوامل الوراثية كان لها مساهمة أكبر في صفات الثمرة وإنتاجية النبات مقارنة بالعوامل البيئية. تراوحت نسبة التوريث من 97% لوزن الثمرة والنبات ضمن مجموعتين رئيسيتين، ضمت المجموعة الأولى مجموعتين (9 سلالات)، بينما اجتمعت السلالات المتبقية في المجموعة الثانية. هذا البحث يوفر رؤى قيّمة لبرامج التربية واستراتيجيات تحسين النبات.

الكلمات المفتاحية: الفليفلة الحربفة، التباين المظهري، التباين الوراثي، درجة التوربث.

Estimating some Genetic parameters of growth indicators & yield for Pure Lines of Chili pepper

Abstract: This research was conducted at the Talhadia Research Station during the 2022 season to evaluate the performance of some local chili pepper lines in Aleppo Governorate & to investigate the heritability, genetic, & phenotypic variation of their productive traits. The goal was to utilize these findings in breeding programs & to preserve the local genetic resources. The study included 22 local chili pepper lines, focusing on phonological phases, such as the number of days from transplanting until 75% of the plants flowered, the time to fruit setting (node formation), & the time to the first harvest, in addition to the length of the harvesting period. Plant traits such as plant height, the number of main branches, fruit length, fruit diameter, average fruit weight, fruit wall thickness, & plant productivity were also evaluated. The experiment was carried out using a R& omized Complete Block Design (RCBD) with three replications. The results revealed significant differences among the chili pepper lines in phonological stages & plant traits. Substantial variation was observed in plant height & the number of main branches among the lines. Genetic factors were found to have a greater influence than environmental factors on fruit characteristics & plant productivity. Heritability estimates ranged from 97% for fruit weight to 67% for fruit wall thickness & plant productivity. Cluster analysis grouped the studied lines into two main categories based on fruit & plant traits. The first category was further divided into two subgroups comprising nine strains, while the remaining strains were grouped into the second category. This research provides valuable insights for breeding programs & strategies aimed at improving chili pepper traits & preserving local varieties.

Keywords: Chili Pepper, Phenotypic Variation, Genetic Variation, Heritability

*Corresponding author: lumaarc22@gmail.com, General Commission for Scientific Agricultural Research Aleppo, Syria

^{2, 3, 4} General Commission for Scientific Agricultural Research Aleppo, Syria

Received: 15 March 2024

Accepted: 02 December 2024

Publish online: 31 December 2024

المقدمة

تحتل الفليفلة . Capsicum annum L مركزاً هاماً بين محاصيل الخضار التابعة للفصيلة الباذنجانية Solanaceae نظراً إلى المساحة التي تشغلها، فقد بلغت المساحة المزروعة عالمياً 2020.82 ألف هكتار لعام 2022، بإنتاجية قدرها 18.296 طن/ه حسب إحصائية الفاو لعام 2024 (FAOSTAT data,2024)، بينما بلغت المساحة المزروعة 5098 هكتار على الصعيد المحلي بإنتاجية وصلت حتى 13.514 طن/ه محلياً (المجموعة الإحصائية السورية، 2023). تزرع الفليفلة من أجل ثمارها التي تؤكل إما طازجة، أو مطبوخة أو مخالة أو تُجفف للحصول على مسحوق الفليفلة أو هريس الفليفلة، حيث تمتاز ثمارها بقيمة غذائية عالية فهي غنية بالكربوهيدرات والبروتينات (Tchiegang et al., 1999). إضافة لكونها مصدر مهم لفيتامين A و C و E والعديد من مضادات الأكسدة، كما أنها تستخدم كمحسن طعم وملون طبيعي للأغذية، إضافة للعديد من الفوائد الطبية بما في ذلك مضادات الاستهاب، ومضادات الحساسية، وتقلل الثمار الناضجة من خطر السرطان (2017). (Hussein & Mahdi., 2017).

يعتبر التباين أو الاختلاف بين النباتات المادة الاساس التي يعمل عليها مربي النبات، فالتباين هو المادة الخام التي يقوم عليها الانتخاب على اساس الصفات الظاهرية ولمعظم الصفات المدروسة، لتحقيق النجاح في برنامج التحسين الوراثي ينبغي على مربي النبات أن يعرف مدى اعتماد الصفة التي ينتخبها على العوامل الوراثية ومدى تأثرها بالبيئة.

إن الطريقة المنطقية لبدء أي برنامج تربية هي جمع معلومات قيمة عن طبيعة ودرجة التنوع الوراثي التي تساعد مربي النبات على اختيار أنماط أبوية مفيدة تساعد في انتاج هجن تتمتع بقوة هجين قوية وتحمل مواصفات اقتصادية جيدة متفوقة (Patel et al., المعرفة مصدر الاختلافات لصفات معينة ضمن المادة الوراثية الأولية المتاحة. وتعد الاختلافات الوراثية مطلب رئيسي للانتخاب الفعال ضمن العشائر النباتية الناتجة عن التهجين، كما تعتبر الآباء الأكثر تنوع ضمن الحد المدروس الأفضل عندما نريد تحسين المواصفات الاقتصادية للنسل الناتج (Tomooka, 1991).

أدى الانتخاب البشري المستمر إلى تعزيز عمليات الانتخاب الطبيعي، مما أدى إلى تطوير أشكال متعددة من الفليفلة ذات خصائص محددة من حيث شكل الثمار ولونها وحرافتها ونكهتها ورائحتها (Bosl& & Votava, 2012).

أجريت العديد من الدراسات بهدف تقييم تنوع السلالات الأصلية المحلية وتحديد إمكانية استخدامها مرة أخرى في برامج التربية أو إمكانية زراعتها في مناطق المنشأ حيث تتكيف بشكل جيد مع الظروف المحلية (Ispizua et al., 2022; Nankar et al., 2020; لذلك، من الضروري أولاً في برامج التربية تقييم الاختلافات المظهرية بين السلالات المحلية أو الإقليمية بناءً على الصفات الزراعية أو صفات الثمار، والتي يمكن أن تكون مادة أولية مفيدة لإنتاج وانتخاب سلالات محسنة (Santiago-Luna et al., 2018).

يلعب الانتخاب الموجه دورًا مهمًا في التنوع الوراثي العام للأنواع وفي التباين في التنوع داخل الجينوم. كما يمكن التنبؤ بالتنوع الجيني من تاريخ حياة أحد الأنواع (Ellegren & Galtier., 2016).

قام (Drvoshanova et al., 2022) بتقييم النتوع المظهري لـ 33 سلالة محلية من الفليفلة من شمال مقدونيا، والتي لم يتم تقييمها من قبل، على أساس صفات الثمرة الشكلية والنوعية، حيث حدد تحليل المكونات الأساسية PCA مكونين رئيسين يفسران أكثر من 77 % من التباين استناداً إلى صفات الثمار الكمية، كما صنف التحليل العنقودي السلالات إلى 3 مجموعات، جمعت المجموعة الثالثة سبع سلالات محلية، أظهرت هذه المجموعة أعلى القيم لقطر ووزن الثمرة وسماكة اللب، حيث حددها الباحث هذه الصفات كمكونات رئيسية للإنتاجية. أعطت هذه النتائج معلومات قيمة للحفاظ على هذه السلالات، فضلاً عن مساهمتها في برامج التربية اللاحقة.

من أجل تقييم التنوع الوراثي لنبات الفليفلة في تونس وتحديد الخصائص المؤثرة على الانتاجية، تم تقييم إحدى عشرة مجموعة تم جمعها من مختلف ولإيات تونس، بناءً على سبع صفات شكلية مهمة. لوحظ تباين كبير بين الأصناف من حيث شكل النبات والخصائص الاقتصادية (طول الثمرة، قطر الثمرة، سمك جدار الثمرة، وزن المشيمة، عدد الثمار لكل نبات، وإنتاجية النبات). حيث أظهرت سلالات 2-FTC والسلالات 6-FTC أفضل القيم لغالبية الصفات. سُجِّل أعلى طول للثمار في 2-FTC والمسلالات 3.3 FTC أفضل الثمرة في 6-FTC (5.2 سم) وأقلها في 6-FTC، أي 1.8 سم فقط. أعلى سمك لجدار الثمرة في 6-FTC (2.2 سم) وأقلها في 6-FTC (2.3 سم) واقلها في 6-FTC. كما كشف التحليل العنقودي عن ثلاث مجموعات متميزة مع أصولها الجغرافية (2013 Lahbib et al., 2013)

قام كل من (Datta & Das,2013) بتوصيف 53 طرازاً وراثياً في الهند، وفق 23 صفة كمية ونوعية، حيث لوحظ تباين كبير بين الطرز الوراثية في العديد من الخصائص الشكلية وخصائص الثمار والجودة، تم تجميع الطرز المدروسة عند اجراء التحليل العنقودي في 17 مجموعة، وأشارت النتائج إلى أن المجموعة الأولى والسابعة ضمت 29 و 9 طرز وراثية على التوالي. أما بقية العناقيد تألفت من طراز وراثي واحد. كشفت دراسة التباين وجود نطاقًا واسعًا من التباين لجميع الصفات التي تمت دراستها. ووجد درجة توريث مرتفعة إلى جانب تقدم وراثي أعلى (كنسبة مئوية من المتوسط) في محتوى الكابسيسين في الثمرة، وعدد الثمار على النبات، وانتاجية النبات وعدد الفروع الرئيسية على النبات. أشار المؤلفان إلى اعتبار هذه الصفات مؤشرات انتخاب موثوقة حيث من المحتمل أن تكون محكومة بالتأثير الجيني المضاف.

تم دراسة التباين الوراثي لستة وعشرين صفة كمية ونوعية باستخدام 70 مدخلاً من الفليفلة الحريفة. وقد لوحظ وجود قيم عالية جدًا في التباين الوراثي العام لمحتوى حمض الأسكوربيك، كما لوحظ وجود تباين وراثي وشكلي كبير جدًا لصفات (متوسط وزن الثمرة، مساحة الورقة بعد 45 يومًا من التشتيل، قطر الثمرة، طول الثمرة، وعدد الثمار / نبات، وإجمالي انتاج الثمار الجافة/هكتار، وانتاج الثمار الخضراء المبكرة/النبات، وإجمالي انتاج الثمار الخضراء/ هكتار، وانتاج النبات من الفليفلة الخضراء والحمراء، انتاجية الفليفلة الحمراء الجافة /نبات). ولوحظت درجة توريث عالية جدًا تراوحت من 88.45% حتى 72.58%) مقترنة بارتفاع كبير للتقدم الوراثي لصفات 10قطر الثمرة، ومتوسط وزن الثمرة، وعدد الثمار /نبات، وإنتاجية الثمار الخضراء المبكرة / نبات، وانتاج الثمار الخضراء/نبات، وانتاج الثمار الجافة لكل إنتاج الثمار الخضراء /الهكتار، و انتاج الثمار الجافة لكل هكتار، ومحتوى حمض الأسكوربيك). أشارت الدراسة إلى أن المكون المضاف هو السائد. وبالتالي، هناك مجال واسع لتحسين هذه الصفات من خلال الانتخاب المباشر. (Vidyashree et al., 2018)

أجرى (Patidar et al., 2023) دراسة لتقييم التنوع الوراثي ودرجة التوريث والتقدم الوراثي لخمسة وعشرين طرازاً وراثياً مختلفاً من الفليفلة الحريفة. حيث كشف تحليل التباين عن وجود اختلافات كبيرة بين الطرز الوراثية لجميع الصفات. ولوحظت قيم عالية للتباين الوراثي PCV إلى جانب قيم عالية للتباين المظهري لمساحة الأوراق (42.25% و 41.76%) يليها طول الثمار (37.76% و 37.56%) ونتاجية النبات (37.56% و 37.56%) كلوروفيل الأوراق (36.19%) وعدد الثمار لكل نبات (35.15% و 34.72%)، مما يدل على المساهمة الكبيرة للمكونات الوراثية في التعبير الظاهري لهذه الصفات التي توفر كفاءة انتخاب أعلى. كما لوحظ قيم أعلى لدرجة التوريث بالمعنى الواسع إلى جانب التقدم الوراثي المسجل لطول النبات (97.99 كفاءة انتخاب أعلى. كما لوحظ قيم أعلى لارجة التوريث بالمعنى الواسع إلى جانب التقدم الوراثي المسجل لطول النبات (97.56 و 97.57 %)، عدد الثمار لكل نبات (97.56 و 97.57 %)، متوسط وزن الثمار (93.97 و 57.46 و 93.97 %)، الكلوروفيل في الورقة (98.25 %)، مما يشير إلى وجود عمل وراثي مضاف؛ وبالتالى يمكن استخدام الانتخاب لتحسين هذه الصفات.

أشار كل من(Sharma et al., 2019) أن صفة الإنتاجية متعدد الجينات بطبيعتها وتتأثر بالعوامل البيئية التي تجعل عملية الانتخاب معقدة، وبالتالي فإن معرفة الارتباط بين الصفات أمر ضروري لتكون عملية الانتخاب فعالة، إن معرفة العلاقة بين الصفات لها نفس القدر من الأهمية في تربية النباتات من أجل التحسين غير المباشر للصفات التي يصعب قياسها.

أوضح البياتي (1997) أن درجة التوريث ترتبط بالتحسين الوراثي وتعتبر غير كافية في تقديمها للمعلومات عن مدى التباينات الوراثية والمظهرية وإعطاء المعلومات الكافية عن صفات العشائر، كما أشار إلى أن التوريث العالي للصفات الكمية المرتبطة بالإنتاجية لا يكفي لضمان الحصول على تحسين وراثي عالي في الانتاجية مالم تكن الصفة مرتبطة ايجابياً ومعنوياً مع الانتاجية. يعتبر التنوع الوراثي النباتي مهدد بما يسمى "بالانجراف الوراثي" وهو مصطلح يعبر عن فقدان المورثات الفردية أو الجماعية، كتلك الموجودة في الأصناف البلدية المتكيفة محلياً، ويكمن السبب الرئيس للانجراف الوراثي وفقاً لتقرير حالة الموارد الوراثية النباتية للأغذية والزراعة في العالم في إحلال الأصناف الحديثة محل الأصناف المحلية، إضافة إلى ظهور آفات أو أعشاب طفيلية أو أمراض خطيرة وتدهور البيئة والتوسع العمراني وإزالة الغابات أو الحرائق (منظمة الأغذية والزراعة للأمم المتحدة، (2010)، لذلك فقد هدف البحث إلى:

- تقييم أداء سلالات محلية من الفليفلة الحريفة المنتشرة في محافظة حلب
- دراسة التباين المظهري والوراثي ودرجة التوريث للصفات الإنتاجية في سلالات الفليفلة الحريفة المحلية.

الموإد وطرائق البحث

- المادة النباتية: أجري البحث باستخدام 22 سلالة من الفليفلة المحلية التي تتميز بطعمها الحريف حيث تم إعطائها أرقام مختلفة، هذه السلالات تم الحصول عليها من المزارعين في محافظة حلب وريفها مع إجراء عملية التربية الذاتية لمدة 4 سنوات سابقة.
- **مكان تنفيذ البحث**: نفذ البحث في محطة بحوث تلحديا التابعة لمركز بحوث حلب الهيئة العامة للبحوث العلمية الزراعية، خلال الموسم الزراعي 2022.
- طريقة العمل: زرعت البذور بتاريخ 20/3 ضمن أصص بلاستيكية (7 X 7) سم مملوءة بخليط من التربة والتورب بنسبة 1:3، وقدمت لها عمليات الخدمة اللازمة حتى موعد التشتيل في 5/25 حيث زرعت شتول الأصناف المحلية في الحقل بمسافة 30 سم بين النبات والآخر و 70سم بين الخط والآخر على خطوط ضم كل خط 20 نباتاً، وقدمت لها عمليات الخدمة الضرورية.
 - القراءات والقياسات: أخذت القراءات الحقلية التالية وفق قائمة التوصيف الشكلي بحسب (IPGRI, 1995):
 - عدد الأيام من التشتيل حتى إزهار 75% من النباتات (يوم).
 - عدد الأيام من التشتيل حتى عقد الثمار (يوم).
 - عدد الأيام من التشتيل حتى أول قطفة (يوم).
 - طول فترة القطاف: عدد الأيام بين أول قطفة وآخر قطفة (يوم)
 - ارتفاع النبات (سم).
 - عدد الأفرع الرئيسية على النبات (فرع/نبات)
 - طول الثمرة: يتغير من 0.8 سم عند الأصناف الحريفة جداً وحتى 25 -30 سم عند الأصناف الحلوة.
 - قطر الثمرة: يتراوح من 0.5 سم وحتى 10-11 سم.

- متوسط وزن الثمرة (غ).
- إنتاجية النبات الكلية (كغ/نبات).
- تصميم التجربة والتحليل الاحصائي: نفذت الدراسة الحقلية بتصميم القطاعات العشوائية الكاملة بثلاثة مكررات، وأجري التحليل الإحصائي للنتائج بالحاسوب باستخدام البرنامج Genstat Release 7.2، وقورن بين المتوسطات باختبار أقل فرق معنوي L.S.D عند 5%.

حللت نتائج التوصيف الشكلي بإجراء التحليل العنقودي ورسم شجرة القرابة باستخدام البرنامج PAST - Palaeontological .

تم حساب درجة التوريث بالمفهوم الواسع وفقا لمعادلة (Singh & Chaudhary, 1977)

$$HBS = \frac{VG}{V\rho} \times 100$$

حيث:

VG ::التباين الوراثي وتساوي قيمته:

$$VG = (Mse - Mst)/r$$

Vp: التباين المظهري (الكلي) وتساوي قيمته:

$$Vp = VG + VE$$

حيث Mst متوسط المربعات الكلي، Mse متوسط مربعات الخطأ، r عدد المكررات، VE التباين البيئي.

النتائج والمناقشة:

1- تقييم أداء سلالات الفليفلة الحربفة المدروسة:

- 1-1- الأطوار الفينولوجية: تشير النتائج الواردة في الجدول (1) إلى ما يلي:
- عدد الأيام من التشتيل حتى ازهار 75% من النباتات: بلغ عدد الأيام من التشتيل حتى الازهار 41 يوم في السلالة P8، التي بدورها تفوقت على السلالات (P19، P20، P20، P20)، حيث بلغ عدد الأيام فيها (52.67، 50.33، 50.33، التي بدورها تفوقت على السلالات السلالة P20 أكبر قيمة بالنسبة لعدد الأيام حتى الإزهار. ومما سبق نجد أن معظم السلالات كانت متقاربة بالنسبة لعدد الأيام من التشتيل حتى الإزهار وذلك بمعدل 74 يوم.
- عدد الأيام من التشتيل حتى العقد: تراوح عدد الأيام من التشتيل حتى العقد من 53 يوم في السلالة P14 حتى 46.33 يوم في السلالات (P26 ، P25،P5 ،P4)، لم توجد فروق ذات دلالة إحصائية بين السلالة P14 وأغلب السلالات ماعدا السلالات (P41 ،P37 ،P29 ،P26 ، P25،P5 ،P4)، بلغ متوسط عدد الأيام من التشتيل حتى العقد لكل السلالات المدروسة 60 يوم تقريباً.
- عدد الأيام من التشتيل حتى أول قطفة: توزعت السلالات المدروسة على أربع مجموعات حيث كانت مجموعة السلالات (P19 ،P12 ،P11) الأبكر بالنسبة لعدد الأيام من التشتيل حتى أول قطفة حيث بلغ 71 يوم، تلتها مجموعة السلالات (6، 29، 30، 36) فقد سجلت عدد أيام 75 يوم، بينما سجلت السلالات (4، 5، 14، 15، 20، 25، 28، 32) للسلالات (4، 5، 14، 15، 10، 25، 26، 26، 14) عدد أيام حتى أول قطفة 79.67 يوم ولم توجد فروق معنوية بين المجموعات الثلاثة الأخيرة، بينما تفوقت المجموعة الأولى على المجموعة الرابعة حيث بلغ عدد الأيام فيها من التشتيل حتى أول قطفة 84 يوم وضمت في السلالات (8، 23، 24، 26، 26).

- طول فترة القطاف: تعتبر صفة فترة القطاف من الصفات الهامة المرغوبة، حيث كلما زادت هذه الفترة كان أفضل للمزارعين، ومن خلال الجدول (1) نجد أن طول فترة القطاف تراوحت من 98 يوم في السلالات (4، 11، 24، 25، 26، 28، 36، 41) وكانت الفروق بين المجموعتين ذات دلالة إحصائية، أما بالنسبة لبقية السلالات لم تكن الفروق بينها وبين المجموعة الأخيرة معنوية، بلغ معدل فترة القطاف 89 يوم تقريباً لجميع السلالات المدروسة.

1-2- صفات النبات: من الجدول رقم (2) الذي يبين صفات النبات لسلالات الفليفلة الحريفة نلاحظ التالي:

- ارتفاع النبات (سم): سجلت السلالة P41 أعلى قيمة بالنسبة لصفة ارتفاع النبات بلغت 110سم، متفوقة بدلالة إحصائية على معظم السلالات ماعدا السلالات (P30 ،P40 ،P40 ،P30) حيث وصل ارتفاع النبات فيها (106.67، على معظم السلالات ماعدا السلالات (P8، 30، P40 ،P40 ،P40 و P30 أقل قيمة بالنسبة لارتفاع النبات وصلت حتى 73.33سم، كما بلغ المتوسط العام لارتفاع النبات 88.61 سم.

جدول رقم (1). الأطوار الفينولوجية لسلالات الفليفلة الحريفة المدروسة (يوم)

السلالة	عدد الأيام حتى الازهار /يوم	عدد الأيام حتى العقد/يوم	عدد الأيام حتى أول قطفة/يوم	طول فترة القطاف
P4	49.33ª	64.33 °	79.67 ^{ab}	85.00 b
P 5	42.67^{ab}	64.33 °	79.67 ab	89.33 ab
P 6	44.33 ^{abc}	58.33abc	75.33 ab	89.33 ab
P 8	41.00^{a}	57.33 abc	84.00 b	93.67 ab
P 11	46.00^{abc}	55.67 ab	71.00^{a}	85.00 b
P 12	46.00^{abc}	61.00 abc	71.00^{a}	98.00 a
P 14	46.00^{abc}	53.00 ^{ab}	79.67 ab	89.33 ab
P 15	42.67^{ab}	60.00^{abc}	79.67 ab	89.33 ab
P 19	52.67 ^{cd}	59.33 abc	71.00^{a}	89.33 ab
P 20	56.00^{d}	62.67 abc	79.67 ab	98.00 a
P 23	50.33 ^{bcd}	57.33 abc	84.00 b	89.33 ab
P 24	50.33 ^{bcd}	59.33 abc	84.00 b	85.00 b
P 25	49.33 ^{abcd}	64.33 °	79.67 ab	85.00 ^b
P 26	50.33 ^{abcd}	64.33°	84.00 b	85.00 ^b
P 28	47.67 ^{abcd}	58.33 abc	79.67 ab	85.00 ^b
P 29	44.33 ^{abc}	62.67 bc	75.33 ab	89.33 ab
P 30	46.00^{abc}	58.33 abc	75.33 ^{ab}	93.67 ab
P 32	46.00^{abc}	56.67 abc	79.67 ab	93.67 ab
P 36	47.67 ^{abcd}	56.67 abc	75.33 ab	85.00 b
P 37	42.67^{ab}	62.67 ^{bc}	79.67 ab	93.67 ab
P 40	46.00^{abc}	57.33 abc	84.00 b	89.33 ab
P 41	49.33 ^{abcd}	61.67 bc	79.67 ab	85.00 b
MAX	56.00	64.33	84.00	98.00
MIN	41.00	53.00	71.00	85.00
Average	47.12	59.80	78.68	89.33
L.S.D 5%	8.698	8.0	9.931	9.931

- عدد الأفرع الرئيسية على النبات (فرع/نبات): تفوقت السلالة P23 على جميع السلالات بدلالة معنوية بالنسبة لعدد الافرع على النبات (9.33 فرع/نبات)، تلتها السلالة P24 وصل عدد الأفرع فيها حتى 7.33 فرع/نبات ولم توجد فروق معنوية بين

السلالة الأخيرة وباقي السلالات ماعدا السلالات (11، 14، 15، 20، 30، 37، 40) P حيث تراوح عدد الفرع فيها من 5.33 حتى 4.33 فرع/نبات، بلغ المتوسط العام لعدد الأفرع على النبات 5.80 فرع/نبات.

جدول (2). صفات النبات لسلالات الفليفلة الحريفة المدروسة

السلالة	طول النبات (سم)	عدد الأفرع الرئيسية على النبات (فرع/نبات)
P4	78.33 ^{cdef}	5.67 bcde
P 5	$80.00^{ m cdef}$	6.33 bcde
P 6	82.67 cdef	$6.00^{ m \ bcde}$
P 8	100.00 abcd	5.67 bcde
P 11	$81.67^{\text{ cdef}}$	4.67 ^{de}
P 12	83.33 cdef	5.67 bcde
P 14	73.33 ^{cdef}	4.33°
P 15	83.33 cdef	5.33 ^{cde}
P 19	$86.67^{\text{ cdef}}$	5.67 bcde
P 20	$85.00^{ m cdef}$	5.33 ^{cde}
P 23	73.33 cdef	9.33ª
P 24	$86.67^{\text{ cdef}}$	7.33 ^b
P 25	$85.00^{ m cdef}$	$6.00^{ m \ bcd}$
P 26	$86.67^{\text{ cdef}}$	6.00 bcdee
P 28	90.00^{bcde}	5.67 bce
P 29	100.00 abcd	$6.00^{ m bce}$
P 30	106.67 ab	4.33°
P 32	88.33 cdef	5.67 ^{b ce}
P 36	98.33 abcd	5.67 ^{b ce}
P 37	88.33 cdef	5.00° de
P 40	101.67 abc	5.33° de
P 41	110.00^{a}	6.67 bc
MAX	110.00	9.33
MIN	73.33	4.33
Average	88.61	5.80
L.S.D 5%	16.94	1.907

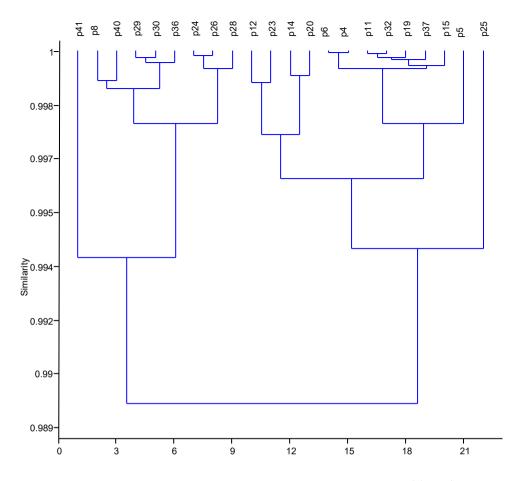
1-3- صفات الثمرة: من الجدول رقم (3) الذي يبين صفات الثمرة والانتاجية لسلالات الفليفلة الحريفة نجد التالي:

- وزن الثمرة (غ): تفوقت السلالة P20 على جميع السلالات بالنسبة لوزن الثمرة حيث وصلت قيمته حتى 1.06 غ، تلتها السلالة P25 بمتوسط وزن المرة فيها 2.06 ألسلالة P15 في المرتبة الثالثة وصل متوسط وزن الثمرة فيها 0.65 غ، ثم السلالة P14 (0.57 غ)، لم توجد فروق معنوية بين السلالتين P19 و P36
- حيث بلغ متوسط وزن الثمرة فيها (0.43)، بينما سجلت السلالة P24 أقل قيمة بالنسبة لوزن الثمرة بلغ 0.12غ، وبلغ المتوسط العام لوزن الثمرة 0.29غ.
- طول الثمرة (سم): تفوقت السلالة P25 على كل السلالات المدروسة ماعدا السلالة (P20بدلالة إحصائية حيث بلغ طول الثمرة (17.83، 20.47 سم)، ولم تلاحظ فروق معنوية بين السلالة الأخيرة والسلالات (14،14،15) وصل طول الثمرة (17.33، 15، 14.33 سم) بالترتيب. سجلت السلالة P5 أقل قيمة بالنسبة لطول الثمرة (6.33سم) دون وجود

- فروق معنوية بينها وبين السلالات (4، 24، 26، 28، 29، 30) أقل قيمة بالنسبة لطول الثمرة دون ان تسجل فروق معنوية بينها، بلغ متوسط طول الثمرة للسلالات المدروسة 11.87سم.
- قطر الثمرة (سم): تفوقت السلالة P25 على كل السلالات المدروسة بالنسبة لقطر الثمرة، حيث وصل قطر الثمرة (5.43 سم)، تلتها السلالة P19 حيث سجلت متوسط قطر الثمرة (4.67سم) ولم توجد فروق معنوية بينها وبين السلالات P37، P15 وصل قطر الثمرة (4.17، 4.40 سم) بالترتيب، تفوقت جميع السلالات المدروسة على السلالة وصل المتوسط العام لقطر الثمرة في السلالة الأخيرة 0.83 سم، وصل المتوسط العام لقطر الثمرة 1912سم.
- ثخانة جدار الثمرة (مم): سجلت السلالة P19 أعلى قيمة بالنسبة لثخانة جدار الثمرة وصلت حتى (0.47 مم) متفوقة بذلك معنوياً على باقي السلالات المدروسة، تلتها السلالتين P15 وP25 بثخانة جدار ثمرة وصل حتى (0.37، 0.35، مم) بالترتيب، حيث تفوقت هاتين السلالتين على معظم السلالات ماعدا السلالات P4، P5، P6، P8، P40 بلغ فيها متوسط ثخانة الثمرة (0.32 مم)، بلغت أقل قيمة لثخانة جدار الثمرة 0.10 مم في السلالات (P26، P24)). بلغ المتوسط العام لثخانة الثمرة (0.23 مم.
- إنتاجية النبات (كغ/نبات): بلغت إنتاجية النبات أعلى قيمة لها في السلالة 14 P متفوقة معنوياً على جميع السلالات ماعدا السلالات P 41 ، P 24 ، P 22 ، 1.30 ، 1.31 ، 1.45 ، 1.45) بالترتيب، ولم توجد فروق معنوية بين السلالات الثلاثة الأخيرة والسلالات (P19، P26 ، P26 ، P36 ، P26) ، كانت أقل إنتاجية في السلالة P6 وصلت حتى 1.00 كغ/نبات ولم تسجل فروق ذات دلالة إحصائية بينها وبين أغلب السلالات المدروسة، بلغ المتوسط العام لإنتاجية النبات 1.16 كغ/نبات. توافقت نتائج التوصيف الشكلي للسلالات مع (Datta & Das , 2013) حيث وجد تباين كبير بين الطرز الوراثية التي قام بدراستها في الهند. ومع (Patidar et al., 2013; Lahbib et al., 2013).

2- التحليل العنقودي للسلالات المدروسة وفق مواصفات الثمرة والنبات:

من الشكل رقم (1) الذي يبين التحليل العنقودي للسلالات المدروسة وفق مواصفات الثمرة والنبات نجد أن السلالات توزعت ضمن مجموعتين رئيسيتين:


- 1- المجموعة الأولى: انقسمت المجموعة الأولى إلى مجموعتين أيضاً:
 - a. المجموعة تحت الأولى ضمت سلالة واحدة فقط وهي P41.
 - b. المجموعة الثانية تحت الأولى انقسمت إلى تحت مجموعتين:
- 1. ضمت السلالتين P8 و P40، كما اجتمعت السلالتين P29 و P30 ضمن مجموعة واحدة وانفردت السلالة P36 لوحدها.
 - 2. ضمت السلالتين p24 و P26 ضمن مجموعة واحدة، وانفردت السلالة P28 في مجموعة لوحدها.
 - 2- المجموعة الثانية: انقسمت المجموعة الثانية إلى ثلاثة مجموعات:
 - a. انفردت السلالة P25 في مجموعة خاصة.
 - b. انقسمت المجموعة الثانية إلى تحت مجموعتين:
 - 1. اجتمعت السلالتين P6 وP4 في مجموعة واحدة.
 - 2. انقسمت إلى تحت تحت مجموعتين:
 - انفردت السلالة P5 لوحدها في مجموعة.

• في المجموعة الثانية نلاحظ انفراد كل من السلالات P15 وP37 وP19 لوحدها، بينما اجتمعت السلالتين P11 وP32 في مجموعة واحدة.

جدول (3). مواصفات الثمار والإنتاجية لسلالات الفليفلة الحريفة المدروسة

السلالة	متوسط وزن الثمرة (غ)	طول الثمرة (سم)	قطر الثمرة (سم)	ثخانة جدار الثمرة (مم)	إنتاجية النبات (كغ/نبات)
P4	0.12 ^h	9.83 ^f	$2.67^{\rm efg}$	0.27 bcd	1.01 ^{ef}
P 5	$0.15^{\rm h}$	$6.33^{\rm \ f}$	$2.33 ^{\mathrm{fg}}$	0.33^{bc}	1.10 ^{cdef}
P 6	0.13^{h}	11.23 ^{ef}	$2.60^{ m efg}$	0.30^{bcd}	$0.91^{\rm f}$
P 8	$0.28^{\rm f}$	12.83 cdef	2.43^{fg}	0.33^{bc}	1.12 ^{cdef}
P 11	0.21^{g}	$12.17^{\text{ cdef}}$	$2.30^{\mathrm{\ fg}}$	$0.20^{\rm defg}$	1.14 ^{cdef}
P 12	0.19^{g}	12.00^{cdef}	$1.60^{ m gh}$	$0.23^{\rm cde}$	1.45 ^{ab}
P 14	0.57^{d}	17.33 ^{bc}	$2.83^{\rm \ ef}$	$0.20^{\rm defg}$	1.49ª
P 15	0.65°	15.00 ^{bc}	4.17^{bc}	0.37^{b}	$1.07^{\rm f}$
P 19	0.43e	13.33 ^{cde}	4.67^{b}	0.47 a	1.22 bcdef
P 20	1.06 ^a	17.83 ^{ab}	$3.87^{\rm cd}$	$0.20^{\rm defg}$	0.94^{f}
P 23	0.79^{b}	$11.47^{\rm \ def}$	3.27^{de}	$0.17^{\rm efgh}$	1.23 ^{bcd}
P 24	0.02^{j}	7.47 ^f	$1.53 ^{\mathrm{gh}}$	$0.10^{\rm h}$	1.31 abcd
P 25	$0.07^{\rm i}$	20.47a	5.43 ^a	0.35 ^b	1.19^{bcdef}
P 26	0.06^{i}	$8.40^{\mathrm{\ f}}$	$0.83^{\rm \ h}$	$0.10^{\rm h}$	1.23 ^{bcde}
P 28	0.09^{i}	7.20 ^f	$2.87^{\rm ef}$	0.15^{fgh}	1.09^{cdef}
P 29	0.12^{h}	8.47 ^f	$1.87^{\rm g}$	$0.13~\mathrm{fgh}$	1.01 ^{ef}
P 30	0.30^{f}	$8.80^{\mathrm{\ f}}$	$2.57^{\rm \ efg}$	0.17^{efgh}	1.11 ^{cdef}
P 32	0.21^{g}	13.27 ^{cde}	3.27^{de}	$0.20^{\rm defg}$	0.98^{f}
P 36	0.43e	$10.37^{\text{ ef}}$	$3.70^{\rm cd}$	0.22^{def}	1.22 ^{bcdef}
P 37	0.06^{i}	$11.73^{\rm \ def}$	4.40^{bc}	$0.20^{\rm defg}$	1.17^{cdef}
P 40	0.15^{h}	14.33 ^{bcd}	$2.83^{\rm \ ef}$	0.30^{bcd}	1.20^{bcdef}
P 41	0.20^{g}	$11.33^{\text{ def}}$	2.00^{g}	0.17^{efgh}	1.39^{abc}
MAX	1.06	20.47	5.43	0.47	1.49
MIN	0.02	6.33	0.83	0.10	0.91
Average	0.29	11.87	2.91	0.23	1.16
L.S.D 5%	0.047	3.0	0.717	0.091	0.220

تراوح طول الثمرة في المجموعة الأولى من 7.20 سم حتى 14.33 سم بمتوسط عام لطول الثمرة وصل حتى 9.91 سم، بينما بلغ المتوسط العام لطول الثمرة في المجموعة الثانية 13.23 سم وتراوح من 20.47 سم حتى 6.33 سم.

شكل رقم (1). التحليل العنقودي للسلالات المدروسة وفق مواصفات النبات ومواصفات الثمرة

3- التباين البيئي والتباين الوراثي ودرجة التوريث:

من الجدول رقم (4) الذي يبين قيم التباين البيئي والتباين الوراثي ونسبة التوريث بالمعنى الواسع للصفات المدروسة نجد مايلي:

- كان التباين البيئي أعلى من التباين الوراثي لصفات عدد الأيام حتى الازهار وحتى العقد وحتى أول قطفة وصفة طول فترة القطاف وارتفاع النبات وعدد الأفرع، إذ بلغ التباين البيئي (34، 21، 35، 35، 113، 132) على الترتيب، حيث يدل ذلك إلى أن العامل البيئي قد أسهم أكثر في هذه الصفات، مما أدى إلى انخفاض نسبة التوريث في الصفات السابقة حيث تراوحت من 45% لصفة ارتفاع النبات حتى 13% لصفات الاطوار الفينولوجية.

– كان التباين الوراثي أعلى من التباين البيئي لصفات الثمرة (وزن الثمرة وطول الثمرة وقطرها وثخانة جدار الثمرة)، وكذلك صفة إنتاجية النبات، حيث بلغ التباين الوراثي فيها (0.09، 13، 1.35،0.007) بالترتيب، وهذا يعني ان العامل الوراثي قد أسهم في هذه الصفات أكثر من العامل البيئي، وبالتالي أعطى نسبة توريث عالية لهذه الصفات حيث تراوحت نسبة التوريث من (Farwah et al., حتى 67% في صفتي ثخانة جدار الثمرة وانتاجية النبات. توافقت النتائج مع ,36% لوزن الثمرة، و 98% لوزن الثمرة، و 98% لوزن الثمرة، و 99% لوزن الثمرة، و 99% لوزن الثمرة، و 98% لوزن الثمرة، و 91٪ النبات، كما توافقت مع (Belay et al., 2019) حيث كانت نسبة التوريث متوسطة عالية إلى عالية جدًا وتراوحت بين 71.42

أكد (Johnson et al., 1955) أن فعالية عملية الانتخاب لا تعتمد فقط على تقدير درجة التوريث للصفة المراد الانتخاب لها، بل تعتمد أيضاً على مقدار التقدم الوراثي الذي تحققه تلك الصفة عبر الأجيال الانعزالية، إذ تعطي درجة التوريث معلومات حول أهمية الوراثة في الصفات الكمية، في حين يعد التقدم الوراثي مهماً لصياغة برامج الانتخاب المناسبة.

جدول (4). التباين البيئي والتباين الوراثي ودرجة التوريث للصفات المدروسة

الصفة المدروسة	التباين الوراثي	التباين البيئي	التباين المظهري	نسبة التوريث بالمعنى الواسع %
عدد الأيام حتى ازهار 75% من النباتات	5.181	33.821	39.001	13
عدد الأيام حتى العقد	3.005	21.061	24.066	13
عدد الأيام حتى اول قطفة	5.171	34.895	40.066	13
طول فترة القطاف	5.171	34.895	40.066	13
وزن الثمرة	0.088	0.003	0.091	97
طول الثمرة	13.215	3.524	16.739	79
قطر الثمرة	1.346	0.233	1.579	85
ثخانة جدار الثمرة	0.007	0.004	0.011	67
ارتفاع النبات	94.189	113.356	207.545	45
عدد الأفرع	0.708	1.319	2.026	35
إنتاجية النبات	0.044	0.022	0.066	67

الاستنتاجات والمقترحات:

- تعتبر مجموعة السلالات (P12، P12، P12) الأبكر بالنسبة لعدد الأيام من التشتيل حتى أول قطفة حيث بلغ 71 يوم حيث يمكن اعتمادها عندما يكون الهدف من التربية الباكورية.
 - تميزت السلالتين (P20،P12) أعلى قيمة بالنسبة لطول فترة القطاف وصلت حتى 98 يوم.
 - _
- يمكن اعتماد السلالات (P19، P20، P20) كسلالات مبشرة بهدف التحسين الوراثي لصفات الثمرة الاقتصادية (طول وقطر ووزن الثمرة وسماكة جدار الثمرة).
 - تعتبر السلالات P41 ،P24 ،P12، P14 من أفضل السلالات المبشرة بالنسبة لصفة إنتاجية النبات.
- توزعت السلالات المدروسة عند إجراء التحليل العنقودي وفق مواصفات الثمرة والنبات إلى مجموعتين رئيسيتين، ضمت المجموعة الأولى مجموعتين (9 سلالات)، بينما اجتمعت السلالات المتبقية في المجموعة الثانية.
- كان التباين البيئي أعلى من التباين الوراثي لمعظم الصفات المدروسة (للأطوار الفينولوجية، وطول النبات وعدد الأفرع الرئيسية) مما يدل على أن الصفات تأثرت بالعوامل البيئية أكثر من العوامل الوراثية، مما أدى إلى انخفاض نسبة التوريث بالمعنى الواسع.
- كان التباين الوراثي أعلى من التباين البيئي لصفات الثمرة وانتاجية النبات مما يدل على أن الصفات تأثرت بالعوامل الوراثية أكثر من العوامل البيئية، مما أدى إلى ارتفاع نسبة التوريث بالمعنى الواسع لهذه الصفات.

مما سبق نقترح:

- متابعة العمل على السلالات المتميزة بهدف اعتمادها رسمياً من قبل اللجنة الوطنية لاعتماد الأصناف في سورية ليصار إلى توزيعها للمزارعين.

دراسة الارتباط البيئي والوراثي ومعامل المسار لتحديد الصفات المهمة التي يمكن اعتمادها كمؤشرات انتخابية مبكرة في عملية
 التحسين الوراثي للفليفلة الحريفة مستقبلاً.

ازدواجية الاهتمام: يعلن المؤلف أنه ليس لديه ازدواجية في الاهتمام مرتبطة بهذه المخطوطة.

مساهمات المؤلف: متساوية بين المؤلفين.

التمويل: لم تتلقى هذه المخطوطة أي تمويل.

المراجع:

البياتي، حازم محمود حميد (1997). مكونات تحليل التباين الوراثي للحاصل ومكوناته في القطن الابلاند. المؤتمر العلمي السادس لهيئة المعاهد الفنية، البحوث الزراعية 299 – 108: ص.

المجموعة الإحصائية الزراعية السنوية (2023). وزارة الزراعة والإصلاح الزراعي. مديرية الإحصاء والتخطيط.

- منظمة الأغذية والزراعة للأمم المتحدة، 2010- إيقاف فقدان الموارد الوراثية النباتية. http://www.fao.org/nr/cgrfa/ctheme/ar
- Belay F., Abate B., & Tsehaye Y. (2019). Genetic Variability & Characters Association in Hot Pepper (Capsicum annuum L.) Genotypes in Central Zone of Tigray, Northern Ethiopia. Journal of Biology, Agriculture & Healthcare www.iiste.org ISSN 2224-3208.
- Bosl&, P. W. & Votava, F. J., .(2002). Peppers, vegetable & spice capsicums. CABI Publishing, p. 204 (2000).
- Datta, S., & Das, L. (2013). Characterization & Genetic Variability Analysis in *Capsicum annuum* L. Germplasm. *SAARC J. Agri.*, 11(1): 91-103 (2013).
- Drvoshanova, B., Ivanovska S., Jankulovska, M., Popsimonova, G. (2022). Variation of Fruit Morphological Traits in *Capsicum annuum* L. Germplasm Collection from North Macedonia. *Journal of Agricultural, Food & Environmental Sciences Vol 76 No 1 (2022) 26-33*.
- Ellegren, H & Galtier, N. (2016). Determinants of genetic diversity. *Nature Reviews Genetics* volume 17, pages 422–433.
- FAOSTAT data, (2024) "last updated January 18, 2024". http://faostat.fao.org/ AOSTAT Database Results.htm.
- Farwah, S., Hussain, K., Rizvi, S., Hussain, Syed M., Rashid, M., & Saleem, S. (2020). Genetic variability, heritability & genetic advance studies in chilli (Capsicum annuum L.) genotypes. *International Journal of Chemical Studies* 2020; 8(3): 1328-1331
- Hussein. I. A. & Mahdi. Sh. S., .2017. Genetic Variation in Bell Peppers (*Capsicum annuum* L.) Collected from Iraqi Local Markets by Using AFLP Marker. 8th International Conference on Agricultural, Environment, Biology & Medical Sciences. ISBN 978-93-86878-07-6.
- Johnson, H. W., H. F. Robinson & R. E. Comstock. (1955). Estimates of genetic & environmental variability in Soya Bean. *Agron. J.*, 47: 318-324.

- Lahbib K., Bnejdi F., & El Gazzah M. (2013). Genetic diversity evaluation of pepper (Capsicum annuum L.) in Tunisia based on morphologic characters. *Afr. J. Agric. Res.*
- López Castilla, L. del C., Hernández, R. G., de la Cruz Castillo Aguilar, C., Martínez-Hernández, A., Ortiz-García, M. M., & & ueza-Noh, R. H. (2019). Structure & genetic diversity of nine important l& races of Capsicum species cultivated in the Yucatan Peninsula, *Mexico. Agronomy*, 9(7),376
- Martínez-Ispizua, E., Calatayud, Á., Marsal, J. I., Mateos-Fernández, R., Díez, M. J., Soler, S., Valcárcel, J. V., & Martínez-Cuenca, M.-R. (2022). Phenotypic Divergence among Sweet Pepper L& races Assessed by Agro-Morphological Characterization as a Biodiversity Source. *Agronomy 12, 632*
- Nankar, A. N., Todorova, V., Tringovska, I., Pasev, G., Radeva-Ivanova, V., Ivanova, V., & Kostova, D. (2020). A step towards Balkan Capsicum annuum L. core collection: Phenotypic & biochemical characterization of 180 accessions for agronomic, fruit quality, & virus resistance traits. *PLoS ONE*, 15(8)
- Patel, M.Z., Reddi, M.V., Rana, B.S. & Reddy, B.J. (1989). Genetic divergence in safflower (Carthamus tinctorius L.). Indian J. Genet. 49 (1): 113-118.
- Patidar R., Kumar ., Jatav V., Sharma C.K., Maurya D & Dukpa P. (2023). STUDIES ON GENETIC VARIABILITY, HERITABILITY & GENETIC ADVANCE IN HOT CHILLI (Capsicum annuum L.). *An International Refereed, Peer Reviewed & Indexed Quarterly Journal for Applied science*.
- Santiago-Luna, E. G., Carrillo-Rodríguez, J. C., Chávez-Servia, J. L., Perales-Segovia, C., & Heredia-Garcia, E. (2018). Variation of plant & fruit traits in native mexican costeño pepper. *Horticultura Brasileira*, 36(3), 399–407.
- Sharma, A., Kumcar, M., Kumar, N., Dogra RK & Kumari, S.(2019). Studies on Interrelationships among Yield & Yield Contributing Traits in Bell Pepper (Capsicum annuum L. var. grossum). Journal of Phermacognosy & Phytochemistry 2019; 8(2): 646-649.
- Singh, R. K. & B. D. Chaudhary. (1977). Biometrical method in quantitative genetic analysis. *Kamla Nagar, Delhi 110007. India.*
- Tchiegang, P., M. Fewou & V. K. Noutchougoue. (1999). Etude compare uelqes constituents chimiquees de deux types de piment. pendant la conservation dans une saumure acid. *J. of Food Engin*, 42(2): 117-123.
- Tomooka, N. (1991). Genetic diversity & 1& race differentiation of mungbean, (Vigna radiataL.) Wilczek, & evaluation of its wild relatives (The subgenus Ceratotropics) as breeding materials. Tech. Bull. Trop. Res. Centre, Japan No. 28. Ministry of Agriculture, Forestry & Fisheries. Japan.p. 1.
- Vidyashree, A.B., Allolli, T.B., Ravi, Y. & Mulge, R., (2018). Genetic Variability Studies in Byadagi Chilli (Capsicum annuum L.), *Int. J. Pure App. Biosci.* 6(5): 1120-1125 (2018).

Research Article ⁶Open Access

تقدير معدل الجرعة المحفزة من سماد كبريتات الأمونيوم لتثبيت النيتروجين حيوياً بواسطة Rhizobium Bacteria في نبات الفول تحت الظروف المحلية

 $^{^{2}}$ فاطمة إبراهيم بن عامر 1 هدى أحمد سعيد الحديدي

الباحث الاول1: قسم التربة والمياه، كلية الزراعة، جامعة طرابلس، طرابلس، ليبيا.

الباحث الثاني*: قسم التربة والمياه، كلية الزراعة، جامعة طرابلس، طرابلس، لسبا.

المعدلات [0-20-25-00] - 20 وقد تفاوت استجابة الصنفين عند إضافة لقاح الصنف المغربي، والصنف المصري] ، وقد تفاوت استجابة الصنفين عند إضافة لقاح Rhizobium المعزول والمعدّ محليا مع المعدلات المحددة من النيتروجين، وكان التجانس في النتائج ملحوظا في [النسبة المئوية للنيتروجين في النبات، وزن العقد البكتيرية، عدد العقد البكتيرية، وزن الجذور] والذي كان متفقا مع نتائج العديد من الدراسات السابقة سواء في النبات المعامل وغير المعامل، مع وجود فروق معنوية عند مستوى معنوية [F2k2]، وقد أوضحت النتائج بلقاح Rhizobium المعدّ محليا في هذه الدراسة تحت مسمى [F2k2]، وقد أوضحت النتائج المتحصل عليها من التجربة قيد الدراسة لموسميين متتالين أن أنسب معدل محفز وأفضل معاملة لكل العوامل المدروسة هي إضافة [F2k2] في وجود لقاح Rhizobium، وهذا يؤكد أن معدل الجرعة المتعارف عليها [F2k2] عير كافية وغير فعالة لتثبيت النيتروجين حيوياً تحت الظروف المحلية.

المستخلص: أجربت الدراسة لتحديد الجرعة المحفزة من سماد كبريتات الأمونيوم وذلك بإضافة

الكلمات المفتاحية: بكتيريا Rhizobium، تثبيت النيتروجين حيوياً، الجرعة المحفزة، كبريتات الأمونيوم، Vicia faba، التجفيد.

The Determination of The Initiative Amount of Ammonium Sulfate Fertilizer Rates for Biological Nitrogen Fixation by Rhizobium Bacteria on Vicia Faba Plant Under Local Condition

Abstract: In order to determine the rate of initiative amount of ammonium sulfate fertilizer (0,20,25,50,100) Kg N/ha. The experiment was conducted using phenomena of biological nitrogen fixation, two cultivars of broad bean(vicia faba) were used "Egyption and Moroccian" In this study ,the response of the two cultivars were variable when locally isolated Rhizobium bacteria F2K22 was added as an inoculum in combination with different ammonium sulfate fertilizer rates. The results obtained showed remarkable homogeneity in the studied parameters [percent of nitrogen in plant, Wight of root nodules, number of root nodules and root Wight] ,which was agreed with previous studies either inoculated and noninoculated plants with the significant difference at 0.01 in an inoculated plants with Rhizobium inoculum locally isolated F2k22. Finally the result obtained from the two season experiments showed that the addition of 25 kg N/ha in combination with Rhizobium inoculum was the proper promotive rate, this indicates that the known rate 20 kg N/ha is not the proper rate under local conditions to fix nitrogen biologically.

Keywords: Rhizobium; Biological Nitrogen Fixation; Initiative Amount; Ammonium Sulfate; Vicia Faba; Lypholization.

Received: 13 May 2024

Accepted: 21 September 2024

Publish online: 05 October 2024

¹ Department of Soil and Water, Faculty of Agriculture, Tripoli University, Tripoli, Libya.

^{*}Corresponding author: hodaalhadede1983@gmail.com Department of Soil and Water, Faculty of Agriculture, Tripoli University, Tripoli, Libya

المقدمة

إن التزايد الملحوظ والمتفاقم للتعداد السكاني وعدم تكافئه مع مصادر الغذاء وكمياته المحدودة وخاصة مصادر البروتين النباتي، ونظراً للحاجة الملحة لمصادر الغذاء فإن الاستخدام الجائر وغير المشروط للأسمدة المعدنية كان لازماً لتوفير الطلب الملح للغذاء عالمياً. وحيث إن النبات يحتاج بصفة عامة للعناصر السمادية الكبرى والصغرى، فإن النيتروجين يعد حاجة ضرورية للنباتات البقولية وبكميات وفيرة، وخاصة في الترب خفيفة القوام الفقيرة في محتواها من النيتروجين، وقد كان لهذه الإضافات الجائرة للأسمدة المعدنية تأثير مباشر على تلوث المياه الجوفية مسبباً بذلك العديد من الأمراض منها: سرطان الأمعاء، ومرض الطفل الأزرق (FAO, 1984) blue baby disease

وللعديد من المنظمات الدولية مثل (WHO, FAO, ECARDA, NIFTAL, AFRA) دور أساسي ومهم في إيجاد حلول بديلة للأسمدة المعدنية عن طريق التعريف بالتقنيات والدراسات الحديثة في المجال، وذلك باعتماد سبل البحث في التثبيت الحيوي للنيتروجين باعتباره الحل الأمثل لإنتاج النباتات البقولية، وهي مصدر مهم للبروتين النباتي، ويمثل وحدات إنتاجها (بكتيريا Rhizobium والنبات البقولي والبيئة المحيطة).

وتربط رؤوس هذا المثلث علاقة تكافلية منظمة تحكمها بكتيريا Rhizobium بسلالاتها المتوافقة مع النبات البقولي المزروع، وظروف بيئية مناسبة تشمل الرطوبة، درجة الحرارة، تركيز أيون الهيدروجين، والجرعة المحفزة من النيتروجين المعدني لعملية التثبيت، وخاصة في الترب ذات المحتوى المنخفض من النيتروجين.

العلاقة التكافلية المنظمة بين بكتيريا Rhizobium، والنبات البقولي هي أبدع نموذج حي من الخالق لمصنع نيتروجين في أدق وحدات إنتاجه بقدرة على تثبيت حوالي 450-550 كجم ن /ه/لسنة بالنسبة لنبات الفول (FAO, 1984) وهذا المصنع الرباني كان مصدراً لكثير من الأفكار والأبحاث للعديد من الشركات المتخصصة، والمعامل في تصنيع لقاح بكتيريا Rhizobium واختيار الحامل المناسب لها مثل الفحم، البيتموس، نشارة الخشب، بقايا النباتات وغيرها من الأوساط الحاملة المناسبة لمختلف الترب والبيئات.

يوزع اللقاح في الأوساط الحاملة المصنعة بنسب معلومة وأعداد بكتيرية مدروسة حسب احتياجات (النبات البقولي)، والذي يتكافل مع البكتيريا لتثبيت النيتروجين المعدني لغرض إضافتها مع اللقاح، وهي تعمل كمنشط للبكتيريا في بداية عملية التثبيت الحيوي للنيتروجين الجوي.

وقد أجريت دراسات كثيرة في محاولة لتحديد الجرعات المحفزة، والتي تتأثر بالعديد من العوامل مما يجعل المعدل المتعارف عليه 20 كجم/ه جرعة غير ثابتة لكل الظروف المتفاوتة من التوافق بين النبات البقولي، وسلالة البكتيريا، وأعدادها، وكذلك قوام التربة، ومحتواها من النيتروجين (Jacob & Duque, 1982).

• أهداف الدراسة:

- 1. محاولة لتحديد الجرعة المحفزة من سماد النيتروجين في عملية التثبيت.
- 2. التأكيد على وجوب توافق اللقاح المحلى مع النبات البقولي المزروع في نجاح عملية التثبيت.

مواد و طرائق البحث

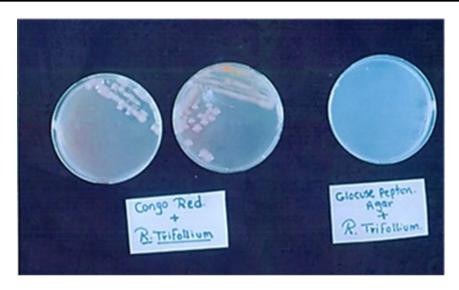
- موقع التجربة: محطة أبحاث كلية الزراعة، المساحة المزروعة 340م2.
- 240 م² مزروعة فعلياً، وفرق المساحة فواصل بين المعاملات ولم يسبق زراعة القطعة وتسميدها كيميائياً لمدة 3 سنوات متتالية.
- تصميم التجربة: تحت نظام القطع المنشقة مرتين بطريقة القطاعات العشوائية الكاملة (RCBD)، وتم تقسيم المكرر إلى 5 قطع، ومن ثم توزيع التركيزات الخمس عشوائياً.
- مساحة القطعة 6 a^2 قسمت بالتساوي إلى قطع منشقة أصغر a^2 ، زرع في كل قطعة a^2 صنوف من كل صنف a^2 حبات لكل صنف، أي عدد a^2 نبات لكل صنف، ولكل معاملة في القطعة المزروعة.
- خواص التربة بمنطقة الدراسة: أخذت عينات من موقع الدراسة بتوزيع منسق كما هو مبين بالجدول 1 للتعرف على درجة التوصيل الكهربي EC dS/m at 25c° لمستخلص تربة (1:1)، درجة التفاعل pH، نسبة النيتروجين المتيسر، نسبة الفسفور المتيسر، والبوتاسيوم المتيسر بالجزء في المليون (ppm) (Black, 1965).

وتعتمد كفاءة تثبيت النيتروجين في التربة على العديد من العوامل، بما في ذلك البقوليات والهواء والتربة فوجد أن تثبيت النيتروجين في البرسيم الأحمر يمكن أن يتراوح من 50-200 رطل/فدان أي ما يقارب من 100-400 كجم/هكتار سنوياً اعتماداً على هذه المتغيرات (Bergman et,.al 2012).

جدول: (1). بعض الخواص الكيميائية للتربة المستعملة في التجربة.

البوتاسيوم المتيسر	الفسفور المتيسر	النيتروجين المتيسر	EC dS/m at	PH	الموقع
		ppm	25c° (1:1)		
184	41.9	9.8	0.37	7.8	التربة

- إعداد موقع الدراسة: حراثة وقلب التربة في منطقة الدراسة مع إضافة الفسفور، والبوتاسيوم في صورة سماد فوسفات البوتاسيوم درجة تحليله (45 55 0) الذي يحتوي على ما نسبته 55% P_2O_5 و P_2O_5 وذلك لتهيئة التربة للزراعة، وتفادي ظهور أعراض النقص على النبات مع إضافة المعدلات من النيتروجين بتركيزات (0 20 20 50 100) كجم/هـ باستعمال سماد كبريتات الأمونيوم مع متابعة نسبة الرطوبة.
- إعداد البذور: أعدت البذور، وعقمت مع التأكيد على التعريف الصحيح للأصناف المستعملة من الفول الاسم العلمي (faba وفق استشارة الاختصاصيين في وزارة الزراعة .
- وكانت الأنواع المستخدمة الحبة الكبيرة والمعروفة بالصنف Moroccian (V1)، والصنف Egyption ذو الحبة الصغيرة (V2) نسبة الإنبات كانت 100 % للمغربي و 97% للصنف المصري.


أضيف اللقاح المعدّ محلياً للبذور بعد تعقيمها في مجمل عددها 2520 بذرة .

- إعداد اللقاح البكتيري المحلي: تم تجميع بكتيريا Rhizobium من نبات الفول المزروع محلياً من 10 مواقع غرب ليبيا وأعد اللقاح، واستخدم لمدة موسمين في الصوبة الزجاجية لمعرفة أفضل طرق الإضافة، ومن النتائج أن الإضافة للبذور أفضل من الإضافة للتربة.
- وأعيد تجهيز اللقاح بعد استكمال الاختبارات المتعارف عليها (الشريك، 2009)، كما هو مبين بالجدول 2، وتنميتها على وسط غذائي انتقائي مثل آجار بيبتون عبارة عن وسط فاصل، أي عدم نمو مستعمرات عليه يؤكد أن المزروع هو بكتيريا

Rhizobium كما هو موضح بالشكل 1، وهذا متوافق مع طرائق عزل بكتيريا Rhizobium من العقد الجذرية لنبات اللوبيا (Jumaah et al., 2022).

. Rhizobium	لبكتيريا	الحيوبة	الاختبارات	.(2	جدول :(
-------------	----------	---------	------------	-----	---------

آجار البيبتون GPA	کونجو رد CR	بروموثيمول بلو BTB	صبغة جرام G	الاختبار
لا يوجد نمو	لا يوجد لون أحمر	لون برتقالي	لون أحمر	المشاهدة
Rhizobium	Rhizobium	سريعة النمو	جرام سالب	النتيجة

شكل: (1) . الاختبارات الحيوية لتأكيد نمو بكتيريا Rhizobium .

بعد التأكد من فاعلية اللقاح مع الأصناف المزروعة تحت الظروف المحلية من خلال التطبيق لمدة موسمين زراعيين سميت (F2K22) وحفظت في معامل كلية العلوم بجامعة قاريونس لزيادة دراستها وتصنيفها. حفظت Rhizobium في أجار مائل غطى بالزبت لإعادة حفظها بالتجفيد Lypholization.

الزراعة: عند نقل اللقاح للحقل روعي فيه ضوابط حفظ اللقاح من التلوث. غمرت البذور باللقاح لمدة 6 ساعات متواصلة ثم زرعت بعدد 21 حبة لكل معاملة في القطع الثانوية لكل صنف، وأضيف اللقاح الذي يحتوي كل ملي منه على 10º خلية راعت بعدد 21 مباشرة فوق البذرة، والبذور غير المعاملة وضعت في أماكنها دون معاملة وفق التوزيع العشوائي حسب التصميم مع تركيز السماد المستخدم، والمتابعة الدورية من الري والتعشيب.

إعداد ووزن العينات: تم جني المحصول عند نهاية مرحلة التزهير وبداية الإثمار، ثم التجميع وفق آلية محددة مع أخذ الوزن الرطب، وزن الجذور، وزن العقد الرطبة، وعدد العقد. تم تجفيف كل ذلك في فرن درجة حرارته 65- 70م المدة 18 ساعة، طحنت العينات، وجُمعت في أنابيب محكمة الإغلاق جاهزة للتحليل، وقدَرت في العينات % النيتروجين باستخدام جهاز كلداهل (Black, 1965).

التحليل الإحصائي: استخدم برنامج Costat في تحليل النتائج، حيث قورنت المتوسطات حسب اختبار أقل فرق معنوي L.S.D، وذلك لزبادة الدقة؛ لمعرفة مقدار الجرعة المحفزة.

النتائج والمناقشة

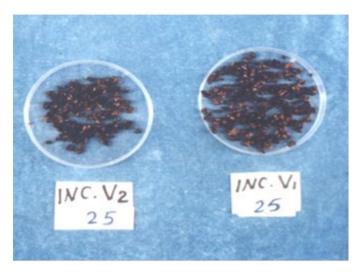
تأثير السماد الكيميائي والمعاملة ببكتيريا Rhizobium على نسبة النيتروجين بالنبات المعامل وغير معامل لكلا الصنفين كما هو موضح بالجدول 3، تبين أن هناك فروقاً معنوية ناتجة عن إضافة لقاح Rhizobium وهذا يتوافق مع (2015) بأن في حالة معاملة البذور ببكتيريا Rhizobium قبل زراعتها يزيد من إنتاجية المحصول البقولي بزيادة قدرها 15-20 % ،وإشارة لدراسة (Wu et al., 2005) في استخدام السماد الحيوي بديلاً عن الأسمدة الكيميائية ساهم في زيادة خصوبة التربة وتحسين معدل نمو النبات وإنتاجيته.

ومن المقارنة الأفقية في حالة عدم إضافة سماد معدني للنبات المعامل وغير معامل بـ Rhizobium يتضح تأثير اللقاح مفرداً بدون وجود سماد معدني، وتثبيت النيتروجين حيوياً من الفروق بين نسبة النيتروجين للنبات المعامل وغير معامل بـRhizobium مع الأخذ في الاعتبار تشابه الظروف لكلا المعاملتين .

% ن).	لنيتروجين بالنباتات (لنسبة المئوية ل	ماد الكيميائي في اا	. Rhızobıum والس). تاثير المعاملة بـ	جدول :(3

النبات غير المعامل	النبات المعامل	المعاملة السمادية كجم ن/ه
0.41	0.76	0
0.44	0.64	20
0.50	1.29	25
0.51	0.72	50
0.64	0.46	100
b 0.50	a0.77	المتوسط العام

متوسط موسمين متتالين

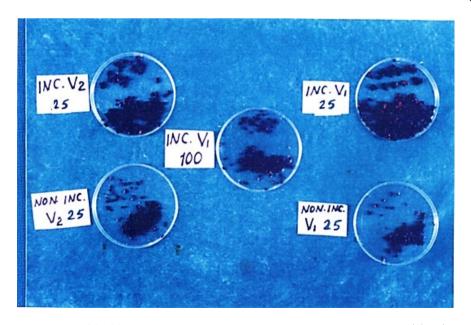

a ,b المتوسطات التي تشترك في حرف واحد لا يوجد بينهما فروق معنوبة عند مستوى معنوبة 0.01 L.S.D

كما يوضح جدول 4 أن للتسميد تأثيراً واضحاً على متوسط وزن العقد البكتيرية لنبات الفول، وبالمقارنة نجد أن معدل 25 كجم ن/هـ أدى إلى الحصول على أعلى وزن لعقد البكتيريا، وهذا يدل على أن نشاط بكتيريا Rhizobium في علاقتها التكافلية مع نبات الفول ملحوظ كما هو موضح بالشكل 2، وهذا متوافق مع ما أدلت به نتائج التلقيح ببكتيريا العقد الجذرية بالسلالة المحلية EN12 على المستجلبة TLA380 و SUDA1021 مع إضافة 20 كجم نيتروجين مع اللقاح، و 50 كجم نيتروجين في عدم إضافة اللقاح. المقارنة أدت إلى زيادة معنوية في عدد ووزن العقد، ومستوى التربة من النيتروجين في معدل 20 كجم نيتروجين للهكتار (أسامة وآخرون.، 2021)، بينما نجد أن معدل 100 كجم ن/هـ المضاف أدى إلى الحصول على أقل وزن لجذور نبات الفول المعامل بهذا المعدل، وهنا نستدل على تشيط عمل Rhizobium في وجود المعدلات.

جدول :(4) . متوسط وزن العقد البكتيرية على النبات الواحد لكل من الصنفين (جم/ نبات).

	7)	صنف المعامل	الصنف غير المعامل	
المعاملة السمادية كجم ن/ه	V1	V2	V1	V2
0	1.50	2.10	1.00	1.20
20	2.15	2.15	0.60	1.60
25	3.15	2.75	2.10	1.00
50	2.30	2.25	0.55	1.20
100	1.60	0.90	1.40	1.30

متوسط موسمين متتالين


شكل: (2). مقارنة وزن العقد البكتيرية على صنفي الفول المعامل بـ Rhizobium عند 25 كجم ن /هكتار.

يوضح الجدول 5 وشكل 3 الذي يعكس أن إضافة 25 كجم ن/ه هي المعاملة الأفضل بين المعدلات المضافة الأخرى بالنسبة لمتوسط أعداد العقد البكتيرية، حيث إن أعداد العقد في 25 كجم ن/ه أكبر من عددها عند إضافة 100 كجم ن/ه رغم أن العدد لا يعنى أن كل العقد فاعلة في تثبيت النيتروجين.

جدول :(5). متوسط عدد العقد البكتيرية لكلا صنفي الفول (عقدة/نبات).

ير المعامل	الصنف غير المعامل		الص	المعاملة السمادية كجم ن/ه
V2	V1			المعالمة الممادية دجم ناراد
110	162	220	300	0
90	182	148	240	20
120	252	250	400	25
258	265	285	361	50
160	259	244	286	100

متوسط موسمين متتالين

شكل: (3). يوضح مقارنة عدد العقد الجذرية لصنفي الفول المعامل باللقاح Rhizobium وغير المعامل

أما تأثير المعاملة بـ Rhizobium، والتسميد الكيميائي على وزن الجذور كما هو موضح بالجدول 6 كانت هناك فروق معنوية بين الفول المعامل باللقاح Rhizobium وغير المعامل للصنفين، بينما لم يكن للسماد الكيميائي تأثير معنوي رغم الاختلاف في الأوزان، فبدون إضافة السماد كان وزن الجذور 17.5 جم/نبات معامل و 12جم/نبات غير معامل، و كذلك في المقارنة الأفقية عند إضافة 25 كجم ن/ه نجد وزن الجذور للنبات المعامل 18جم/نبات بينما غير المعامل 14 جم/نبات وعند 100 كجم ن/ه للنبات سواء كان معامل أو غير معامل لم يسجل أية فورقات معنوية، يرجع ذلك للإضافة الكبيرة للسماد الذي بدوره يؤدي إلى تثبيط نشاط الـ Rhizobium عند مقارنة النبات المعامل به Rhizobium في وجود 100 كجم ن/ه عن النبات غير المسمد يتضح تأثير التسميد المعدني كما هو مبين في الشكل 4.

ميد في متوسط وزن الجذور لصنفي النباتات المعاملة وغير المعاملة (جم/نبات) .	جدول :(6) . تأثير التس
--	-------------------------------

النبات غير المعامل	النبات المعامل النبات غي	
12	17.5	0
12	19	20
14	18	25
11	16	50
14	14	100
b 12.6	a 17.03	المتوسط العام

متوسط موسمين متتالين

a,b المتوسطات التي تشترك في حرف واحد لا يوجد بينهما فروق معنوية عند مستوى معنوية

التقارب في وزن الجذور عند معدل 100كجم ن/ه والنبات المعامل بـRhizobium دون إضافة سماد معدني؛ يرجع سببه لتكوين عدد أكبر من عقد الجذور نتيجة نشاط الـRhizobium في النبات المعامل، وعدم تكوين العقد بعدد كافي من هذه البكتيريا عند إضافة 100كجم ن/ه قد يكون ناتج عن التركيز العالي للنيتروجين الذي يفوق الجرعة المحفزة مما يؤدي إلى تثبيط نشاط وهذا يؤكد دور بكتيريا Rhizobium الفعال على عدد العقد الجذرية، ووزنها للنبات المعامل عنها من النبات غير المعامل.

شكل: (4). تأثير التسميد و لقاح Rhizobium من عدمه على وزن الجذور.

الخلاصة

بعد إجراء الدراسة اتضح أن التسميد الحيوي باستخدام لقاح Rhizobium المعد محلياً للتثبيت الحيوي للنتروجين في التربة في وجود الجرعة المحفزة المدروسة تحت الظروف المحلية له نتائج معنوية مشجعة ومؤثر إيجابي لتثبيت النتروجين في التربة والنبات، والذي قد يكون بديلاً للأسمدة الكيميائية وخاصةً النيتروجينية منها، والتأكيد على وجود لقاح معد محلياً وجرعة محفزة محددة محلياً من السماد النيتروجيني وأصناف جيدة من النبات البقولي يؤدي كل ذلك إلى تربة تحتوي على معدلات مناسبة من النيتروجين المشبت حيوياً وأعداد وافرة من بكتيريا Rhizobium وبالتالى إنتاج وافر من البقوليات.

ازدواجية الاهتمام: لا يوجد تضارب في المصالح.

مساهمات المؤلف: متساوبة بين المؤلفين.

التمويل: لا يوجد تمويل لدعم هذه المخطوطة

المراجع

أسامة حامد، محمد عبد الله، محي الدين جمعة، عمر أحمد محمد، وكمال الدين الأمين أحمد. (2021). أثر التلقيح بسلالات مختلفة من بكتيريا العقد الجذرية و التسميد النيتروجيني على نبات الحلبة. المجلة العربية للنشر العلمي، العدد 29 ص 289.

يوسف محمد الشريك (2009). أساسيات علوم الأحياء الدقيقة - عملي - كلية الزراعة جامعة الفاتح.

- Bergman, B., Sandh, G., Lin, S., Larsson, J., & Carpenter, E. J. J. F. m. r. (2012). Trichodesmium–a widespread marine cyanobacterium with unusual nitrogen fixation properties. *37*(3), 286-302.
- Black, C. J. I. p., Madison Wisconsin, USA. (1965). Methods of soil analysis part 1 physical properties Am. Soc. Agron.
- FAO, (1984). Legume Inoculate and their use.
- Jacob Neto, J., & Duque, F. J. D.-C. N. d. P. d. S. (1982). Analysis of morphological components, yield components and biological nitrogen fixation in soybean cultivars (Glycine max (L.) Merrill). (1).
- Jumaah, O. H., Sultan, R. H., Assafi, M. S. J. J. o. E., & Science. (2022). Antimicrobial Activity of Local Rhizobial Isolates Against Some fungi. 31(2), 141-149.
- Santra, S. C., Mallick, A., & Samal, A. C. J. R. t. i. b. I. I. P. H. P. L. (2015). Biofertilizer for bioremediation. 205-234.
- Wu, S. C., Cao, Z., Li, Z., Cheung, K., & Wong, M. H. J. G. (2005). Effects of biofertilizer containing N-fixer, P and K solubilizers and AM fungi on maize growth: a greenhouse trial. *125*(1-2), 155-166.

Doi: https://doi.org/10.54172/1b3jh176

Research Article ⁶Open Access

تقييم خصائص الجودة لثلاثة أصناف محلية من القمح الطري (قمح الخبز) وصنف مُدخل مزروعة تحت نظام الري التكميلي

جمال عمر نصر 1* ، صلاح الدين مصطفى أبو غرسة 2 ، محمد عبد السلام الككلى 8 وناصر محمد خطاب 4

الباحث الاول¹*: علوم وتقنية الأغذية، مركز البحوث الزراعية، طرابلس، ليبيا.

الباحث الثاني: قسم الأحياء، كلية العلوم، جامعة مصراته، ليبيا.

الباحث الثالث: قسم الجودة، شركة الموسم لطحن الغلال، طرابلس، ليبيا.

الباحث الرابع: قسم المحاصيل الحقلية، مركز البحوث الزراعية، البيضاء، ليبيا.

*Corresponding author: Jamal Omar Nasr: jamalbulgasem@gmail.com, Department of Food Science & Techn., Agricultural Research Center, Tripoli, Libya.

² Salaheldin M. Abo-Gharsa: <u>Ssgharsa017@Sci.misuratau.edu.ly</u>, Department of Biological Science, Faculty of Science- Misurata University, Misurata, Libya.

³ Mohamed A. Elkekli Elkekli.m@gmail.com, Department of Quality, Almosim Co. For Grinding Grains, Tripoli, Libya.

⁴ Nasir M. Khatab: Naserktab2@gmail.com, Department of Field Crops, Agricultural Research Center, Al-Bayda, Libya.

Received: 30 July 2024

Accepted: 20 December 2024

Publish online: 31 December 2024

30 July 2024

المستخلص: اجريت هذه الدراسة لتقييم ومقارنة جودة الحبوب لثلاثة أصناف من قمح الخبز المحلي مع صنف مُدخل معروف بإنتاجيته العالية في موطنه الأصلي. أجريت التجربة في المحطة التجريبية مصراته التابعة لمركز البحوث الزراعية – ليبيا للموسم الزراعي 2020–2021 تحت نظام الري مصراته التابعة لمركز البحوث الزراعية بين الأصناف المدروسة في كافة صفات الجودة للحبوب باستثناء وزن الهكتولتر والمتمثلة في وزن الألف حبة، رقم السقوط، الصلابة وفق طريقة مؤشر حجم الجسيمات، محتوى الرطوبة، محتوى البروتين، الجلوتين الرطب، مؤشر الجلوتين ورقم الترميب. سجل الصنف المُدخل سلامبو أعلى القيم لوزن الهكتولتر ووزن الألف حبة ورقم السقوط ومحتوى الرطوبة حيث بلغت 81.6 كجم/هكتولتر، 52.1 جرام، 523 ثانية، 12.59 على التوالي. بينما سجل الصنف المحلي بحوث 208 أعلى القيم لمحتوى البروتين والجلوتين الرطب ورقم الترسيب حيث بلغت 65.51% الأصناف المختيرة وأعلى ومؤشر للجلوتين حيث كانا 74.1% 86.0% على التوالي، بينما أظهر الأصناف المختيرة وأعلى ومؤشر للجلوتين حيث كانا 74.1% 86.0% على التوالي، بينما أظهر الصنف المحلي بحوث 212 صلابة مفرطة بلغت 9.0%. تشير الدراسة إلى أن الصنف المحلي بحوث 120 والصنف المذخل سلامبو، من بين كل الأصناف التي تم اختبارها، أثبتا قدرة أكبر على التكيف مع الظروف البيئية للمنطقة بامتلاكهما لغالبية خصائص الجودة المطلوبة والضرورية لصناعة الخبز.

Evaluation of Quality characteristics of three local soft wheats (bread wheat) varieties and an introduced variety grown under a supplementary irrigation system

Abstract: This study was conducted to evaluate and compare the grain quality of three local bread wheat cultivars with an introduced variety known for its high productivity in its native region. The experiment was carried out at the Musrata Experimental Station, affiliated with the Agricultural Research Center, Libya, during the 2020-2021 growing season under supplemental irrigation conditions. The results revealed significant differences among the studied cultivars in all grain quality traits, except for hectoliter weight. The evaluated parameters included thousand kernel weight, falling number, hardness (particle size index method), moisture content, protein content, wet gluten, gluten index, and sedimentation value. The introduced Salambo variety recorded the highest values for hectoliter weight (81.6 kg/hl), thousand kernel weight (52.1 g), falling number (523 seconds), and moisture content (12.59%). Among the local cultivars, Bohouth 208 showed the highest values for protein content (15.66%), wet gluten (37.7%), and sedimentation value (32.8 ml). Meanwhile, Bohouth 210 exhibited the best hardness and the highest gluten index (86.0%), with hardness recorded at 14.7%. In contrast, Bohouth 212 displayed excessive hardness, reaching 9.0%. The findings indicate that Bohouth 210 and the introduced Salambo variety demonstrated superior adaptability to the environmental conditions of the region, possessing most of the essential quality traits required for bread-making.

Keywords: Soft wheat, Bread wheat, Supplementary irrigation, Adaptation, Quality characteristics

The Author(s) 2024. This article is distributed under the terms of the *Creative Commons Attribution-NonCommercial 4.0 International License* ([http://creativecommons.org/licenses/by-nc/4.0/] (http://creativecommons.org/licenses/by-nc/4.0/]), which permits unrestricted use, distribution, and reproduction in any medium, *for non-commercial purposes only*, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

المقدمة

يُعد القمح الطرى (.Triticum aestivum L) من أكثر المحاصيل زراعة واستهلاكا في العالم. فهو يوفر للإنسان الغذاء اليومي الغني بالسعرات الحرارية والبروتينات (Delibaltova وآخرون، 2014)، ويتميز بقدرته على إنتاج عجينة dough تتسم بخاصية المرونة واللزوجة viscoelastic مما جعله الأكثر ملائمة من بين المحاصيل الأُخرى في انتاج الخبز (Aissaoui و Fenni 2018). تَستورد ليبيا منذ سنوات حوالي 90% من احتياجاتها من القمح سنوباً، فقد استوردت في 2020 حوالي 89.7% من متطلباتها من القمح للاستهلاك المحلي (FAO)، كما سعت منذ عقود عبر قطاع الزراعة لتغطية العجز القائم من احتياجاتها من هذا المحصول محلياً، إلا أن عقبات عدة حالت دون ذلك أهمها الظروف البيئية المعاكسة، باعتبارها واحدة من أكثر الدول جفافاً في المنطقة والعالم (Heemskerk و Heemskerk، 2012؛ ICARDA، ICARDA). تُشكل خصائص الجودة العامل الرئيسي في تجارة وتداول القمح للأغراض الصناعية، وتتنبذب أسعاره تبعاً لمحتواه من البروتين باعتباره العامل المؤثر في صناعة وجودة الخبز (Iqbal وآخرون، 2015). انتاجية القمح ترتبط في الغالب بعلاقة سلبية مع جودة الحبوب خاصة تحت ظروف الإجهاد البيئي، وبرجع ذلك أساساً الى أن الزبادة في الإنتاجية تكون مصحوبة عموماً بانخفاض في محتوى الحبوب من البروتين (Aissaoui و Ozturk ؛2018 ، Fenni و Ozturk ، Pena ، 2004 ، Aydin وآخرون، 2021؛ Tatar وآخرون، 1202 وآخرون، 2020). هذه العلاقة كان لها مردود سيء على انتاج القمح بالطرق التقليدية في ليبيا، وأدى ذلك لعزوف عديد المزارعين عن زراعة القمح والاتجاه لزراعة محاصيل أخرى لها عائد مادي أفضل. تَرَكَّزَ نشاط مركز البحوث الزراعية في ليبيا منذ تأسيسه على استنباط وتحسين أصناف محلية من القمح ذات الإنتاجية العالية، وكذلك في تقييم مدى تأقلم المُدخلات varieties من القمح المعروفة في مواطنها الأصلية بالإنتاجية والجودة العالية وذلك بزراعتها تحت ظروف البيئية المحلية. التراكيب الوراثية genotypes هي العامل المحدد لخواص الجودة في القمح، إلا أنها تتأثر بالظروف البيئية من رطوبة وحرارة وغيرها، كما تتأثر بالعمليات الزراعية من ري وتسميد وحراثة وغيرها. التراكيب الوراثية الاكثر استقرارا وثباتاً في مواجهة العوامل البيئية المختلفة يُمكن الاعتماد عليها كأصناف مُحسنة لإنتاج محاصيل من القمح تتسم بالإنتاجية والجودة العالية (Tayyar، 2010). تهدف هذه الدراسة لمقارنة سمات الجودة لثلاث أصناف محلية من قمح الخبز مع صنف مُدخل معروف بالإنتاجية والجودة العالية زرعت جميعها بمحطة مصراته للبحوث الزراعية التابعة لمركز البحوث الزراعية تحت نظام الري التكميلي ضمن برنامج تحسين إنتاجية الحبوب في ليبيا.

المواد وطرق البحث

تم الحصول على ثلاث عينات حبوب لأصناف محلية من قمح الخبز وهي بحوث 208، بحوث 210 وبحوث 212 وكذلك عينة حبوب للصنف المُدخل لقمح الخبز سلامبو لتقييم ومقارنة جودتها. نظفت عينات حبوب القمح جميعها ونقيت من الشوائب وحفظت إلى حين إجراء الفحوصات اللازمة عليها. عينات القمح للأصناف الأربعة كانت حصيلة تجربة أجريت خلال الموسم الزراعي 2020–2021 في محطة مصراته للبحوث الزراعية، التي تقع على بعد (21كم) إلى الغرب من مركز مدينة مصراته وشرق مدينة طرابلس (282كم)، وخط طول (15.05) شرقا وعرض (32.32) شمالاً، وترتفع (16م) عن مستوى سطح البحر، وتقع ضمن معدل الخط المطري 250 مل سنويا. أجريت التجربة تحت نظام الري التكميلي وتحت معدل تسميد 150 كيلوجرام للهكتار من السماد الأساسي فوسفات ثنائي الأمونيوم (46% /18) Di-ammonium phosphate (18/ 46%)

الخصائص الفيزيائية: قُدر وزن الهكتولتر Hectoliter weight باستخدام اسطوانة قياسية سعة 1 لتر، قسمت الأوزان التي تم الحصول عليها بالجرام للتر المقاس من القمح على 10، وقدرت القيم بالكيلوجرام/هيكتولتر. كما تم تقدير وزن الالف حبة

Automatic Seed Counter. من حبوب قمح سليمة ونقية بوزن 10 جرام باستخدام جهاز. Thousand Kernel Weight Perten من حبوب قمح سليمة ونقية مؤشر حجم الجسيمات Particle Size Index باستخدام طاحونة Grain hardness وقدرت صلابة الحبوب Lab Mill 3303 المعملية المزودة بالقرص الناعم وذلك طبقاً للطريقة القياسية 50-55 (2000 AACC).

الخصائص الكيميائية: استخدمت طاحونة Buhler mod. MLI-204 Mill في تقدير محتوى الرطوبة استخدمت طاحونة Buhler mod. MLI-204 Mill التقدير كل من الجلوتين طبقاً للطريقة القياسية Perten Lab Mill 3100 ، واستخدمت طاحونة (2000 ،AACC) بوكذلك في تقدير الرطب Wet Gluten ومؤشر الجلوتين Gluten Index طبقاً للطريقة القياسية Saluten Index وكذلك في تقدير محتوى البروتين Content Protein بطريقة كلداهل Kjeldahl في المادة الجافة طبقاً للطريقة القياسية 10-46 (2000).

الخصائص الفيزوكيميائية: استخدمت طاحونة Perten Lab Mill 3100 لتقدير رقم السقوط Falling Number طبقاً للطريقة القياسية 8-56 (2000،AACC)، وطاحونة الترسيب Brabender Sedimat Automatic Grinding Mill في تقدير رقم الترسيب وفق اختبار زيليني Zeleny طبقاً للطريقة القياسية 116/1 (1994 ،ICC). أُجريت اختبارات تحليل الجودة لكافة العينات بمكررين.

التحليل الإحصائي: تم استخدام اسلوب التحليل القياسي للتباين الأحادي (ANOVA one way) لحساب المتوسطات والغروق المعنوية بين المعاملات باستخدام برنامج جين ستات Gen Stat (2010 ، VSN International)، وتمت مقارنة المتوسطات باستخدام LSD عند مستوى معنوية (P = 0.05).

النتائج والمناقشة

يُعد وزن الهكتولتر Hectoliter weight أحد العوامل التي يُعتمد عليها في تصنيف جودة القمح للاستدلال على ارتفاع أو قلة نسبة الدقيق المتوقعة عند طحن الحبوب، فكلما زادت القيمة زادت كمية المادة الجافة، وبالتالي إنتاجية الدقيق. ويختلف وزن الهكتولتر اعتمادًا على التركيب الوراثي للصنف وعلى الظروف البيئية المحيطة والعمليات الزراعية (2021 ، 2021 ، 100 وبحوث Yıldırım وي 2021 ، في هذه الدراسة قيم وزن الهكتولتر للأصناف المحلية الثلاثة بحوث 208، بحوث 210 وبحوث 212 كانت 81.3 و 81.5 كيلوجرام/هيكتولتر على التوالي، في حين كان للصنف المدخل سلامبو 210 كيلوجرام/هيكتولتر، وكان متوسط وزن الهكتولتر للأصناف ككل 81.3 كيلوجرام/هيكتولتر جدول (1). لم يتم تسجيل أي فروق معنوية في وزن الهكتولتر بين كل الأصناف. يُشار الى أن وزن الهكتولتر المقبول لحبوب القمح للاستخدام الصناعي يجب ان لا يقل عن 76 كيلوجرام/هيكتولتر على أنها أصناف قمح جيدة جدًا ولخرون، 2012 بالماتف الأربعة في هذه الدراسة يمكن اعتبارها أصناف قمح ذات أهمية اقتصادية وصناعية بالنظر لأوزان الهكتولتر لها.

وزن الألف حبة Thousand kernel weight هو أداة مفيدة لتقييم إنتاجية الطحن المحتملة، فمثلما يساهم حجم الحبة Thousand kernel weight في تحسين إنتاجية الحبوب فإنه كذلك يساهم في تحسين ناتج الطحن على حد سواء، وكلما زاد وزن الألف حبة ارتفع مردود الدقيق من القمح المطحون، ويتأثر وزن الألف حبة وحجم الحبة بالعامل الوراثي وبالتأثيرات البيئية وكذلك بالعمليات الزراعية [Qbal] وآخرون، 2015). تراوحت قيم وزن الألف حبة للأصناف المختلفة في هذه الدراسة ما بين 43.3 و 52.1 جرام بمتوسط

48.9 جرام لكافة الأصناف، وسجل الصنف المدخل سلامبو أعلى قيمة، بينما سجل الصنف المحلي بحوث 210 أقل قيمة جدول (1). ورغم وجود فروق معنوية بين الأصناف المدروسة إلا أنها تميزت بالختسابها لقيم مرتفعة جيدة من وزن الألف حبة ذات أهمية وقيمة اقتصادية وصناعية، فالأوزان التي تتعدى 33.0 جرام هي الأكثر قبولاً لعمليات الطحن.

تُعد صلابة الحبوب Hardness سمة من سمات الجودة لحبوب القمح المرتبطة بخصائص الطحن، وعاملاً مهمًا في تحسين جودة المنتج النهائي للقمح (Pena، 2002). يُفضل استخدام الحبوب الصلبة أو المتوسطة الصلابة Pena، يُفضل استخدام في صناعة الخبز المخمر leavened والمسطح (الخبز العربي) باعتبار أن مستويات النشا المُتهشم damaged starch نتيجة الطحن من هذه الفئات من القمح مناسبة لبلوغ أعلى كمية ماء يُمكن امتصصها في العجين والمرغوبة من قبل الخباز (Başçiftçi و Rao (2015 ، Kınacı). يُستخدم القمح متوسط الليونة الى متوسط الصلابة Rao (2021). يُستخدم القمح متوسط الليونة الى متوسط الصلابة to medium hard الذي تتراوح صلابته ما بين 17- 25% (وفق اختبار مؤشر حجم الجسيمات المُتبع في هذه الدراسة والذي تزداد فيه الصلابة مع انخفاض القيمة) لصناعة الخبر الجيد، بينما تكون جودة الخبر أعلى باستخدام قمح متوسط الصلابة medium hard نتراوح صلابته ما بين 17- 20% (Başçiftçi و2005، Kınacı؛ 2009، Švecc). تتأثر الصلابة بالعوامل الوراثية كما تتأثر بالظروف البيئية السائدة، وتتدخل هذه الخاصية في تحديد مسارات عملية الطحن من زمن وطاقة مُستهلكة وفي العائد من الدقيق المرغوب، وبالتالي فهي من أهم خصائص الجودة المؤثرة في تكاليف المنتج النهائي (Famera) وآخرون، 2004؛ Hruskova و Vecc و Pena (2009، Švecc). تدهورت خاصية الصلابة في كل الأصناف المدروسة، ولم يتمكن أي صنف من بلوغ قيم الصلابة المرغوبة والمفضلة لإنتاج الخبز الجيد رغم وجود فروق معنوبة بين الأصناف المختبرة. فقد سجل الصنف المحلى بحوث 210 أعلى وأفضل قيمة من بين كافة الأصناف المُختبرة وكانت 14.7%، وكانت أقل قيمة 9.2% للصنف المحلى بحوث 212. قيمة الصلابة للصنف المدخل سلامبو كانت 12.8%، فيما كان متوسط قيم الصلابة للأصناف كافة 12.6% جدول (1). فحسب Rao وآخرون، (2021)، فإن الصلابة تزداد مع نقص مياه الري نتيجة الإجهاد المائي water stress كعامل بيئي بسبب قلة النشا المتراكم في الحبوب. إلا أن الصلابة الزائدة في الأصناف المدروسة في هذه الدراسة يبدو أنها كانت مُتأثرة بالعامل الجيني بشكل أكبر باعتبارها نمت جميعها تحت نظام الري التكميلي ومن المستبعد أن تكون قد تعرضت للإجهاد المائي.

جدول (1) الخصائص الطبيعية لأصناف القمح

صلابة الحبوب (%)	وزن الألف حبة (جم)	وزن الهكتولتر (كجم/ هكتولتر)	الصنف
13.6 ab	51.3 a	80.9 a	بحوث 208
14.7 a	43.3 c	81.3 a	بحوث 210
9.2 c	48.7 b	81.5 a	بحوث 212
12.8 b	52.1 a	81.6a	سلامبو
12.6	48.9	81.3	المتوسط
1.40	2.55	1.86	LSD _{0.05}
4.0	1.9	0.8	CV (%)

يُعد محتوى الرطوبة Moisture content لحبوب قمح الخبز ذا أهمية حاسمة لعمليات ما بعد الحصاد من تخزين وطحن وتداول، فالمحتوى العالي من الرطوبة في الحبوب يؤدي إلى زيادة النشاط الميكروبي والى انخفاض كل من المادة الجافة والوزن

النوعي وناتج الطحن من الدقيق (Aissaoui و Aissaoui) ليس لمحتوى الرطوبة أي تأثير مباشر على جودة الحبوب، إلا أن تأثيره يمكن أن يكون بشكل غير مباشر على الجودة من حيث تحديد فترة التخزين للحبوب، فمستويات الرطوبة الأقل من 11.0% في الحبوب تكون أكثر ملائمة لظروف التخزين ولظروف عمليات الطحن (Aissaoui) و Iqbal وأخرون، 2015% في هذه الدراسة تراوحت نسبة الرطوبة لحبوب القمح للأصناف المدروسة من 12.11 إلى 12.59% بمتوسط 20.8%. وقد سجل الصنف سلامبو أعلى قيمة، فيما سجل الصنف المحلي بحوث 208 أدنى قيمة جدول (2). ويبدو أن نظام الري التكميلي في هذه الدراسة قد ساهم في زيادة محتوى الرطوبة للحبوب لمختلف الأصناف، فحسب Ozturk و 2004، (2004)، فإن الجفاف يزيد من معدل فقدان الماء من الحبوب.

يُعد محتوى البروتين Protein content في حبوب القمح عاملاً حاسماً في صناعة الخبز، وبرتبط المحتوى العالى من البروتين في القمح بخصائص صنع الخبز الجيد، وتعتمد جودة مُنتَج الخبز بشكل كبير على كمية quantity ونوعية quality البروتين الموجود في أصناف قمح الخبز (Pena، 2002). يتراوح محتوى حبوب القمح من البروتين ما بين 7 الى 18% من المادة الجافة (Aissaoui)، وتعتمد نسبة البروتين في حبوب القمح جزئيًا على النوع وعلى الصنف، وتتأثر كذلك بالعوامل المناخية خاصة الرطوية المتاحة أثناء مرحلة تعبئة الحبوب grain-filling، وكذلك بالعمليات الزراعية المختلفة من معدلات الأسمدة النيتروجينية المستخدمة ووقت إضافتها ومُتبقياتها في التربة (Iqbal وآخرون، 2015؛ Rharrabti وآخرون، 2003؛ Yıldırım و2021، Deger). سجلت الأصناف المحلية الثلاث بحوث 208، 210 و212 ارتفاعاً معنوباً في محتواها من البروتين عن الصنف المدخل سلامبو، حيث كانت محتوباتها من البروتين 15.66، 15.38 و 15.57% على التوالي على أساس الوزن الجاف، في حين كان 14.40% للصنف سلامبو جدول (2). ويبدو من النتائج أن محتوى البروتين للأصناف المدروسة مرتفع نسبياً خاصة في الأصناف المحلية. فقد وجد Sakr وآخرون، (2021)، في دراستهم تحت ظروف الإجهاد المائي ارتفاعاً ملحوظاً في محتوى البروتين لأصناف قمح الخبز تراوحت ما بين 16.96 و18.14%. فالإجهاد المائي خاصة في مرحلة امتلاء الحبوب يؤثر على جودة أصناف القمح بزيادة محتواها من البروتين وبخفض محتواها من النشا بشكل ملحوظ (Ozturk و Tatar 2004، Aydin وآخرون، 2020). اصناف القمح في هذه الدراسة من المستبعد أن تكون قد تعرضت للإجهاد المائي في أي مرحلة من مراحل النمو، حيث أنها نمت جميعها تحت نظام الري التكميلي ولم يتم ملاحظة انخفاض يذكر في أوزان حبوبها، لذلك فإن ارتفاع محتواها من البروتين قد يعود الى حد كبير لنوعية ومعدلات الأسمدة النيتروجينية المستخدمة من ناحية والى التراكيب الجينية للأصناف من ناحية أخرى خاصة في الأصناف المحلية.

يعتبر الجلوتين Gluten هو البروتين الرئيسي من بين مختلف البروتينات الموجودة في حبوب القمح، ويُشكل ما يقارب من 87 الى 87% من بروتينات دقيق القمح، وهو البروتين الوظيفي functional المسؤول عن بنية العجين dough structure وعلى جودة المنتج النهائي للخَبْرُ (Pena)، كمية ونوعية الجلوتين تعتبر السمة الأكثر أهمية من بين مكونات جودة القمح الأخرى في تحديد المنتج النهائي، وبشكل عام يؤدي الدقيق الذي يحتوي على نسبة عالية من الجلوتين إلى نتائج أفضل بالنظر لقدرته على امتصاص أكبر كمية من الماء في العجين وكذلك للحجم الجيد للرغيف المتوقع انتاجه منه، فمحتوى الدقيق من الجلوتين الرطب wet gluten بنسبة 20% أو أقل مقبول على أنه منخفض، بينما بنسبة 27% فما فوق يعتبر مرتفعاً للجلوتين الرطب Waldırım (2010 ، Tayyar (2015) و آخرون، 2014) المحلي وكذلك المحلي عدن الرطب في هذه الدراسة ما بين 30.7 و 37.7%، وكانت أعلى قيمة للصنف المحلي بحوث 206 وأدناها للصنفين المحلي بحوث 210 والمدخل سلامبو. متوسط قراءة الجلوتين الرطب للأصناف كافة كانت (33.9%

جدول (2). رغم احتواء كافة الأصناف المدروسة على كمية جيدة من الجلوتين الرطب فقد تفوق الصنفان المحليان بحوث 208 وبحوث 212 معنوياً على الصنفان المحلي بحوث 210 والمدخل سلامبو في محتوى الجلوتين الرطب، واقترن ارتفاع محتوى الأصناف المدروسة من الجلوتين الرطب بشكل عام بارتفاع محتواها من البروتين، فكمية الجلوتين في الدقيق تزداد بزيادة محتواه من البروتين (Curic) وآخرون، 2001؛ Iqbal وآخرون، 2015).

مؤشر الجلوتين Yıldırım هو مقياس لجودة الجلوتين ويُستخدم لتحديد ما إذا كانت بنية الجلوتين في القمح ضعيفة أم قوية Yıldırım وstretchbility وstretchbility والمطاطية Stretchbility والمواطية والمواطية Stretchbility والمواطية والمواطية Stretchbility والمواطية والمواطيق المواطية والمواطيق المواطيق الأول في المواطيق والمواطيق والمواطية والمواطيق والمواطيق والمواطيق والمواطيق والمواطيق والموا

رقم الترسيب Sedimentation volume أو اختبار زيليني Zeleny test هو أحد أهم الاختبارات المستخدمة لتمييز الأنماط الجينية Sedimentation volume للقمح بناءً على كمية وجودة الجلوتين فيها (Carter) و آخرون، 1999؛ Dhaka وآخرون، 2012). رقم الترسيب الأقل من 15 مليلتر يشير الى ضعف الجلوتين في الدقيق، 16–24 مليلتر متوسط القوة، 25–36 مليلتر قوي وأكثر من 36 مليلتر على أنه جلوتين قوي جداً في الدقيق، وبشكل عام فالمحتوى الأعلى من الجلوتين في الدقيق عادة ما يترافق مع قيم أعلى لرقم الترسيب للأصناف المختلفة أعلى لرقم الترسيب للأصناف المختلفة من 2018، 1208 مليلتر. وقد كانت أعلى قيمة للصنف المحلي بحوث 208 وأدنى قيمة للصنف المحلي بحوث 100، في حين بلغ رقم الترسيب للصنف سلامبو 29.3 مليلتر. متوسط قيمة رقم الترسيب بالإضافة الى وأصناف المختبرة كافة كانت 28.35 مليلتر جدول (2). يتطلب التوصيف الكامل لدقيق القمح قياس رقم الترسيب بالإضافة الى معرفة بالبروتين ومحتوى الجلوتين. رقم الترسيب يشير الى الارتباط بين محتوى الجلوتين وجودته وكذلك لجودة الخبز وحجم معرفة وتبقى تركيبة البروتين ومتوى الجلوتين. وتبقى تركيبة البروتين وما protein composition هي المحدد الرئيسي لرقم الترسيب الذي عادة ما يرتبط بشدة بمحتوى البروتين وتبقى تركيبة البروتين ومودن، 2015).

يعطي رقم السقوط Falling number مؤشرا على معدل إنبات بعض حبوب القمح على نبات الام قبل الحصاد Falling number يعطي رقم السقوط sprouting نتيجة تعرض محصول القمح الناضج لفترة طويلة للظروف الجوية الرطبة الناتجة عن تبخر الماء من التربة في أنظمة الري التكميلي أو الكامل أو نتيجة هطول الأمطار المتأخرة تحت نظام الري البعلي. وينتج عن الإنبات زيادة في نشاط إنزيم α-amylase في الحبوب الذي يعمل على تجزئة وإطلاق سكر الجلوكوز على

النمو وانتاج غاز ثاني أكسيد الكربون اللازم لرفع العجين للحجم المطلوب خلال مرحلة التخمير، ويترتب عن محدودية أو فرط الإنبات انتاج رغيف خبز صغير الحجم ومتدني الجودة. يُقاس نشاط إنزيم α-amylase من خلال تقييم لزوجة العجين، ومن خلال نلك يُمكن تقدير الحجم المتوقع لرغيف الخبز، ورقم السقوط الأمثل للقمح يتراوح ما بين 220 إلى 250 ثانية (Aissaoui) و Tatar و 2018، Fenniو كورون، 2020).

سجلت الأصناف المختلفة اختلافات معنوية فيما يخص رقم السقوط، فقد تراوحت قيم رقم السقوط للأصناف المختلفة ما بين 444 و 523 ثانية بمتوسط 480 ثانية للأصناف كافة، وسجل الصنف المدخل سلامبو أعلى قيمة فيما سجل الصنف المحلي بحوث 212 أقل قيمة (جدول 2). قيم رقم السقوط لكافة الأصناف في دراستنا تجاوزت المدى الأمثل لرقم السقوط وتوافقت مع النتائج التي تحصل عليها Aissaoui و 2018. Fenni عيث لم تظهر في دراستهم فروق معنوية بين الأصناف بينما كان الاختلاف معنوياً تحت تأثير معاملات الري والتي لاحظوا فيها انخفاضاً

بنحو 25% في قيم رقم السقوط تحت تأثير الري التكميلي، وتوافقت نتائجنا كذلك مع النتائج التي تحصل عليها Tatar وآخرون (2020)، والتي ظهر من خلالها وجود فروق معنوية في رقم السقوط ما بين الأصناف ومن موسم لآخر. ومن الواضح أن الصنف المدخل سلامبو في دراستنا كان أقل الأصناف تأثراً بعامل الري بتسجيله لأعلى قيمة لرقم السقوط من بين الأصناف الأخرى.

جدول (2) الخصائص الكيميائية والفيزوكيميائية لأصناف القمح

ز وكيميائية	الخصائص الفيز وكيميائية			الخصائص الكيميائية			
رقم السقوط (ثانية)	رقم الترسيب (مل)	مؤشر الجلوتين (%)	جلوتين رطب (%)	محتوى بروتين (%)	محتوى رطوبة (%)	الصنف	
481ab	32.8a	40.5b	37.7a	15.66a	12.11b	بحوث 208	
474ab	21.6d	86.0a	30.7b	15.38a	12.58a	بحوث 210	
444b	25.5c	28.0b	36.4a	15.57a	12.26b	بحوث 212	
523a	29.3b	88.5a	30.7b	14.40b	12.59a	سلامبو	
480	27.3	60.8	33.9	15.25	12.38	المتوسط	
53.03	1.10	15.27	3.63	0.48	0.16	LSD _{0.05}	
4.0	1.4	9.1	3.9	1.1	0.5	CV (%)	

لوحظ من جدول (3) وجود ارتباطات موجبة وأخرى سالبة قوية وجيدة بين عناصر الجودة في هذه الدراسة عند مستوى معنوية و0.05%. أهمها العلاقة الموجبة التي تربط كل من محتوى الرطوبة ورقم السقوط من ناحية مع مؤشر الجلوتين والسالبة التي تربطهما من ناحية أخرى بمحتوى البروتين وبالجلوتين الرطب. وُجدت علاقة موجبة بين الصلابة ومؤشر الجلوتين وأخرى سلبية مع الجلوتين الرطب. علاقة موجبة وجدت بين محتوى البروتين مع الجلوتين الرطب وأخرى سلبية تربط كل منهما مع مؤشر الجلوتين. علاقة موجبة معنوية بين رقم الترسيب ووزن الألف حبة من ناحية وأخرى متوسطة مع الجلوتين الرطب. ارتباطات أخرى موجبة وسالبة ضعيفة سجلت كذلك بين عدد من عناصر الجودة.

جدول (3). معاملات الارتباط بين خصائص الجودة

مؤشر الجلوتين	الجلوتين الرطب	محتوى البروتين	محتو <i>ى</i> الرطوبة	الصلابة	رقم السقوط	وزن الألف حبة	وزن الهكتولتر	
								وزن الهكتولتر
							0.042	وزن الألف حبة
						0.368	0.066	رقم السقوط
					0.429	-0.285	-0.282	الصلابة
				0.358	0.375	-0.338	0.379	محتوى الرطوبة
			-0.707	-0.132	-0.674	-0.376	-0.267	محتوى البروتين
		0.653	-0.909	-0.444	-0.530	0.394	-0.231	الجلوتين الرطب
	-0.891	-0.731	0.895	0.657	0.599	-0.233	0.116	مؤشر الجلوتين
-0.309	0.501	-0.086	-0.562	0.010	0.357	0.877	-0.263	رقم الترسيب

الخلاصة

نتائج الدراسة أظهرت أن الأصناف المختبرة دون استثناء لم تتمكن من تلبية كافة معايير الجودة المطلوبة واللازمة لصناعة الخبز الجيد. فقد تمتع الصنف المحلي بحوث 210 بغالبية خصائص الجودة المطلوبة لإنتاج الخُبز الجيد، إلا أنه اتسم بصلابة زائدة وبتدهور نسبي في جودة محتواه من البروتين. أما الصنف المدخل سلامبو رغم تمتعه بغالبية خصائص الجودة المطلوبة لإنتاج الخبز الجيد، إلا انه اتسم كذلك بصلابة فاقت صلابة الصنف المحلي بحوث 210. الصنفان المحليان بحوث 208 وبحوث 212 عانى كل منهما من الصلابة ومن التدهور الواضح في جودة وقوة الجلوتين. يمكن الاستفادة من نتائج الدراسة في برامج التربية breeding programs لأمكانية تحسين خصائص الجودة للأصناف المختبرة.

الشكر والتقدير

نود تقديم الشكر لشركة الموسم لطحن الغلال لمساهمتها في دعم جزء من هذه الدراسة البحثية.

ازدواجية الاهتمام: يعلن المؤلفون أنه ليس لديهم ازدواجية في الاهتمام مرتبطة بهذه المخطوطة.

مساهمات المؤلف: المساهمة متساوبة بين المؤلفين.

التمويل: لا يوجد تمويل لهذه المخطوطة.

المراجع

- AACC. American Association of Cereal Chemists (2000): Approved methods of the AACC, 10th Edition. 2000. methods 38-12, 44-15, 46-10, 55-30 and 56-81. St. Paul, MN.
- Aissaoui, M. R., Fenni, M. (2018). Grain yield and quality traits of bread wheat genotypes under Mediterranean Semi-arid conditions. Scholar Journal of Agriculture and Veterinary Sciences, 5(3), 166-171.
- Başçiftçi, Z. B., Kınacı, G. (2015). Investigation on quality characters and correlations among hardness with others in bread wheat. GIDA: The Journal of Food, 40(4).

- Carter, B. P., Morris, C. F., Anderson, J. A. (1999). Optimizing the SDS sedimentation test for end-use quality selection in a soft white and club wheat breeding program. Cereal Chemistry, 76(6), 907-911.
- Ćurić, D., Karlović, D., Tušak, D., Petrović, B., Dugum, J. (2001). Gluten as a standard of wheat flour quality. Food Technology and Biotechnology, 4(39), 353-361.
- Delibaltova, V., Kirchev, H., Zheliazkov, I., Dyulgerski, Y. (2014). Investigation on the yield and grain quality of bread wheat varieties in southeast Bulgaria.
- Dhaka, V., Gulia, N., Khatkar, B. S. (2012). Application of Mixolab to assess the bread making quality of wheat varieties. Open Access Scientific Reports, 1(3), 1-8.
- Faměra, O., Hrušková, M., Novotná, D. (2004). Evaluation of methods for wheat grain hardness determination. Plant, Soil and Environment, 50(11), 489-493.
- FAO. (2022). World Food and Agriculture Statistical Yearbook 2022. FAO.
- Heemskerk, W., Koopmanschap, E. M. J. (2012). Agribusiness development in Libya: a fact-finding mission. Wageningen UR Centre for Development Innovation.
- Hrušková, M., Švec, I. (2009). Wheat hardness in relation to other quality factors. Czech Journal of Food Sciences, 27(4), 240-248.
- ICARDA. (2004). Libya and ICARDA: Ties that Bind, No. 18. ICARDA, Aleppo, Syria, 20 pp. En.
- ICC. (1994). Standard No: 116/1. Determination of the sedimentation value (according to Zeleny) as an approximate measure of baking quality. International Association for Cereal Science and Technology, Huddinge, Sweden.
- Iqbal, Z., Pasha, I., Abrar, M., Masih, S., Hanif, M. S. (2015). Physico-chemical, functional and rheological properties of wheat varieties. Journal of Agricultural Research (03681157), 53(2).
- Ozturk, A., Aydin, F. (2004). Effect of water stress at various growth stages on some quality characteristics of winter wheat. Journal of agronomy and crop science, 190(2), 93-99.
- Peña, R. J. (2002). Wheat for bread and other foods. Bread wheat improvement and production. Food and Agriculture Organization of the United Nations. Rome, 483-542.
- Rao, D. S., Raghavendra, M., Gill, P., Madan, S., Munjal, R. (2021). Effect of drought stress on grain quality attributes in wheat (Triticum aestivum L.) varieties. In Biological Forum—An International Journal (Vol. 13, No. 3, pp. 58-63).
- Rharrabti, Y., Villegas, D., Royo, C., Martos-Núñez, V., Del Moral, L. G. (2003). Durum wheat quality in Mediterranean environments: II. Influence of climatic variables and relationships between quality parameters. Field Crops Research, 80(2), 133-140.

- Sakr, N., Rhazi, L., Aussenac, T. (2021). Bread wheat quality under limiting environmental conditions: I-molecular properties of storage proteins and starch constituents in mature grains. Agriculture, 11(4), 289 -301.
- Tatar, O., Cakalogulları, U., Tonk, F. A., Istipliler, D., Karakoc, R. (2020). Effect of drought stress on yield and quality traits of common wheat during grain filling stage. Turkish Journal of Field Crops, 25(2), 236-244.
- Tayyar, S. (2010). Variation in grain yield and quality of Romanian bread wheat varieties compared to local varieties in northwestern Turkey. Romanian Biotechnological Letters, 15(2), 5189-5196.
- VSN International. (2010). GenStat software for windows. Release 14. VSN Intl., Hemel, Hempstead, UK.
- Yıldırım, A., Atasoy, A. (2020). Quality characteristics of some durum wheat varieties grown in Southeastern Anatolia Region of Turkey (GAP). Harran Tarım ve Gıda Bilimleri Dergisi, 24(4), 420-431.
- Yıldırım, A., Deger, Ö. (2021). Physical, physicochemical (technological) and chemical characteristics of common bread wheat (Triticum aestivum L.) varieties grown in Mardin region of Turkey. Harran Tarım ve Gıda Bilimleri Dergisi, 25(2), 151-162.

Al-Mukhtar Journal of Agricultural, Veterinary and Environmental Science 02 (2): 104-113, 2024

Doi: https://doi.org/10.54172/7bmg0e37

Research Article ⁶Open Access

دراسة بيوكيمائية لثلاث انواع من البقوليات تحت تأثير فيتامين B12 والمستخلصات المائية لأوراق نبات القرع ... Cucurbita pepo L

وسن صالح حسين 1 ، بان عبد العزبز عيدان 2 ، نور الهدى احمد محمد طاهر 8

1.3 قسم علوم الحياة، كلية العلوم، جامعة الموصل، العراق
2 كلية النور الجامعة، العراق

المستخلص: نُفذت الدراسة في قسم علوم الحياة، كلية العلوم، جامعة الموصل، وشملت تجربة في البيت الزجاجي لدراسة التأثير الأليلوباتي للمستخلصات المائية لأوراق نبات القرع (.Cucurbita pepo L) بتركيزين (2% و6% وزن/حجم)، وتأثير فيتامين B12 بتركيزين (2 و6 جزء في المليون)، بالإضافة إلى التأثير المشترك للمستخلص والفيتامين معًا على بعض الصفات البيوكيميائية لبادرات ثلاثة أنواع من البقوليات (الحمص، اللوبيا، والفاصولياء)، والتي تشمل محتوي الكلوروفيل، محتوى الكربوهيدرات، ونشاط إنزيمات الأكسدة والاختزال) كتاليز CAT وبيروكسيداز .(POD) أظهرت النتائج استجابات متباينة بين الأنواع المختبرة للمعاملات المختلفة، إلا أن أبرز ما تم ملاحظته هو التأثير التحفيزي لفيتامين B12 في الصفات المدروسة، حيث تفوق على تأثير المستخلص المائي لأوراق القرع. كما سجلت نباتات الحمص انخفاضًا في محتوى الكلوروفيل، مما رافقه انخفاض في محتوى الكربوهيدرات في معظم المعاملات. أوضحت النتائج أن المعاملة المشتركة بين المستخلص المائي والفيتامين زادت من محتوى الكلوروفيل وخفضت محتوى الكربوهيدرات في كل من اللوبيا والفاصولياء. كما لوحظ حدوث زبادة في نشاط الإنزيمات المضادة للأكسدة في النباتات المعاملة بالمستخلص المائي لأوراق القرع، مما يعد دليلًا على ارتفاع مستوبات أنواع الأوكسّجين التفاعلية (ROS) نتيجةً لتأثير المرّكبات الأليلوباثية المتحررة. وتبين من النتائج أن التركيز 2% كان أكثر فاعلية في زيادة نشاط كل من كتاليز (CAT) وبيروكسيداز (POD) ، ثم انخفضت فعالية هذه الإنزيمات عند التركيز 6%. كما أدى فيتامين B12 إلى زيادة نشاط إنزيمي كتاليز (CAT)وبير وكسيداز (POD) في جميع المحاصيل البقولية المختبرة.

الكلمات المفتاحية: نبات القرع، بيروكسيديز، كتاليز، الكربوهيدرات فيتامين B12.

Biochemical study of three legume types by vitamin B12 and aqueous extracts of *Cucurbita pepo* L. leaves influence

Abstract: This study was conducted in the Department of Biology, College of Science, University of Mosul, and included a greenhouse experiment to investigate the allelopathic effects of Cucurbita pepo L. (squash) leaf aqueous extracts at concentrations (2% and 6% w/v), vitamin B12 at concentrations (2 and 6 ppm), and their combined effects on certain biochemical characteristics of seedlings from three leguminous crops (chickpeas, cowpeas, and beans). The study assessed chlorophyll content, carbohydrate content, and the activity of antioxidant enzymes (catalase (CAT) and peroxidase (POD)). The results revealed varied responses among the tested species to the applied treatments. However, the most notable observation was the stimulatory effect of vitamin B12, which significantly enhanced the studied traits and outperformed the squash leaf aqueous extract treatment. Chickpea plants exhibited a decrease in chlorophyll content, accompanied by a reduction in carbohydrate levels across most treatments. The results further showed that the combined application of the aqueous extract and vitamin increased chlorophyll content while reducing carbohydrate levels in both cowpeas and beans. Additionally, an increase in antioxidant enzyme activity was observed in plants treated with the squash leaf extract, indicating elevated reactive oxygen species (ROS) levels due to the effect of released allelopathic compounds. It was evident that the 2% concentration was more effective in enhancing CAT and POD enzyme activity, whereas their effectiveness declined at the 6% concentration. Furthermore, vitamin B12 led to an increase in CAT and POD enzyme activity across all tested leguminous crops.

Keywords: Cucurbita Pepo; Peroxidase; Catalase; Carbohydrate; B12

*Corresponding author: Wasan Salih Hussain wassbio54@uomosul.edu.iq , Department of Biology, Mosul University , Mosul, Iraq

- ² Ban Abdul-Aziz Edanm <u>banabdulaziz1@gmail.com</u> Department of Biology, Mosul University, Mosul, Iraq
- ³ Noor Al-huda Ahmad Mohammed Taher nooralhudaam@uomosul.edu.iq, University of Al-Hamdaniya, Mosul, Iraq.

Received: 04 November 2024

Accepted: 28 December 2024

Publish online: 31 December 2024

The Author(s) 2024. This article is distributed under the terms of the *Creative Commons Attribution-NonCommercial 4.0 International License* ([http://creativecommons.org/licenses/by-nc/4.0/] (http://creativecommons.org/licenses/by-nc/4.0/]), which permits unrestricted use, distribution, and reproduction in any medium, *for non-commercial purposes only*, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

المقدمة

تعد محاصيل البقول مصدر غذائي مهم للإنسان بسبب احتوائها على نسب عالية من البروتينات والألياف والمعادن المهمة إضافة الى دورها الكبير في خصوبة التربة من خلال التثبيت البيولوجي لـ Nitrogen Fixation Biological) BNF N، ويمكن زراعة البقوليات في نظام مختلط مع المحاصيل الأُخرى أو من خلال نظام الدورة الزراعية (Kebede,2020). تعد ظاهرة الأليلوباثي Allelopathy ظاهرة بيوكيميائية وتشمل مجموعة من التفاعلات الكيميائية التي تحدث بين النباتات عن طريق تحرير مركبات الأييض الثانوي إلى البيئة (Scavo and Mauromicale,2021). تشكل المحاصيل القرعية مجموعة مهمة وكبيرة من المحاصيل النباتية ويعد نبات القرع من النباتات الأليلوباثية حيث تستخدم كمبيدات عشبية (إضافة لاستخدامها كغذاء للإنسان) لاحتوائها على مركبات اليلوباثية مثل القلويدات، الفلافونويدات واحماض البالمتك (Ratnam et al.,2017)

بدأ في السنوات الأخيرة استخدام المحفزات الحيوية وهي مواد تعمل على تحسين نمو وانتاجية النبات من خلال توفير بيئة غذائية مناسبة، وتعد الفيتامينات من بين هذه المحفزات النمو النباتية التي شاع استخدامها في الآونة الأخيرة لتحسين نمو وإنتاجية المحاصيل وزيادة مقاومتها دون إحداث ضرراً للبيئة، إذ تلعب دوراً مهماً في زيادة مقاومة النبات ضد خطر الإصابة بالأمراض وتعمل على تحسين الحاصل (Boubakri et al.,2016). ولهذا تناولت دراستنا استخدام فيتامين B12 لدراسة تأثيره على بعض الصفات الفسيولوجية إضافة الى دراسة تأثير المستخلص والتأثير المشترك للمستخلص والفيتامين معاً في ثلاث محاصيل بقولية (حمص، لوبيا، فاصوليا).

المواد وطرق البحث

1. جمع الاوراق النباتية وتحضير المستخلصات المائية

تم جمع اوراق نبات القرع بعد موسم الحصاد من احدى المزارع التابعة لمحافظة نينوى وجففت الأوراق هوائيا بدرجة حرارة الغرفة ثم طحنت بجهاز blender وحضرت منها المستخلصات المائية بالتركيزين (2 و6% وزن: حجم) وذلك بأخذ (2 و6 غم) من الاوراق النباتية المطحونة ومزجها مع 100 مل من الماء المقطر لمدة 10 دقائق باستخدام (blender) ثم رشحت باستخدام ورق ترشيح Whatman No.1 وجمع الرائق وحفظ في الثلاجة بدرجة 4 – 5 م لحين الاستعمال (Abbas and Hussain,2020).

2. تحضير فيتامين B12

أُستخدم فيتامين B12 المحلول ذي تركيز 500 ppm وتم الحصول عليه من أحد المذاخر الطبية في مدينة الموصل، ولتحضير المحلول الأساسي تم اخذ 1 مل من محول الفيتامين B12 وأكمل الحجم إلى 10 مل للحصول على التركيز 50 ppm ومن هذا المحلول تم تحضير التراكيز (2 و6 ppm) باستخدام قانون التخفيف N1*V1=N2*V2.

3. التجربة الحقلية استخدمت أصص بلاستيكية ذات سعة 5 كغم، ملأت بتربة غرينية طينية وزرعت بعشرة بذور ثم سقيت ب 40 مل من المعاملات والتراكيز المذكورة أعلاه.

4. قياس محتوى الكلوروفيل

تم تقدير محتوى الكلوروفيل الكلي وفق طريقة (Knudson et al.,1997) وذلك بأخذ 0.5 غم من الأوراق النباتية وأُضيف إليها 10 مل من الكحول الأثيلي 95% ووضعت في الظلام لمدة 24 ساعة وبعدها أكمل الحجم إلى 30 مل ثم رشحت وأخذت الامتصاصية باستخدام جهاز Spectrophotometer عند الطول الموجي 649nm و 665 ، وتم حساب كمية الكلوروفيل الكلي وفق المعادلة الاتية:

(Winterman and Demotts, 1965) Chb+Cha= الكلوروفيل الكلي

5.قياس محتوى الكربوهيدرات

اتبعت طريقة (Herbert,1971) في تقدير محتوى الكربوهيدرات في أوراق النباتات وأستخدم جهاز Herbert,1971) في تقدير محتوى الكربوهيدرات لقياس الامتصاصية الضوئية عند الطول الموجي 488 نانوميتر، ومن المنحنى القياسي للكلوكوز تم تقدير محتوى الكربوهيدرات (مايكروغرام/ مل).

6. قياس فعالية انزيم الكتاليز

تم استخلاص الإنزيم حسب طريقة (Pitotti et al.,1995) وذلك بسحق 1غم من الأوراق النباتية مع إضافة المحلول المنظم فوسفات البوتاسيوم—صوديوم بتركيز 0.1 مول واجري الطرد المركزي المبرد للحصول على الرائق الذي استخدم لقياس فعالية الانزيم تبعا لطريقة (Aebi, 1974) التي تعتمد على مقدار الزيادة في الامتصاصية الضوئية لمحلول التفاعل عند الطول الموجي 240 نانوميتر وتمت متابعة التغير بالامتصاصية بعد 5 دقائق، وقدرت فعالية إنزيم الكتاليز وهي كمية الإنزيم التي تسبب تغيراً في الامتصاصية الضوئية بمقدار 0.01 وحدة / دقيقة، وتم حساب الفعالية الإنزيمية حسب المعادلة الآتية:

الفعالية الإنزيمية للكتاليز (وحدة/ مل)

 0.1×0.01 (الزمن / الجهاز / الزمن Δ

7. قياس فعالية انزيم البيروكسيديز

اتبعت طريقة (Pitotti et al.,1995) لاستخلاص انريم البيروكسيديز، اما لقياس فعالية الانريم فقد اتبعت طريقة (Nezih,1985) التي تعتمد أيضا على مقدار الزيادة في الامتصاصية الضوئية عند الطول الموجي 420 نانوميتر. وقدرت الفعالية الإنزيمية (وهي كمية الإنزيم التي تسبب تغير في الامتصاصية بمقدار: 0.01 وحدة / دقيقة) حسب القانون الاتي: الفعالية الإنزيمية للبيروكسيديز (وحدة/ مل) =

 0.1×0.01 / الزمن / Δ الجهاز Δ

النتائج

نتائج الجدول(1) توضح تأثير المعاملة بالمستخلصات المائية لأوراق نبات القرع، فيتامين B12 والمعاملة بالمستخلص والفيتامين معاً على محتوى الكلوروفيل في أوراق أنواع البقوليات المختبرة (حمص، لوبيا، فاصوليا)، إذ نجد حدوث زيادة في محتوى الكلوروفيل في أوراق الفاصوليا المعاملة بمستخلص في أوراق الفاصوليا المعاملة بمستخلص أوراق القرع بالتركيز 2%، وتفوقت المعاملة بالمستخلص المائي لأوراق القرع والفيتامين معاً وبتركيز 6 في إعطاء أعلى نسبة زيادة في محتوى الكلوروفيل في أوراق اللوبيا بلغت 10.22%، في حين كانت أعلى نسبة مئوية للزيادة في الصفة المدروسة لأوراق الفاصوليا بتأثير المعاملة بالفيتامين عند التركيز 6 ppm وبلغت (5.55%). كما بينت النتائج حدوث انخفاض في محتوى الكلوروفيل في أوراق نبات الحمص عند جميع المعاملات وبلغت أعلى نسبة مئوية للانخفاض 4.96% نتيجة التأثير المشترك لكل من المستخلص والفيتامين معاً عند التركيز 6. نتائج التحليل الإحصائي أكدت تفوق المعاملة بالفيتامين على بقية المعاملات في أوراق كل من المستخلص والفيتامين عند المستخلص والفيتامين معاً عند التأثير المشترك للمستخلص والفيتامين معاً عند التأثير المستخلص والفيتامين معاً.

جدول (1). تأثير المستخلص المائي لأوراق نبات القرع، فيتامين B₁₂ والتأثير المشترك للمستخلص والفيتامين معا على محتوى الكلوروفيل في الأوراق

		نوع المعاملة			
 تأثیر الترکیز	مستخلص+ فيتامين	B ₁₂ فیتامین (ppm)	مستخلص القرع (%)	التركيز	المحصول البقوبي
55.17a	55.17a	55.17a	55.17a*	المقارنة	
53.25b	52.72d	53.95b	53.08c	2	الحمص
52.52c	52.43f	52.58e	52.56e	6	
	53.44c	53.9a	53.60b	باملة	تأثير نوع المه
52.24c	52.24f	52.24f	52.24f	المقارنة	
54.67b	57.32ab	53.76d	52.93f	2	لوبيا
55.34a	57.58a	53.12e	55.33c	6	
	55.71a	53.04c	53.5b	<u> املة</u>	تأثير نوع المع
53.82c	53.82d	53.82d	53.82d	المقارنة	
54.68b	56.47ab	54.13c	53.44e	2	الفاصوليا
55.69a	56.21ab	56.81a	54.06c	6	
	55.5a	54.92b	53.77c	عاملة	تأثير نوع المع

محتوى الكربوهيدرات (مايكروغرام/ مل)

من ملاحظة نتائج الجدول (2) يتبين حدوث تباين في محتوى الكربوهيدرات ما بين الزيادة النقصان بتأثير المعاملة بالمستخلصات المائية لأوراق نبات القرع، فيتامين B12 والتأثير المشترك لكل من المستخلص والفيتامين معاً في أوراق الأنواع البقولية المختبرة، إذ لوحظ انخفاض محتوى الكربوهيدرات في أوراق نبات الحمص بتأثير المعاملة بمستخلص أوراق القرع عند كلا التركيزين (2، 6)، كما سبب التأثير المشترك للمستخلص والفيتامين معاً انخفاضا معنوياً في محتوى الكربوهيدرات و بلغت أعلى نسبة مئوية للانخفاض (83.09%) عند التركيز 6 بالتأثير المشترك للمستخلص والفيتامين معاً، في حين حفزت المعاملة بالفيتامين عند كلا التركيزين بناء الكربوهيدرات وسبب التركيز 6 ppm أعلى نسبة للزيادة بلغت (58.54%).

أظهرت المعاملة بالمستخلص المائي للقرع والمعاملة بالفيتامين عند كلا التركيزين زيادة في محتوى الكربوهيدرات لأوراق نباتي اللوبيا والفاصوليا، في حين نلاحظ انخفاض كبير في محتوى الكربوهيدرات بالتأثير المشترك لكل من مستخلص القرع والفيتامين معاً لنباتي اللوبيا والفاصوليا، وبلغت أعلى نسبة مئوية للتثبيط (57.33,88%) في أوراق اللوبيا والفاصوليا على التوالي عند التركيز 6. ومن نتائج التحليل الإحصائي تبين بأن أعلى محتوى للكربوهيدرات في أوراق الأنواع النباتية الثلاثة (حمص، لوبيا، فاصوليا) كان بتأثير المعاملة بفيتامين B12. وبينت النتائج انخفاض محتوى الكربوهيدرات بازدياد التركيز في نبات الحمص، وعلى العكس في نبات اللوبيا فنلاحظ هناك تزايد تدريجي في محتوى الكربوهيدرات بازدياد التركيز إذ أعطى التركيز 6 أعلى قيمة لمحتوى الكربوهيدرات. وفيما يخص نبات الفاصوليا فكان التركيز 2 أعلى تأثيراً في إعطائه أعلى قيمة لمحتوى الكربوهيدرات.

جدول (2) تأثير المستخلص المائي لأوراق نبات القرع، فيتامين B₁₂ والتأثير المشترك للمستخلص والفيتامين معا على محتوى الكربوهيدرات في الأوراق

- أن ال		نوع المعاملة		= 11	t ti ti
— تأثير التركيز	مستخلص+ فيتامين	فيتامينB12 (ppm)	مستخلص القرع (%)	التركيز	المحصول البقولي
0.284a	0.284c	0.284c	0.284c*	المقارنة	
0.257b	0.098f	0.397b	0.277d	2	الحمص
0.238c	0.048g	0.450a	0.218e	6	
	0.143c	0.377a	0.259b	عاملة	تأثير نوع الم
0.293c	0.293e	0.293e	0.293e	المقارنة	
0.360b	0.247f	0.520c	0.313d	2	لوبيا
0.471a	0.125g	0.700a	0.590b	6	
	0.221c	0.504a	0.398b	عاملة	تأثير نوع الم
0.322c	0.322e	0.322e	0.322e	المقارنة	
0.368a	0.091f	0.669a	0.346d	2	الفاصوليا
0.326b	0.052g	0.364c	0.562b	6	
	0.155c	0.451a	0.410b	عاملة	تأثير نوع الم

فعالية إنزبم الكتاليز (وحدة/ مل)

الجدول (3) يبين حدوث زيادة في فعالية إنزيم الكتاليز للأنواع النباتية المختبرة (حمص، لوبيا، فاصوليا) وعند جميع المعاملات (المستخلص المائي لأوراق القرع، فيتامين B12 والمستخلص والفيتامين معاً) باستثناء الانخفاض الحاصل في نبات الحمص عند معاملته بمستخلص القرع بالتركيزين 2 و 6% حيث بلغت أعلى نسبة مئوية للانخفاض (30.83%) عند التركيز 6%. كما يتبين من نتائج التحليل الإحصائي المدرجة في الجدول أدناه أن التأثير المشترك للمستخلص المائي لأوراق القرع والفيتامين معاً بالتركيز 2 أعطى نسبة للزيادة في محتوى الإنزيم لكل من نبات اللوبيا والفاصوليا بلغت أكثر من ضعف ما هو عليه في معاملة المقارنة. ويتضح من تأثير المعاملة تفوق المعاملة بالفيتامين في نبات الحمص على بقية المعاملات، بينما تفوقت معاملة المستخلص والفيتامين معاً على بقية المعاملات في كل من اللوبيا والفاصوليا في إعطاء أعلى قيم لفعالية الإنزيم، ومن النتائج لوحظ أن التركيز 2 كان له الدور الأكبر في إعطائه أعلى فعالية لإنزيم الكتاليز لجميع الأنواع النباتية المختبرة.

جدول (3) تأثير المستخلص المائي لأوراق نبات القرع، فيتامين B12 والتأثير المشترك للمستخلص والفيتامين معا على فعالية انزيم الكتاليز

· c =ti = =f=		نوع المعاملة			المحصول
 تأثیر الترکیز 	مستخلص+ فيتامين	فيتامين ₁₂ (ppm)	مستخلص القرع (%)	التركيز	البقولي
22.31c	22.31d	22.31d	22.31d*	المقارنة	
25.04a	30.17b	26.83c	18.13f	2	الحمص
24.56b	21.05e	37.22a	15.43g	6	
	24.51b	28.78a	18.62c	المعاملة	تأثير نوع
25.30c	25.30g	25.30g	25.30g	المقارنة	
46.9a	62.82a	34.63c	43.25d	2	لوبيا
40.27b	39.77e	48.88b	32.17f	6	
	42.63a	36.27b	33.57c	المعاملة	تأثير نوع
31.08c	31.08g	31.08g	31.08g	المقارنة	
55.45a	67.56a	61.84b	36.97f	2	الفاصوليا
50.14b	51.14d	52.21c	47.09e	6	
	49.92a	48.37b	38.38c	المعاملة	تأثير نوع

فعالية إنزيم البيروكسيديز (وحدة/ مل)

تشير بيانات التحليل الإحصائي في الجدول (4) إلى حدوث زيادة في فعالية إنزيم البيروكسيديز لجميع الأنواع المختبرة (حمص، لوبيا، فاصوليا) وفي جميع المعاملات باستثناء انخفاض فعالية الإنزيم في أوراق نبات الحمص بتأثير المعاملة بمستخلص أوراق القرع بالتركيز 6% وبنسبة بلغت (43.73%)، أما أعلى نسبة للزيادة في فعالية الإنزيم في نبات الحمص فقد كانت بتأثير المعاملة بفيتامين B12 عند التركيز 6 ppm إذ بلغت (91.96%)، كما تبين النتائج حدوث زيادة ملحوظة في فعالية الإنزيم في كل من اللوبيا والفاصوليا حيث سُجلت أعلى قيمة لفعالية الإنزيم في نبات اللوبيا و65.09 وحدة/ مل بتأثير المعاملة بالمستخلص والفيتامين معاً وبالتركيز 2، في حين كانت أعلى قيمة 05.60 وحدة/ مل في نبات الفاصوليا بتأثير المعاملة بالفيتامين بالتركيز ppm2. وعن تأثير نوع المعاملة نلاحظ تفوق المعاملة بالفيتامين في إعطائها أعلى فعالية لإنزيم البيروكسيديز في أوراق كل من نبات الحمص والفاصوليا، بينما تفوقت المعاملة بكل من المستخلص والفيتامين معاً في أوراق اللوبيا في إعطائها أعلى معدل لفعالية الإنزيم. أما تأثير التركيز فإن التركيز 2 أعطى أعلى معدل لفعالية إنزيم البيروكسيديز في جميع الأنواع المختبرة.

جدول (4) تأثير المستخلص المائي لأوراق نبات القرع، فيتامين B12 والتأثير المشترك للمستخلص والفيتامين معا على فعالية انزيم البيروكسيدين

		نوع المعاملة		- "	
تأثير التركيز	مستخلص+ فيتامين	(ppm) B ₁₂ فيتامين	مستخلص القرع (%)	التركيز	المحصول البقولي
19.41c	19.41f	19.41f	19.41f*	المقارنة	_
28.08a	33.31b	28.07c	22.88e	2	الحمص
24.35b	23.18d	37.26a	12.61g	6	
	25.3b	28.24a	18.3c	عاملة	تأثير نوع الم
23.46c	23.46g	23.46g	23.46g	المقارنة	
47.28a	65.09a	34.95f	41.80d	2	لوبيا
42.63b	42.72c	50.03b	35.15e	6	
	43.75a	36.14b	33.47c	عاملة	تأثير نوع الم
27.33c	27.33g	27.33g	27.33g	المقارنة	
52.07a	51.37b	58.60a	46.25c	2	الفاصوليا
37.90b	39.88e	40.66d	33.17f	6	
	39.52b	42.19a	35.58c	عاملة	تأثير نوع الم

المناقشة

أوضحت نتائج الدراسة في الجدول (1) و (2) انخفاض محتوى الكلوروفيل في نباتات الحمص رافقه انخفاضا لمحتوى الكربوهيدرات في معظم المعاملات، ويمكن أن يُعزى سبب التأثير التثبيطي للمستخلص المائي للقرع إلى تأثير المركبات الأليلوباثية على المستوى الخلوي مما يؤدي إلى تحلل البروتوبلاست ومن ثم فأنها بذلك تفقد سلامتها ووظيفتها (Soln et al.,2022)، او قد يكون بسبب تأثير المركبات الأليلوباثية على امتصاص المغذيات والعناصر المعدنية من قبل جذور النباتات ومنها البوتاسيوم الذي يلعب دوراً مهما في انتقال السكريات والبروتين في النبات ومن ثم فإن نقصه يؤثر على اختزان المواد الكربوهيدراتية في النبات (Buckman and Brady,1960)، أما سبب انخفاض محتوى الكلوروفيل في معاملة الفيتامين فقد يعود بسب وجود عنصر الكوبلت في تركيبه والذي يمكن أن يتنافس مع عنصر المغنيسيوم في البلاستيدات مما يؤدي إلى انخفاض محتوى الكلوروفيل (Lwalaba et al.,2017)، او قد يُعزى السبب إلى زيادة فعالية الإنزيم المحطم للكلوروفيل والكاربوهيدرات في كل

من اللوبيا والفاصوليا وبلاحظ زبادة محتوى الكلوروفيل بزبادة التركيز وبمكن أن يعود سبب الاختلاف في التأثير إلى التباين الوراثي للمحاصيل المختبرة (حسين وآخرون،2018)، وتوافقت هذه النتيجة مع ما توصل اليه Keshavarz and Moghadam (2017) إذ أوضحوا بأن نباتات الفاصوليا المعاملة بفيتامين B12 أظهرت زبادة في محتوى الكلوروفيل الكلي والذي أسفر عن زيادة في نمو المجموع الخضري والجذري. وتبين النتائج أن معاملة المستخلص والفيتامين معاً قد سببت زيادة في محتوي الكلوروفيل وخفضت محتوى الكربوهيدرات في كل من اللوبيا والفاصوليا قد يُعزى السبب إلى أن المركبات الأليلوباثية تفاعلت مع الفيتامين مما سبب تغييراً في طبيعة هذه المركبات وإعطائها التأثير التثبيطي لبناء الكربوهيدرات، أو قد يكون التأثير المشترك لكل من المستخلص والفيتامين قد سبب زيادة إنتاج أنواع الأوكسجين التفاعلية ROS إلى الحد الذي يفوق نشاط الإنزيمات المضادة للأكسدة و أثرت على تكوين الأواصر الكلايكوسيدية التي تربط السكريات لبناء الكربوهيدرات أو قد تكون سببت تكسرها ومن ثم أدت إلى انخفاض محتوى الكربوهيدرات. كما بينت نتائج الجدول (3) و (4) حدوث زبادة في نشاط الإنزيمات المضادة للأكسدة للنباتات المعاملة بالمستخلص المائي لأوراق نبات القرع وتعتبر هذه الزيادة دليل على ارتفاع أنواع الاوكسجين التفاعلية ROS في النباتات المختبرة بتأثير المركبات الأليلوباثية المتحررة (Ding et al.,2007) القابلة للذوبان في الماء والتي تم عزلها وتشخيصها ومنها Ferrulic acid الذي اعطى أعلى تركيز بين المركبات المشخصة، إذ أثبتت دراسة أجراها (Politycka (2004) أن معاملة نبات الخيار بالمركب Ferrulic acid سبب زيادة في مستوى بيروكسيد الهيدروجين H2O2 رافقتها زيادة في فعالية إنزيم البيروكسيديز. كما لوحظ أن المركبات الأليلوباثية المتحررة من افرازات جذور نبات Rumex dentatus رفعت فعالية إنزيم الكتاليز CAT والبيروكسيديز POD في نبات الحمص وأُعزي السبب إلى Ferrulic acid و POD في نبات الحمص وأُعزي السبب et al.,2014)، ومن النتائج يتضح أن التركيز 2% كان اكثر فعالية في زيادة نشاط كل من POD و POD ثم تنخفض فعالية هذه الإنزيمات بالتركيز 6% وهذا ينطبق مع ما ذكره (2021),Staszek et al. وهذا ينطبق مع ما ذكره (2021) تزيد من نشاط الإنزيمات المضادة للأكسدة بينما التراكيز العالية تخفض فعالية هذه الإنزيمات. في حين نلاحظ انخفاض نشاط إنزيم الكتاليز في نبات الحمص وهذا يعود لحساسية نبات الحمص للمركبات المتحررة من مستخلصات أوراق القرع. وهذه النتيجة متماشية مع نتيجة (2019) Zhang et al., و POD عيث بينوا حدوث انخفاض في فعالية إنزيم POD و CAT مع ارتفاع مستوى الجذور الحرة H2O2 وجذر الاوكسيد -O في نبات القطن عند معاملته بتراكيز مختلفة من Ferrulic acid. كما سبب فيتامين B12 زيادة واضحة في فعالية انزيم CAT و POD في جميع المحاصيل البقولية المختبرة (حمص، لوبيا، فاصوليا) وانطبقت هذه النتيجة مع ما ذكره (Keshavarz and Moghadam (2017 حول دراستهم عن تأثير فيتامين B12 على نبات الفاصوليا فأعطت النتائج زبادة في فعالية الإنزيمات المضادة للأكسدة (SOD، POD،CAT) وهذ يعود لدور الفيتامين التحفيزي حيث يشارك في تنشيط الإنزيمات المضادة للأكسدة المهمة في تحلل أنواع الاوكسجين التفاعلية Spinneker et al.,2007) ROS

الاستنتاج

نستنتج من النتائج فيتامين ان فيتامينB12 حقق زيادة في الصفات المظهرية وتفوقه على معاملة المستخلص المائي لأوراق القرع كما سبب فيتامينB12 زيادة في فعالية انزيم CAT و POD في جميع المحاصيل البقولية المختبرة، وبينت النتائج حدوث زيادة في نشاط الإنزيمات المضادة للأكسدة للنباتات المعاملة بالمستخلص المائي لأوراق نبات القرع وكان التركيز 2% كان اكثر فعالية في زيادة نشاط كل من CAT و POD.

الشكر والتقدير

نتقدم بالشكر لرئاسة جامعة الموصل ولعمادة كلية العلوم لدعمها المتواصل لنا ولتسهيل كل العقبات التي واجهتنا لإنجاز هذا

البحث.

ازدواجية الاهتمام: يعلن المؤلفون أنه ليس لديهم ازدواجية في الاهتمام مرتبطة بهذه المخطوطة.

مساهمات المؤلف: المساهمة متساوبة بين المؤلفين.

التموبل: لا يوجد تمويل لهذه المخطوطة.

المراجع

- Abbas, M.M. & W. S. Hussain.(2020). Morpho-Anatomical Responses of Broad bean and Pea to Allelopathic effects of celery residues. World Wide Journal of Multidisciplinary Research and Development, 6(8): 55-58.
- Aebi, H. (1974). Catalase. In Methods of enzymatic analysis. Academic Press, New York, USA.2: 673-684.
- Boubakri, H., M. Gargouri, A. Mliki, F. Brini, J. Chong, M. Jbara, .(2016). Vitamins for enhancing plant resistance. Journal of Planta, 244(3): 529-543.
- Buckman, H. O., & N. C. Brady. (1960). Reaction of Saline and Alkali Soil. The Nature and Properties of Soils. 6th Ed. (The Macmillan Company, New York), pp.567.
- El-Shora, H. M., A. El-Gawad, M. Ahmed. (2014). Evaluation of allelopathic potential of Rumex dentatus root extract and allelochemicals on Cicer arietinum. Journal of Stress Physiology and Biochemistry, 10(1): 167-180.
- Herbert, D., P. J. Phillips &R. E. Strange.(1971). Determination of total carbohydrates. Method In Microbiology., 58:209-344.
- Kebede, E. (2020). Grain legumes production and productivity in Ethiopian smallholder agricultural system, contribution to livelihoods and the way forward. Cogent Food and Agriculture, 6(1):1-21.
- Keshavarz, H., and R. S. G. Moghadam .(2017) . Seed priming with cobalamin (vitamin B12) provides significant protection against salinity stress in the common bean. Journal of Rhizosphere, 3: 143-149.
- Knudson, L. L., T. W. Tibbitts, G. E. Edwards. (1977). Measurement of ozone injury by determination of leaf chlorophyll concentration. Journal of Plant physiology, 60(4): 606-608.
- Nezih, M.(1985.) The peroxidase enzyme activity of some vegetable and its resistance to heat. Journal of Food Agriculture, 36(9): 877-880.
- Pitotti, A., B.E. Elizalde, M. Anese .(1995) .Effect of caramelization and mail lard reaction products on peroxidase activity. Journal of Food Biochemistry, 18: 445-457.
- Politycka, B. (2004). Cell wall peroxidases in cucumber roots induced by phenolic allelochemicals. Journal of Allelopathy, 13: 29-36.

- Ratnam, N., M. Naijibullah, M. D. Ibrahim .(2017). A review on Cucurbita pepo. International Journal Pharmacy Phytochemical Research, 9:1190-4.
- Scavo, A., & G. Mauromicale .(2021) . Crop allelopathy for sustainable weed management in agroecosystems: Knowing the present with a view to the future. Journal of Agronomy, 11(11): 2104.
- Soln, K., M. Klemenčič, & J. D. Koce .(2022) . Plant cell responses to allelopathy: From oxidative stress to programmed cell death. Protoplasma: 1-14.
- Spinneker, A., R. Sola, V. Lemmen, M. J. Castillo, K. Pietrzik, M. Gonzalez-Gross. (2007). Vitamin B6 status, deficiency and its consequences-an overview. Journal of Nutricion hospitalaria, 22(1): 7-24.
- Staszek, P., U. Krasuska, K. Ciacka, and A. Gniazdowska .(2021). ROS Metabolism Perturbation as an Element of Mode of Action of Allelochemicals. Antioxidants, 10(11): 1648
- Wintermans, J. F. G. M., & A. S. De Mots. (1965). Spectrophotometric characteristics of chlorophylls a and b and their phenophytins in ethanol. Biochimica et Biophysica Acta (BBA)-Biophysics including Photosynthesis, 109(2): 448-453.
- Zhang, G., C. Yang, R. Liu, and W. Ni. (2019). Effects of three phenolic compounds on mitochondrial function and root vigor of cotton (Gossypium hirsutum L.) seedling roots. Acta Physiologiae Plantarum, 41(5): 1-10.